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Abstract

An overview is first given of reduction for simple mechanical systems (i.e., those
whose Lagrangians are kinetic energy minus potential energy) with symmetry in the
case when the action is free. Both Lagrangian and Hamiltonian perspectives are given.

1. Outline

These notes are intended to be a sketchy, broad discussion of some of what is known
about reduction for so-called simple mechanical systems. Some of what we say can be
interpreted for general systems on tangent or cotangent bundles without the additional
assumption about a corresponding simple Lagrangian or Hamiltonian. However, to be
concrete, let us stick to the true simple case.

Our point of view is one which, in the Hamiltonian framework, is associated with Poisson
reduction. That is to say, our Lagrangian reduction strategy is an analogue of Poisson
reduction when viewed in a Hamiltonian context.

The Hamiltonian content here may be found in the dissertation of Montgomery [1986].
The Lagrangian perspective for free actions is currently being worked out by [Cendra,
Marsden, and Ratiu 2001], and also see the paper of Marsden and Scheurle [1993].

2. Simple mechanical systems with symmetry

The basic data with which these notes will concern themselves is

1. an n-dimensional manifold Q (the configuration manifold),

2. a Riemannian metric k on Q (the kinetic energy metric),

3. a function V on Q (the potential energy function), and

4. an r-dimensional Lie group G which acts on (Q, k) by isometries and which leaves V
invariant.

Let us denote by Φ: G × Q → Q the action and Φg : q 7→ Φ(g, q). We shall also write
g.q = Φ(g, q). If ξ ∈ g then we let ξQ denote the associated infinitesimal generator:

ξQ(q) =
d

dt

∣∣∣∣
t=0

Φ(exp(tξ), q).
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Figure 1.

2.1 Example: As an extremely simple example, we consider two rigid bodies in the plane
which are pinned so each body rotates about the same point (see Figure 1). This example
is sometimes called Elroy’s beanie. The configuration manifold is Q = S1 × S1 for which
we use coordinates (θ1, θ2) as indicated in the figure. With this choice of coordinates the
kinetic energy is

1

2
I1θ̇

2
1 +

1

2
I2(θ̇1 + θ̇2)

2.

Thus the Riemannian metric we consider is

k = (I1 + I2)dθ1 ⊗ dθ1 + I2dθ1 ⊗ dθ2 + I2dθ2 ⊗ dθ1 + I2dθ2 ⊗ dθ2

where I1 is the inertia of the body measured by angle θ1 and I2 is the inertia of the other
body, both inertias being measured about the rotation point. In terms of its matrix

k “ = ”

[
I1 + I2 I2

I2 I2

]
.

We put here for the only time quotes around the equals sign. Of course k is not a matrix.
But we shall find it convenient when working with examples to simply write certain objects
as if they were matrices. For this example we can also consider a potential function of the
form V (θ2).
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The symmetry group we consider is G = SO(2). Let us parameterise the group by θ
in the usual manner. We also identify so(2) with R in the usual manner so that the basis
vector e1 corresponds to a counterclockwise (’scuse me, anticlockwise) rotation. Obviously
the Lie bracket is trivial. The exponential map is exp(ω) = ω mod 2π. The adjoint action
of SO(2) on so(2) is Adθ = idR . We also have the derivative of left translation given by
T0Lg(ω) = ω ∂

∂θ .
The action of so(2) we consider on Q is (θ, (θ1, θ2)) 7→ (θ1 + θ, θ2). The infinitesimal

generator is then e1,Q = ∂
∂θ1

. This action obviously leaves the metric and the assumed
potential function invariant. •

2.2 Example: This example will be a bit more complicated to show that we can work things
out in cases which are not completely trivial. The example is a pair of coupled planar rigid
bodies. If we choose an inertial reference frame FI and attach a reference frame FB to the
centre of gravity of one of the bodies, the configuration space is seen to be Q = SE(2)× S1.
We shall use the convention of measuring the angle of the second body relative (rather than
absolutely) to the body whose reference frame we are keeping track of. This is depicted
in Figure 2. We shall use coordinates (x, y, θ1, θ2) for Q where the first three coordinates

θ2

FB

FI

g = (x, y, θ1)

d

Figure 2.

parameterise SE(2) by

(x, y, θ1) 7→
[
R(θ1) p
0 1

]
where R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
and p = ( xy ). It will also sometimes be advantageous to write

elements of SE(2) simply by g, especially when we come to symmetry operations.
In determining the kinetic energy for the system, we make the assumption that the

second body is joined to the first at its centre of mass. With this assumption, the kinetic
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energy is

1

2
m1(ẋ

2 + ẏ2) +
1

2
I1θ̇

2
1+

1

2
m2(ẋ

2 + ẏ2 + d2θ̇21 + 2d cos θ1ẏθ̇1 − 2d sin θ1ẋθ̇1) +
1

2
I2(θ̇1 + θ̇2)

2.

