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Appendix B

Convex analysis

In this appendix we review a few basic notions of convexity and related notions
that will be important for us at various times.

B.1 The Hausdorff distance

We begin with a fairly simple measure of “closeness” of sets.

B.1.1 Definition (Distance between sets) Let (M,d) be a metric space. For nonempty
subsets A and B of M the distance between A and B is

dist(A,B) = inf{d(x, y) | x ∈ A, y ∈ B}.

If A = {x} for some x ∈ M, then we denote dist(x,B) = dist({x},B) and, if B = {y} for
some y ∈M, then we denote dist(A, y) = dist(A, {y}). •

For general sets A and B there is not much useful one can say about dist(A,B).
However, if we make some assumptions about the sets, then there is some structure
here. Let us explore some of this.

B.1.2 Proposition (Continuity of distance to a set) Let (M,d) be a metric space. If B ⊆ M

then the function x 7→ dist(x,B) on M is uniformly continuous in the metric topology.
Proof Let ε ∈ R>0 and take δ = ε

2 . Let y ∈ B be such that d(x1, y) − dist(x1,B) < ε
2 . Then, if

d(x1, x2) < δ,

dist(x2,B) ≤ d(x2, y) ≤ d(x2, x1) + d(x1, y) ≤ dist(x1,B) + ε.

In a symmetric manner one shows that

dist(x1,B) ≤ dist(x2,B) + ε,

provided that d(x1, x2) < δ. Therefore,

|dist(x1,B) − dist(x2,B)| < ε,

provided that d(x1, x2) < δ, giving uniform continuity, as desired. �

Now let us consider some properties of the distance function for closed sets. It is
convenient to have at this point the notion of a Heine–Borel metric space, by which
we mean one in which closed and bounded sets are compact.
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B.1.3 Proposition (Set distance and closed sets) Let (M,d) be a metric space. If A,B ⊆ M

are closed sets then the following statements hold:
(i) if A ∩ B = ∅ then dist(x,B),dist(A,y) > 0 for all x ∈ A and y ∈ B;
(ii) if (M,d) is Heine–Borel and if A is compact, then there exists x0 ∈ A and y0 ∈ B such

that dist(A,B) = d(x0,y0).
Proof (i) Suppose that dist(x,B) = 0. Then there exists a sequence (y j) j∈Z>0 in B such
that d(y j, x) < 1

j for each j ∈ Z>0. Thus the sequence (y j) j∈Z>0 converges to x and so
x ∈ cl(B) = B. Therefore, if A ∩ B = ∅ we can conclude that, if dist(x,B) = 0, then x < A.
That is, dist(x,B) > 0 for every x ∈ A, and similarly dist(A, y) > 0 for every y ∈ B.

(ii) By Proposition B.1.2 the function x 7→ dist(x,B) is continuous and so too then
is its restriction to the compact set A. Thus, since continuous functions on compact
sets obtain their minimum [Abraham, Marsden, and Ratiu 1988, Corollary 1.5.8], there
exists x0 ∈ A such that dist(A,B) = dist(x0,B). Now there exists a sequence (y j) j∈Z>0 in
B such that d(y j, x0) < dist(x0,B) + 1

j for each j ∈ Z>0. Abbreviate r = dist(x0,B). The

sequence (y j) j∈Z>0 is contained in the closed ball B(r + 1, x0), which is compact since M is
Heine–Borel. Therefore, by the Bolzano–Weierstrass Theorem [Abraham, Marsden, and
Ratiu 1988, Theorem 1.5.4], there exists a convergent subsequence (y jk)k∈Z>0 converging
to y0. Since B is closed we necessarily have y0 ∈ B. We claim that dist(A,B) = d(x0, y0).
Indeed, continuity of the metric ensures that

dist(A,B) = dist(x0,B) = lim
k→∞

d(y jk , x0) = d(y0, x0),

as desired. �

B.2 Convex sets and affine subspaces

In this section we review the basic notions of convexity we use. A standard text
with additional information along these lines is [Rockafellar 1970].

B.2.1 Definitions

We begin by defining subsets of a R-vector space that have the properties we shall
study.

B.2.1 Definition (Convex set, affine subspace) Let V be a R-vector space.
(i) A subset C ⊆ V is convex if, for each x1, x2 ∈ C, we have

{sx1 + (1 − s)x2 | s ∈ [0, 1]} ⊆ C.

(ii) A subset A ⊆ V is an affine subspace if, for each x1, x2 ∈ A, we have

{sx1 + (1 − s)x2 | s ∈ R} ⊆ A. •

Note that the set {sx1 + (1 − s)x2 | s ∈ [0, 1]} is the line segment in V between x1 and
x2. Thus a set is convex when the line segment connecting any two points in the set
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remains in the set. In a similar manner, {λx | λ ∈ R≥0} is the ray emanating from 0 ∈ V
through the point x. An affine subspace is a set where the (bi-infinite) line through
any two points in the set remains in the set.