Here mi is the mass of the ith body, Ii is the moment of inertia of the ith body about its
centre of mass, and d is the distance from the centre of mass of the first body to the pivot
point. The associated Riemannian metric is

k = (m1 +m2)dx⊗ dx−m2d sin θ1dx⊗ dθ1 + (m1 +m2)dy ⊗ dy +m2d cos θ1dy ⊗ dθ1−
m2d sin θ1dθ1 ⊗ dx+m2d cos θ1dθ1 ⊗ dy + (I1 + I2 +m2d

2)dθ1 ⊗ dθ1 + I2dθ1 ⊗ dθ2+

I2dθ2 ⊗ dθ1 + I2dθ2 ⊗ dθ2

or, if you prefer matrices,

k =


m1 +m2 0 −m2d sin θ1 0

0 m1 +m2 m2d cos θ1 0
−m2d sin θ1 m2d cos θ1 I1 + I2 +m2d

2 I2
0 0 I2 I2

 . (2.1)

If one wished, one could add a potential function of the form V (θ2) which would model
some type of force (e.g., spring force) at the joint.

The symmetry group we consider is SE(2). Let us record some basic facts about this
Lie group for future reference. We shall write an element of SE(2) as above:[

R(θ) p
0 1

]
, R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
, p =

(
p1
p2

)
.

Written in this manner, the group operation on SE(2) is simply matrix multiplication (thus
we consider SE(2) as a subgroup of GL(3;R)). The Lie algebra of SE(2), se(2), we represent
by matrices of the form[

A(ω) v
0 0

]
, A(ω) =

[
0 −ω
ω 0

]
, v =

(
v1
v2

)
.

Thus se(2) is parameterised by the triple (v1, v2, ω). The exponential map exp: se(2) →
SE(2) is given by

exp(v1, v2, ω) =

[
R(ω) R(ω) v̂ω − v̂

ω
0 1

]
, v̂ =

(
v2
−v1

)
.

We will consider the action of the symmetry group G = SE(2) given by

Φ(h, (g, θ2)) = (hg, θ2).

For this action, let us compute the infinitesimal generators. We use the basis

e1 =

[
A(0) ( 10 )
0 1

]
, e1 =

[
A(0) ( 01 )
0 1

]
, e3 =

[
A(1) 0
0 1

]



Reduction of simple mechanical systems 5

for se(2). The corresponding infinitesimal generators are

e1,Q =
∂

∂x
, e2,Q =

∂

∂y
, e3,Q = −y

∂

∂x
+ x

∂

∂y
+

∂

∂θ1
.

The adjoint action of SE(2) on se(2) in the given basis is, writing g = (x, y, θ),

Adg(ξ) =

[
R(θ) p̂
0 1

]ξ1

ξ2

ξ3


where p = (x, y). Also,

TeLg(ξ) =

[
R(θ) 0
0 1

]ξ1

ξ2

ξ3

 .

With this action, one readily verifies that k is G-invariant. Further, if we assume a
potential function of the form indicated above, then it too will be invariant. •

Let us for the moment suppose that G acts freely and properly on Q so that π : Q →
B ≜ Q/G defines a principal fibre bundle. Note that a point in the base space B is a set of
configurations which differ by some group translation. One may thus think of B as being
the set of “shapes” or “internal configurations” of the system. Thus B is often called the
shape space.

2.3 Example: (Example 2.1 cont’d) For Elroy’s beanie B = (S1 × S1)/so(2) which we
naturally parameterise by θ2. This simply describes the relative orientation of the two
bodies. •

2.4 Example: (Example 2.2 cont’d) For the coupled planar rigid bodies we are consid-
ering, the shape space is B = (SE(2)× S1)/SE(2) ≃ S1. Thus, as expected, B describes the
relative orientations of the bodies, or their shapes. •

In this case V Q ≜ ker(Tπ) defines a subbundle of TQ called the vertical subbundle. A
connection on Q is a subbundle HQ so that

1. TQ = V Q⊕HQ, and

2. TqΦg(HqQ) = Hg.qQ.

We write vq = hor(vq) + ver(vq) where vq ∈ TqQ, hor(vq) ∈ HqQ, and ver(vq) = VqQ. If
x ∈ B and if q ∈ π−1(x) then there is an isomorphism from TxB to HqQ which we denote
by hlftq.

The corresponding connection one-form is the g-valued one-form α on Q defined by

α(vq) = {ξ ∈ g | ξQ(q) = ver(vq)}.

If U ×G is a local trivialisation of π with coordinates (xα, ga) then the local form of α is

α(x, ẋ, g, ġ) = Adg(A(x)ẋ+ TgLg−1 ġ) (2.2)
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for some map x 7→ A(x) ∈ L(TxU ; g) called the local connection form. The curvature form
of α is the g-valued two-form β defined by

β(uq, vq) = dα(hor(uq), hor(vq)).

The local form of the curvature form is

β(x, g)((ẋ1, ġ1), (ẋ1, ġ1)) = Adg
(
dA(x)(ẋ1, ẋ2)− [A(x)(ẋ1), A(x)(ẋ2)]

)
.

2.5 Remark: If and only if β = 0 the horizontal distribution HQ is integrable. In this case
there is an isomorphism of the fibre bundles π : Q → B and pr1 : B × G → B which maps
the connection HQ on π to the flat connection on pr1. If we choose a natural trivialisation
for pr1, then the local connection form for the flat connection is zero. •

Simple mechanical systems endow π : Q → Q/G with a natural connection called the
mechanical connection. This is defined by choosing HqQ = VqQ

⊥. We define a q-dependent
inner product I on g by

I(q)(ξ, η) = kq(ξ(q), η(q))

which we call the locked inertia tensor . For systems for which the statement makes sense,
this is the inertia of the system whose shape is π(q).

Let us see how one may easily determine the mechanical connection and the locked
inertia tensor by looking at the local form of k. Simply by G-invariance of k, in a local
trivialisation we may write the matrix of k as[

M̃(x) Ã∗(x)

Ã(x) I(x)

]
where M̃(x) is an inner product on TxU , I(x) is an inner product on g, and Ã(x) is a linear
map from TxU to g∗. One may readily verify that the local form of the locked inertia tensor
is

I(x, g)(ξ, η) = I(x)(Adg−1 ξ,Adg−1 η)

which gives meaning to the lower right block of the matrix for k. If we define A(x) ∈
L(TxU ; g) by A(x)(ẋ) = I♯(x)(Ã(x)(ẋ)) then we may show that A is the local connection
form for the mechanical connection. Thus, to summarise, the local form of the matrix for
k is [

M̃(x) A∗(x) ◦ I♭(x)

I♭(x) ◦ A(x) I(x)

]
.

In this representation we have erased the G-dependence of k by, instead of acting on a
vector (ẋ, ġ), acting on (ẋ, ξ) where ξ = g−1ġ.

2.6 Remark: If the curvature of the mechanical connection is zero we may look at Re-
mark 2.5 to assert that there is a diffeomorphism of Q with B ×G which takes the metric
on Q to a product metric on B ×G. •

What is the meaning of M̃(x)? It is tempting to regard it as a Riemannian metric on
U , as indeed it is. But it has no intrinsic meaning in this capacity. One can define an
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intrinsic Riemannian metric on B, however. To do this, proceed as follows. Let x ∈ B and
ux, vx ∈ TxB. We define kB by

kB,x(ux, vx) = kq(hlftq(ux), hlftq(vx))

where q ∈ π−1(x). Locally we have

kB,x(ẋ1, ẋ2) = M̃(x)(ẋ1, ẋ2)− I(x)(A(x)(ẋ1), A(x)(ẋ2)) ≜ M(x)(ẋ1, ẋ2)

so defining M(x). In matrix form we have

M(x) = M̃(x)−A∗(x) ◦ I(x) ◦ A(x).

Not at all surprisingly, if we write the local matrix of k with respect to a basis of vector
fields which are horizontal and vertical then the matrix decouples to give[

M(x) 0
0 I(x)

]
.

2.7 Example: (Example 2.1 cont’d) Let’s do the easy example first. The vertical sub-
bundle for Elroy’s beanie is V Q = ∂

∂θ1
. The orthogonal complement to this subbundle is

generated by the vector field −I2
∂

∂θ1
+ (I1 + I2)

∂
∂θ2

. The connection form is then directly
computed to be

α =
[
1 I2

I1+I2

]
.

One should bear in mind that this is the matrix of a so(2) valued one-form on Q. Let us
write this in a form where we can pick off the local connection form:

α = Adθ

[
1T ∗

e Lθ
I2

I1+I2

]
so that the local connection form is simply A(θ2) =

[
I2

I1+I2

]
. The curvature of this con-

nection is zero for multiple reasons, starting with the fact that the base space is one-
dimensional.

The locked inertia tensor is readily computed to have the matrix [ I1+I2 ] from which we
determine the local locked inertia tensor to be

I(θ2) = Ad∗θ I(θ, θ2)Adg =
[
I1 + I2

]
which is clearly the inertia of the two bodies when locked.

The reduced metric on B ≃ S1 is then readily computed to give

kB =
[

I22
I1+I2

]
Of course, we may simply determine the local locked inertia tensor by looking at the

matrix for k and picking off the top right block. The local mechanical connection form is
then the inverse of the locked inertia tensor multiplied by the top left block of k. •
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2.8 Example: (Example 2.2 cont’d) Okay, let’s carry out these constructions for our
planar rigid body. The vertical subspace is spanned by the infinitesimal generators:

V Q = span(
∂

∂x
,
∂

∂y
,
∂

∂θ
).

A computation gives the horizontal distribution for the mechanical connection as

HQ = span

{
I2m2d sin θ1

∂

∂x
+ I2m2d cos θ1

∂

∂y
− (m1 +m2)I2

∂

∂θ1
+

−((m1 +m2)(I1 + I2) + d2)
∂

∂θ2

}
.