B.2.2 Combinations and hulls

We shall be interested in generating convex sets and affine subspaces containing
given sets.

B.2.2 Definition (Convex hull, affine hull) Let V be a R-vector space and let S ⊆ V be
nonempty.

(i) A convex combination from S is a linear combination in V of the form

k∑
j=1

λ jv j, k ∈ Z>0, λ1, . . . , λk ∈ R≥0,
k∑

j=1

λ j = 1, v1, . . . , vk ∈ S.

(ii) The convex hull of S, denoted by conv(S), is the smallest convex subset of V
containing S.

(iii) An affine combination from S is a linear combination in V of the form

k∑
j=1

λ jv j, k ∈ Z>0, λ1, . . . , λk ∈ R,
k∑

j=1

λ j = 1, v1, . . . , vk ∈ S.

(iv) The affine hull of S, denoted by aff(S), is the smallest affine subspace of V
containing S. •

B.2.3 Remark (Sensibility of hull definitions) The definitions of conv(S) and aff(S) make
sense because intersections of convex sets are convex and intersections of affine sub-
spaces are affine subspaces. •

Convex combinations have the following useful property which also describes the
convex hull.

B.2.4 Proposition (The convex hull is the set of convex combinations) Let V be aR-vector
space, let S ⊆ V be nonempty, and denote by C(S) the set of convex combinations from S. Then
C(S) = conv(S).

Proof First we show that C(S) is convex. Consider two elements of C(S) given by

x =

k∑
j=1

λ ju j, y =

m∑
l=1

µlvl.

Then, for s ∈ [0, 1] we have

sx + (1 − s)y =

k∑
j=1

sλ ju j +

m∑
l=1

(1 − s)µ jv j.
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For r ∈ {1, . . . , k + m} define

wr =

ur, r ∈ {1, . . . , k},
vr−k, r ∈ {k + 1, . . . , k + m}

and

ρr =

sλr, r ∈ {1, . . . , k},
(1 − s)µr−k, r ∈ {k + 1, . . . , k + m}.

Clearly wr ∈ S and ρr ≥ 0 for r ∈ {1, . . . , k + m}. Also,

k+m∑
r=1

ρr =

k∑
j=1

sλ j +

m∑
l=1

(1 − s)µl = s + (1 − s) = 1.

Thus sx + (1 − s)y ∈ C(S), and so C(S) is convex.
This necessarily implies that conv(S) ⊆ C(S) since conv(S) is the smallest convex set

containing S. To show that C(S) ⊆ conv(S) we will show by induction on the number
of elements in the linear combination that all convex combinations are contained in the
convex hull. This is obvious for the convex combination of one vector. So suppose that
every convex combination of the form

k∑
j=1

λ ju j, k ∈ {1, . . . ,m},

is in conv(S), and consider a convex combination from S of the form

y =

m+1∑
l=1

µlvl =

m∑
l=1

µlvl + µm+1vm+1.

If
∑m

l=1 µl = 0 then µl = 0 for each l ∈ {1, . . . ,m}. Thus y ∈ conv(S) by the induction
hypothesis. So we may suppose that

∑m
l=1 µl , 0 which means that µm+1 , 1. Let us define

µ′l = µl(1 − µm+1)−1 for l ∈ {1, . . . ,m}. Since

1 − µm+1 =

m∑
l=1

µl

it follows that
m∑

l=1

µ′l = 1.

Therefore,
m∑

l=1

µ′l vl ∈ conv(S)

by the induction hypothesis. But we also have

y = (1 − µm+1)
m∑

l=1

µ′l vl + µm+1vm+1
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by direct computation. Therefore, y is a convex combination of two elements of conv(S).
Since conv(S) is convex, this means that y ∈ conv(S), giving the result. �

Finally, we prove the expected result for affine subspaces, namely that the affine
hull is the set of affine combinations. In order to do this we first give a useful charac-
terisation of affine subspaces.

B.2.5 Proposition (Characterisation of an affine subspace) A nonempty subset A of a R-
vector space V is an affine subspace if and only if there exists x0 ∈ V and a subspace U ⊆ V
such that

A = {x0 + u | u ∈ U}.
Proof Let x0 ∈ A and define U = {x − x0 | x ∈ A}. The result will be proved if we prove
that U is a subspace. Let x − x0 ∈ U for some x ∈ A and a ∈ R. Then

a(x − x0) = ax + (1 − a)x0 − x0,

and so a(x− x0) ∈ U since ax + (1− a)x0 ∈ A. For x1 − x0, x2 − x0 ∈ U with x1, x2 ∈ A we have

(x1 − x0) + (x2 − x0) = (x1 + x2 − x0) − x0.