Using this information we may directly compute the connection form to be represented by
the matrix

α =

1 0 y I2((m1+m2)y+m2d sin θ1)
∆

0 1 −x − I2((m1+m2)x+m2d cos θ1)
∆

0 0 1 I2(m1+m2)
∆


where ∆ = (m1+m2)(I1+ I2)+m1m2d

2. In writing α in this manner, we are thinking of α
as a g-valued one-form on Q. Thus the ath row of the matrix is a one-form giving the ath
component of α in the basis {e1, e2, e3} for se(2). Let’s write this in a more illuminating
fashion; one where we may see the local form of (2.2):

Adg

1 0 0
0 1 0
0 0 1

T ∗
e Lg

 0

− I2d
∆

I2(m1+m2)
∆


from which we immediately derive the local connection form to be

A(θ2) =

 0

− I2m2d
∆

I2(m1+m2)
∆

 .

Since the base space is one-dimensional, the curvature of this connection is automat-
ically zero. Therefore, by Remark 2.6 we may find coordinates in which the coordinate
representation of the inertia metric decouples (i.e., the local connection form is zero). Go
ahead and find these coordinates, and let me know what they are. . .

In this same basis for se(2) the locked inertia tensor is represented by the matrix m1 +m2 0
0 m1 +m2

−(m1 +m2)y −m2d sin θ1 (m1 +m2)x+m2d cos θ1

−(m1 +m2)y −m2d sin θ1
(m1 +m2)x+m2d cos θ1

I1 + I2 +m2d
2(m1 +m2)(x

2 + y2) + 2m2dx cos θ1 + 2m2dy sin θ1


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If we pull out the SE(2) part of this we determine the local locked inertia tensor to be
represented by the matrix

I(θ2) = Ad∗g I(g, θ2)Adg =

m1 +m2 0 0
0 m1 +m2 m2d
0 m2d I1 + I2 +m2d

2

 .

We recognise this as the inertia of the two bodies at (x, y, θ1) = (0, 0, 0) when locked in the
configuration θ2 (although this does not depend on θ2 in this example. . . )

With the local connection form and the local locked inertia tensor, we may easily com-
pute the reduced metric on B ≃ S1 to have the matrix[

I1I2(m1+m2)+I2m1m2d2

∆

]
.

Rather than computing the mechanical connection and locked inertia tensors directly
as we did above, it is also possible to simply read them off by looking at the matrix
representation (2.1) of k. Just set (x, y, θ1) = (0, 0, 0) and then the top left 3×3 corner will
be the local locked inertia tensor I(θ2). The local connection form is then I−1(θ2) multiplied
by the 3× 1 matrix occupying the top right corner. Now that’s a lot easier, isn’t it? Note
that this all works in this example because the coordinates (x, y, θ1) have the property that
their coordinate vector fields are exactly (e1, e2, e3) when evaluated at (0, 0, 0). •

3. The reduced Euler-Lagrange equations

In this section we investigate what happens when we are given the problem data stated
in Section 2 and we try to simplify the Euler-Lagrange equations:

d

dt

∂L

∂q̇
− ∂L

∂q
= 0.

We will be concerned specifically with the situation when L(vq) =
1
2kq(vq, vq)− V (q).

3.1. The Euler-Poincaré equations. Let us first examine the case when Q = G and when
k is a left-invariant Riemannian metric. In this case we may as well take V = 0. We
shall denote by I the inner product induced by k on g. We let ∇ denote the Levi-Civita
connection associated with k and recall that ∇ is defined by the relation

k(∇XY, Z) =
1

2

(
LX(k(Y, Z)) +LY (k(Z,X))−LZ(k(X,Y ))+

k([X,Y ], Z)− k([X,Z], Y )− k([Y,Z], X)
)

for vector fields X, Y , and Z on G (see [Kobayashi and Nomizu 1963], for example). If we
let X, Y , and Z be left-invariant extensions of ξ, η, ζ ∈ g, then this gives

2k(∇XY,Z)(g) = kg(TeLg([ξ, η]), TeLgζ)−
kg(TeLg([ξ, ζ], TeLgη)− kg(TeLg([η, ζ]), TeLgξ).
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This shows that ∇ is left-invariant (meaning L∗
g(∇XY ) = ∇XY for g ∈ G and left-invariant

vector fields X and Y ) and that

(∇XY )(g) = TeLg

(
1

2
[ξ, η]− 1

2
(ad∗ξ η

♭)♯ − 1

2
(ad∗η ξ

♭)♯
)

where X and Y are the left-invariant extensions of ξ and η, respectively. Here ♭ : g → g∗

and ♯ : g∗ → g are the musical isomorphisms associated with the inner product I. Let us

then define a product
g

∇ on g by

g

∇ξη =
1

2
[ξ, η]− 1

2
(ad∗ξ η

♭)♯ − 1

2
(ad∗η ξ

♭)♯. (3.1)

We have the following result which describes geodesics of ∇.

3.1 Proposition: Let k be a left-invariant Riemannian metric on G with ∇ the associated
Levi-Civita connection. A curve c on G is a geodesic for ∇ if and only if the curve t 7→
ξ(t) ≜ Tc(t)Lc(t)−1(ċ(t)) satisfies the Euler-Poincaré equations

ξ̇(t)− (ad∗ξ(t) ξ
♭(t))♯ = 0.