Thus we will have (x1 − x0) + (x2 − x0) ∈ U if we can show that x1 + x2 − x0 ∈ A. However,
we have

x1 − x0, x2 − x0 ∈ U,
=⇒ 2(x1 − x0), 2(x2 − x0) ∈ U,
=⇒ 2(x1 − x0) + x0, 2(x2 − x0) + x0 ∈ A,

=⇒ 1
2 (2(x1 − x0) + x0) + 1

2 (2(x2 − x0) + x0) ∈ A,

which gives the result after we notice that

1
2 (2(x1 − x0) + x0) + 1

2 (2(x2 − x0) + x0) = x1 + x2 − x0. �

We now make the following definition, corresponding to the preceding result.

B.2.6 Definition (Linear part of an affine subspace) Let A be an affine subspace of a R-
vector space V, and let x0 ∈ V and a subspace U ⊆ V satisfy A = x0 + U as in the
preceding proposition. The subspace U is called the linear part of A and denoted by
L(A). •

Now we can characterise the affine hull as the set of affine combinations.

B.2.7 Proposition (The affine hull is the set of affine combinations) Let V be a R-vector
space, let S ⊆ V be nonempty, and denote by A(S) the set of affine combinations from S. Then
A(S) = aff(S).

Proof We first show that the set of affine combinations is an affine subspace. Choose
x0 ∈ S and define

U(S) = {v − x0 | v ∈ A(S)}.
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We first claim that U(S) is the set of linear combinations of the form

k∑
j=1

λ jv j, k ∈ Z>0, λ1, . . . , λk ∈ R,
k∑

j=1

λ j = 0, v1, . . . , vk ∈ S. (B.1)

To see this, note that if

u =

k∑
j=1

λ ju j − x0 ∈ U(S)

then we can write

u =

k+1∑
j=1

λ ju j, λ1, . . . , λk+1 ∈ R,
k+1∑
j=1

λ j = 0, u1, . . . ,uk+1 ∈ S,

by taking λk+1 = −1 and uk+1 = x0. Similarly, consider a linear combination of the
form (B.1). We can without loss of generality suppose that x0 ∈ {v1, . . . , vk}, since if this is
not true we can simply add 0x0 to the sum. Thus we suppose, without loss of generality,
that vk = x0. We then have

u =
( k−1∑

j=1

λ jv j + (λk + 1)x0

)
− x0.

Since the term in the parenthesis is clearly an element of A(S), it follows that u ∈ U(S).
With this characterisation of U(S) it is then easy to show that U(S) is a subspace of V.

Moreover, it is immediate from Proposition B.2.7 that A(S) is then an affine subspace. Since
aff(S) is the smallest affine subspace containing S it follows that aff(S) ⊆ A(S). To show
that A(S) ⊆ aff(S) we use induction on the number of elements in an affine combination
in A(S). For an affine combination with one term this is obvious. So suppose that every
affine combination of the form

k∑
j=1

λ jv j, k ∈ {1, . . . ,m},

is in aff(S) and consider an affine combination of the form

x =

m+1∑
j=1

λ jv j =

m∑
j=1

λ jv j + λm+1vm+1.

It must be the case that at least one of the numbersλ1, . . . , λm+1 is not equal to 1. So, without
loss of generality suppose that λm+1 , 1 and then define λ′j = (1 − λ−1

m+1)λ j, j ∈ {1, . . . ,m}.
We then have

m∑
j=1

λ′j = 1,

so that
m∑

j=1

λ′jv j ∈ aff(S)
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by the induction hypothesis. It then holds that

x = (1 − λm+1)
m∑

j=1

λ′jv j + λm+1vm+1.

This is then in aff(S). �

B.2.3 Topology of convex sets

Let us now say a few words about the topology of convex sets. In this section
we restrict our attention to finite-dimensional R-vector spaces with their standard
topology.

Note that every convex set is a subset of its affine hull. Moreover, as a subset of its
affine hull, a convex set has an interior.

B.2.8 Definition (Relative interior and relative boundary) If V is a finite-dimensional R-
vector space and if C ⊆ V is a convex set, the set

rel int(C) = {x ∈ C | x ∈ intaff(C)(C)}

is the relative interior of C and the set rel bd(C) = cl(C) \ rel int(C) is the relative
boundary of C. •

The point is that, while a convex set may have an empty interior, its interior can
still be defined in a weaker, but still useful, sense. The notion of relative interior leads
to the following useful concept.

B.2.9 Definition (Dimension of a convex set) Let V be a finite-dimensional R-vector space
and let C ⊆ V be convex and let U ⊆ V be the subspace for which aff(C) = {x0+u | u ∈ U}
for some x0 ∈ V. The dimension of C, denoted by dim(C), is the dimension of the
subspace U. •

The following result will be used in our development.