Proof: Let {e1, . . . , er} be a basis for g and write ξ(t) = ξi(t)ei. We then have

∇ċ(t)ċ(t) = ∇ξi(t)TeLc(t)ei
ξj(t)TeLc(t)ej

= Lċ(t)ξ
j(t)TeLc(t)ej + ξi(t)ξj(t)∇TeLc(t)eiTeLc(t)ej

= TeLc(t)(ξ̇ +
g

∇ξ(t)ξ(t)).

This completes the proof if we substitute the expression (3.1) for
g

∇. ■

One way to view this result is as follows. If Z denotes the geodesic spray associated with
∇ (thus Z is a second-order vector field on TG), then the representation of Z under the
bundle isomorphism λ : TG → G× g : vg 7→ (g, TgLg−1(vg)) has the form

λ∗Z(g, ξ) = (g, ξ, TeLgξ, (ad
∗
ξ ξ

♭)♯).

3.2 Remark: It is possible to talk about the Euler-Poincaré equations for general left-
invariant Lagrangians on TG. If L is such a Lagrangian let ℓ be the associated function on
g. The Euler-Poincaré equations are then

d

dt

(
∂ℓ

∂ξ

)
= ad∗ξ

∂ℓ

∂ξ
.

Here we think of ∂ℓ
∂ξ as being an element of g∗. These are then implicit equations for ξ(t)

and a sufficient condition for solutions to exist is for ∂2ℓ
∂ξ∂ξ to be nondegenerate at each point

in g. •
The Euler-Poincaré equations are rather uninteresting for the locked inertia tensor cor-

responding to Elroy’s beanie. However, our other example is more interesting.
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3.3 Example: (Example 2.2 cont’d) Let us look at the case where G = SE(2) and
the Riemannian metric k restricts to the Lie algebra of se(2) giving the inner product
represented by, say, m1 +m2 0 0

0 m1 +m2 m2d
0 m2d I1 + I2 +m2d

2

 .

The Lie algebra structure on se(2) is defined by

[e1, e2] = 0, [e1, e3] = e2, [e2, e3] = −e1.

We then readily compute the associated Euler-Poincaré equations to be

ξ̇1 + ξ2ξ3 +
m2d

m1 +m2
(ξ3)2 = 0

ξ̇2 − ξ1ξ3 = 0

ξ̇3 = 0. •

3.4 Example: Let’s break a bit from our to now ongoing example and look at the rigid
body equations on so(3). We use the basis

e1 =

0 0 0
0 0 −1
0 1 0

 , e2 =

 0 0 1
0 0 0
−1 0 0

 , e3 =

0 −1 0
1 0 0
0 0 0


which satisfies the commutator relations [e1, e2] = e3, [e1, e3] = −e2, and [e2, e3] = e1. Let
us use the Riemannian metric on SO(3) which restricts to the inner product on so(3) whose
matrix in the given basis is I1 0 0

0 I2 0
0 0 I3

 .

The Euler-Poincaré equations are then

ξ̇1 =
I2 − I3

I1
ξ2ξ3

ξ̇2 =
I3 − I1

I2
ξ1ξ3

ξ̇3 =
I1 − I2

I3
ξ1ξ2. •

3.2. A model for the reduced space TQ/G. Since the function L is G-invariant, by
general principles it drops to a function ℓ on TQ/G. Furthermore, the Euler-Lagrange
vector field on TQ drops to a vector field on TQ/G. In this section we present a model for
TQ/G is the case when π : Q → B comes equipped with a connection — for example, in
the case of simple mechanical systems where we use the mechanical connection.
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First of all, note that TQ/G is a vector bundle over Q/G whose fibre over [q]G is
isomorphic to TqQ. Indeed, if vq ∈ TQ and if gq′ ∈ G is the unique group element with the
property that gq′ .q = q′ for q′ ∈ [q]G then

uq′ 7→ (q′, (Tq′Φgq′ )
−1(uq′))

is a diffeomorphism of [vq]G with [q]G×TqQ. We essentially will use a connection to make a
further refinement of this by making the decomposition TqQ = VqQ⊕HqQ and making the
observation thatHqQ is naturally isomorphic to T[q]G(Q/G) and VqQ is naturally isomorphic
to g. So we expect to somehow be able to make a diffeomorphism from TQ/G to “TB×g.”

To make sense out of this, we introduce the adjoint bundle which is a vector bundle
over B with typical fibre g. Let Ad be the adjoint representation of G in g. The adjoint
bundle, which we denote by g̃, is defined to be the bundle associated with π : Q → Q/G via
this representation. Thus

g̃ = (Q× g)/G

where we take the action (g, (q, ξ)) 7→ (g.q,Adg ξ) on Q× g. We denote a typical point in g̃
by [(q, ξ)]G, and note that χ : g̃ → B defined by χ([(q, ξ)]G) = [q]G makes g̃ a vector bundle
over B.

Now, if α is any connection on π, we define the following vector bundle isomorphism:

ρα : TQ/G → TB ⊕ g̃

[vq]G 7→ Tπ(vq)⊕ [(q, α(vq))]G

which has inverse
ux ⊕ [(q, ξ)]G 7→ [hlftq(ux) + ξQ(q)]G.

Let us see what this looks like in coordinates. Make a trivialisation of π with coordinates
(x, g) as we have done above. The associated coordinates for TQ are denoted (x, g, ẋ, ġ).
The action of G in the trivialisation we write by (h, (x, g, ẋ, ġ)) 7→ (x, hg, ẋ, h.ġ) so we may
use (x, ẋ, ξ) to represent [(x, g, ẋ, ġ)]G where ξ is defined by ġ = TeLg(ξ). Now, with respect
to this same trivialisation, coordinates for TB⊕ g̃ are defined as follows. A point in TB⊕ g̃
is written as (x, ẋ) ⊕ [((x, g), ξ)]G. We choose our chart for TB ⊕ g̃ so that this point is
represented by (x, ẋ, ξ). Now that we have fixed our coordinatisation of TQ/G and TB⊕ g̃,
let us write ρα. We have

ρα(x, ẋ, ξ) = (x, ẋ, ξ +A(x)ẋ)

What we are doing in this coordinate expression is writing the vector (ẋ, ξ), which represents
a vector over x in the local model of TQ/G, in terms of its horizontal and vertical parts
with respect to the given connection.

3.3. The reduced equations. Now we use the above representation of TQ/G ≃ TB ⊕
g̃ to write the reduced differential equations. Cendra, Marsden, and Ratiu [2001] use a
variational derivation which is in many ways interesting. Rather than go through the entire
construction, let us simply illustrate how it works in the case when Q = G. We prove the
following result.
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3.5 Proposition: (Theorem 13.8.3 in [Marsden and Ratiu 1999]) Let L be a left-
invariant Lagrangian on G with restriction ℓ to g. Let g(t), t ∈ [t1, t2], be a curve in G and
define a curve ξ(t) = Tg(t)Lg−1(t)(ġ(t)). The following are equivalent:

(i) g(t) is a solution of the Euler-Lagrange equations with Lagrangian L;

(ii) g(t) is an extremal for the variational principle

δ

∫ t2

t1

L(g(t), ġ(t)) dt

where the endpoints are fixed;

(iii) ξ(t) satisfies the Euler-Poincaré equations;

(iv) ξ(t) is an extremal for the variational principle

δ

∫ t2

t1

ℓ(ξ(t)) dt

where the variations are of the form δξ = η̇+[ξ, η] where η vanishes at the endpoints.

Proof: We shall establish the correspondences (ii) ⇐⇒ (iv) and (iv) ⇐⇒ (iii).
(ii) ⇐⇒ (iv) We give a proof for matrix Lie groups. Let g(s, t) be a variation of a curve

g(t) and denote by “·” differentiation with respect to t at (t, 0) and by “δ” differentiation
with respect to s at (t, 0). We need only show that a variation δg(t) of a curve g(t) gives rise
to a variation δξ(t) = η̇(t) + [ξ, η]. For a variation δg(t) of g(t) define η(t) = g−1(t)δg(t).
We then have

η̇(t) = −g−1(t)ġ(t)g−1(t)δg(t) + g−1(t)δġ(t)

from which we compute

δξ(t) = − g−1(t)δg(t)g−1(t)ġ(t) + g−1(t)δġ(t)

= η̇ + (g−1(t)ġ(t))(g−1(t)δg(t))− (g−1(t)δg(t))(g−1(t)ġ(t))

= η̇ + [ξ, η].

(iv) ⇐⇒ (iii) So suppose that δξ = η̇ + [ξ, η] and compute

δ

∫ t2

t1

ℓ(ξ(t)) dt =

∫ t2

t1

∂ℓ

∂ξ
δξ dt

=

∫ t2

t1

∂ℓ

∂ξ
(η̇ + [ξ, η]) dt

=

∫ t2

t1

(
− d

dt

∂ℓ

∂ξ
+ ad∗ξ

∂ℓ

∂ξ

)
η dt

from which the result follows. ■

For the general situation one needs to resolve variations on Q into horizontal and vertical
variations. We shall not go through the details as they require a few definitions which are
neither here nor there with regard to what we wish to do. Rather, let us write down the
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equations induced on TB⊕ g̃ in a local trivialisation. First of all, the Lagrangian on TB⊕ g̃
is

ℓ(vx, [(q, ξ)]G) =
1

2
kB(vx, vx)− VB(x) +

1

2
I(q)(ξ, ξ)

where q ∈ π−1(x) and where VB is the function obtained by dropping V to B. The last
term does not depend on the choice of q. In coordinates

ℓ(x, ẋ, ξ) =
1

2
M(x)(ẋ, ẋ)− VB(x) +

1

2
I(x)(ξ, ξ).

The Euler-Lagrange equations themselves drop to the differential equations

M(x)
B

∇ẋẋ+
1

2
dI(x)(ξ, ξ)− dV (x) = B∗(x)(ẋ, I♭(x)(ξ))−A∗(x)(ad∗ξ I

♭(x)(ξ))

I♭(x)ξ̇ +
1

2
(ẋ dI(x))♭(ξ) = − ad∗A(x)(ẋ) I

♭(x)(ξ) + ad∗ξ I
♭(x)(ξ)

where B∗(x) : TxU × g∗ → T ∗
xU is defined by

⟨B∗(x)(ẋ1, ν); ẋ2⟩ = ⟨ν;B(x)(ẋ1, ẋ2)⟩.

Also,
B

∇ is the Levi-Civita connection on B induced by the Riemannian metric kB.

3.6 Remark: Note that in this local form, ξ = 0 defines an invariant submanifold. This
reflects the fact that in the decomposition TB ⊕ g̃, T ∗B is invariant under the reduced
dynamics. This means that if one starts with zero “group velocity” the dynamics are just the
Lagrangian dynamics of the system on the base space with Lagrangian 1

2kB(vx, vx)−VB(x).
This has the following interpretation in terms of dynamics on TQ: The horizontal subbundle
HQ is an invariant manifold. The solution curve q(t) with initial velocity q̇(0) ∈ Hq(0)Q is
the horizontal lift of a curve x(t) on B which is a solution of the Euler-Lagrange equations
with the Lagrangian 1

2kB(vx, vx) − VB(x). Furthermore, if one were to be able to actuate
the system on B, then the induced dynamics on Q would be horizontal lifts of the motion
on B. This is a topic of some interest in control theory. •

3.7 Example: (Example 2.1 cont’d) We can immediately write the reduced equations
for Elroy’s beanie:

θ̈2 +
I1 + I2

I22
V ′(θ2) = 0

θ̈1 = 0.

We have divided the reduced equations by the inertia tensor. •

3.8 Example: (Example 2.2 cont’d) If we do this for the planar rigid bodies example we
have been going through, we get the reduced equations to be

θ̈2 = 0

ξ̇1 + ξ2ξ3 +
m2d

m1 +m2
(ξ3)2 +

I2(m1 +m2)

∆
θ̇2ξ

2 +
I2m2d

∆
θ̇2ξ

3 = 0

ξ̇2 − ξ1ξ3 − I2(m1 +m2)

∆
θ̇2ξ

1

ξ̇3 = 0.
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In these equations we have multiplied by the inverse of the inertia matrix for the system so
the highest order derivatives decouple. •

4. The Hamiltonian version of the above

Let’s take a quick look at what this all looks like in a Hamiltonian setting. Thus we
deal with T ∗Q rather than TQ and we consider the canonical symplectic structure ω0 on
T ∗Q. This induces a Poisson structure on T ∗Q defined by {f, g} = ω(Xf , Xg) where Xf is
the Hamiltonian vector field defined by Xf ω0 = df . If G acts on Q then its lifted action
on T ∗Q is defined by

(g, αq) 7→ (TΦg(q)Φg−1)∗(αq)

which preserves the symplectic structure ω0. If f and g are two smoothG-invariant functions
on T ∗Q then they drop to smooth functions f̃ and g̃ on T ∗Q/G. Conversely, any smooth
functions on T ∗Q/G are obtained in this manner. Because G acts symplectically on T ∗Q,
{f, g} will be G-invariant if f and g are. Thus we define a Poisson structure on T ∗Q/G by

{f̃, g̃} = {̃f, g}. Note that this is all true as long as T ∗Q/G is a manifold. In this section
we investigate the case when π : Q → Q/G is a principal fibre bundle.

4.1. A model for the reduced space T ∗Q/G. Here we proceed along lines similar to those
in Section 3.2. The coadjoint representation of G on g∗ we denote by Ad∗ and we write
the image of g ∈ G in GL(g∗) as Ad∗g−1 . The coadjoint bundle is then the associated vector
bundle over B defined by g̃∗ = (Q×g∗)/G with the action being (g, (q, µ)) 7→ (g.q,Ad∗g−1 µ).

Now suppose that α is a connection on π. This allows us to define a splitting T ∗Q =
H∗Q ⊕ V ∗Q where H∗Q = annV Q and V ∗Q = annHQ. Note that V ∗Q is connection
dependent, and H∗Q is not. For αq ∈ T ∗

q Q we shall write αq = hor(αq) + ver(αq) where
hor(αq) ∈ H∗

qQ and ver(αq) ∈ V ∗
q Q.

For each q ∈ Q and x = π(q), T ∗
q π : T

∗
xB → T ∗

q Q is an isomorphism onto its image,
and its image is exactly H∗

qQ. Thusly we define hlft∗q : T
∗
xB → H∗

qQ. We also define the
momentum map of the G-action as the map J : T ∗Q → g∗ defined by

⟨J(αq); ξ⟩ = ⟨αq; ξQ(q)⟩.

Using this relation, one may directly verify that if we regard J as a g∗-valued vector field
(i.e., a one-form on one-forms) then its kernel is exactly H∗Q. Thus, since the action is
free, J |V ∗

q Q is an isomorphism onto g∗ for each q ∈ Q. Thus we have made a pointwise
isomorphism of T ∗

q Q with T ∗
xB ⊕ g∗.

Since T ∗Q/G is a vector bundle over B with typical fibre over x ∈ B given by T ∗
q Q for

q ∈ π−1(x), we expect the constructions in the preceding paragraph to yield an isomorphism
from T ∗Q/G to T ∗Q⊕ g̃∗. Indeed, just such an isomorphism is

σα : T
∗Q/G → T ∗B ⊕ g̃∗

[αq]G 7→ (hlft∗q)
−1(hor(αq))⊕ [(q,J(αq))]G.

The inverse of σα is

αx ⊕ [(q, µ)]G 7→ [hlft∗q(αx) + (J |V ∗
q Q)−1(µ)]G.
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Let us take a look at these constructions in a local trivialisation with coordinates (x, g).
Coordinates for T ∗Q in this trivialisation we shall denote by (x, g, p, π) (forgive me for using
π here as it also stands for the projection from Q to Q/G). The G action then looks like
(h, (x, g, p, π)) 7→ (x, hg, p, h.π). Thus we use (x, p, µ) to represent the point [(x, p, g, π)]G
where π = (TgLg−1)∗µ. With respect to the same trivialisation a point in T ∗B ⊕ g̃∗ is
written as (x, p)⊕ [((x, g), µ)]G which we represent by (x, p, µ). The map σα is then given
by

(x, p, µ) 7→ (x, p−A∗(x)µ, µ)

where A is the local connection form. One may think of this as writing the vector (p, µ) in
its vertical and horizontal decomposition.

4.2. The Poisson structure on T ∗Q/G in a local trivialisation. We use the coordinates
(x, p, µ) as constructed above for T ∗Q/G. The Poisson structure is defined by the Poisson
bracket between coordinates functions. We have

{xα, pβ} = δαβ , α, β = 1, . . . , n− r

{µa, µb} = −Cd
abµd, a, b = 1, . . . , r

and all other brackets are zero. Here Ca
bd are the structure constants for the Lie algebra.

We recognise the second term as the usual Poisson structure on g∗ associated with the left
action.

4.3. The Poisson structure on T ∗B ⊕ g∗ induced by a connection. To compute the
Poisson structure on T ∗B ⊕ g̃∗ we ask that σα be a Poisson mapping. That is, we require
σ∗
α{f, g} = {σ∗

αf, σ
∗
αg} for functions f and g on T ∗B ⊕ g̃∗. Do the computations to get

{xα, pβ} = δαβ , α, β = 1, . . . , n− r

{pα, pβ} = Ba
αβµa, α, β = 1, . . . , n− r

{µa, µb} = −Cd
abµd, a, b = 1, . . . , r

{pα, µa} = −Cd
abA

b
αµd, α = 1, . . . , n− r, a = 1, . . . , r

and the remaining brackets are zero.

4.1 Remark: Since our Poisson structure on T ∗B ⊕ g̃∗ is connection dependent, it raises
the question as to why we should want to work with this bundle at all, rather than with
T ∗Q/G which has a natural Poisson structure. The answer is, to some extent, that it is
a matter of taste. What one gains by working with the coadjoint bundle description is a
global decomposition involving the cotangent bundle of the shape space. To gain this, one
needs a connection. For simple mechanical systems, it makes sense to use a connection
since one is given to you for free. •

4.4. The reduced equations on T ∗B ⊕ g∗. Thus far in this Hamiltonian section, our
presentation has been a bit abstract. Let us return to the case when the Lagrangian is
simple and the connection defining the morphism σα is the mechanical connection. The
reduced Hamiltonian on T ∗Q⊕ g̃∗ is given by

h(αx, [(q, µ)]G) =
1

2
k−1
B (αx, αx)− VB(x) +

1

2
I−1(q)(µ, µ).
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In a trivialisation we write

h(x, p, µ) =
1

2
M−1(x)(p, p)− VB(x) +

1

2
I−1(x)(µ, µ).

Using the Poisson structure on T ∗B ⊕ g̃∗ we derive the equations of motion to be

ẋ = M ♯(x)(p)

ṗ = −dM−1(x)(p, p)−B∗(M ♯(x)(p), µ)− dVB(x)− dI−1(x)(µ, µ) +A∗(x)(ad∗I♯(x)(µ) µ)

µ̇ = − ad∗A(x)(M♯(x)(p)) µ+ ad∗I♯(x)(µ) µ.
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Mathematics and Physics. Journal de Mathématiques et de Physiques Appliquées, 44(1),
pages 17–43, issn: 0044-2275, doi: 10.1007/BF00914351.

Montgomery, R. [1986] “The Bundle Picture in Mechanics”, Doctoral thesis, Berkeley, CA,
USA: University of California, Berkeley.

https://doi.org/10.1007/BF00914351

	Outline
	Simple mechanical systems with symmetry
	The reduced Euler-Lagrange equations
	The Euler-Poincaré equations.
	A model for the reduced space Q/G.
	The reduced equations.

	The Hamiltonian version of the above
	A model for the reduced space T*Q/G.
	The Poisson structure on T*Q/G in a local trivialisation.
	The Poisson structure on T*Bg* induced by a connection.
	The reduced equations on T*Bg*.