B.2.10 Proposition (Closures and relative interiors of convex sets are convex sets) Let
V be a finite-dimensional R-vector space and let C ⊆ V be convex. Then

(i) cl(C) is convex and
(ii) rel int(C) is convex.

Moreover, aff(C) = aff(cl(C)) and aff(K) = aff(cl(K)).
Proof For the purposes of the proof we put a norm ‖·‖ on V; the result and the proof are
independent of the choice of this norm.

(i) Let x, y ∈ cl(C) and let s ∈ [0, 1]. Suppose that (x j) j∈Z>0 and (y j) j∈Z>0 are sequences
in C converging to x and y, respectively. Note that sx j + (1 − s)y j ∈ C for each j ∈ Z>0.
Moreover, if ε > 0 then

‖sx + (1 − s)y − sx j − (1 − s)y j‖ ≤ s‖x − x j‖ + (1 − s)‖y − y j‖ < ε,
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provided that j is sufficiently large that s‖x − x j‖ <
ε
2 and (1 − s)‖y − y j‖ <

ε
2 . Thus the

sequence (sx j + (1 − s)y j) j∈Z>0 converges to sx + (1 − s)y and so sx + (1 − s)y ∈ cl(C). This
shows that cl(C) is convex. Since C ⊆ cl(C) it follows that aff(C) ⊆ aff(cl(C)). Moreover,
since C ⊆ aff(C) and since aff(C) is closed we have

cl(C) ⊆ cl(aff(C)) = aff(C),

so giving aff(C) = aff(cl(C)) as desired.
An entirely similar argument shows that cl(K) is convex and that aff(K) = aff(cl(K)).
(ii) Let us first consider the convex set C. To simplify matters, since the relative interior

is the interior relative to the affine subspace containing C, and since the topology of an
affine subspace is “the same as” that for a vector space, we shall assume that aff(C) = V
and show that int(C) is convex.

We first prove a lemma.

1 Lemma If V is a finite-dimensional R-vector space, if C is a convex set, if x ∈ rel int(C), and if
y ∈ cl(C) then

[x,y) , {sx + (1 − s)y | s ∈ [0, 1)}

is contained in rel int(C).

Proof As above, let us assume, without loss of generality, that aff(C) = V. Let us also
equip V with a norm. Since x ∈ int(C) there exists r > 0 such that B(x, r) ⊆ C. Since
y ∈ cl(C), for every ε > 0 there exists yε ∈ C ∩ B(y, ε). Let z = αx + (1 − αy) ∈ [x, y) for
α ∈ [0, 1), and define δ = αr − (1 − α)ε. If ε is sufficiently small we can ensure that δ ∈ R>0,
and we assume that ε is so chosen. For z′ ∈ B(z, δ) we have

‖z′ − z‖ < δ
=⇒ ‖z′ − (αx + (1 − α)yε + (1 − α)(y − yε))‖ < δ
=⇒ ‖z′ − (αx + (1 − α)yε)‖ ≤ δ + (1 − α)ε = αr
=⇒ z′ ∈ {αx′ + (1 − α)yε | x′ ∈ B(x, r)}.

Since yε ∈ C and B(x, r) ⊆ C it follows that z′ ∈ C and so B(z, δ) ⊆ C. This gives our claim
that [x, y) ⊆ int(C). H

That int(C) is convex follows immediately since, if x, y ∈ int(C), Lemma 1 ensures that
the line segment connecting x and y is contained in int(C). �

The following result will also come up in our constructions.

B.2.11 Proposition (The closure of the relative interior) If V if a finite-dimensional R-vector
space and if C ⊆ V is a convex set then cl(rel int(C)) = cl(C).

Proof It is clear that cl(rel int(C)) ⊆ cl(C). Let x ∈ cl(C) and let y ∈ rel int(C). By Lemma 1 in
the proof of Proposition B.2.10 it follows that the half-open line segment [y, x) is contained
in rel int(C). Therefore, there exists a sequence (x j) j∈Z>0 in this line segment, and so in
rel int(C), converging to x. Thus x ∈ cl(rel int(C)). �
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B.2.4 Separation theorems for convex sets

One of the most important properties of convex sets in convex analysis, and indeed
for us in our proof of the Maximum Principle, is the notion of certain types of convex
sets being separated by hyperplanes. We shall only examine those parts of the theory
that we will use; we refer to [Rockafellar 1970] for further discussion.

In this section we again consider subsets of a finite-dimensional R-vector space V.
In order to make things clear, let us define all of our terminology precisely.

B.2.12 Definition (Hyperplane, half-space, support hyperplane) Let V be a finite-
dimensional R-vector space.

(i) A hyperplane in V is a subset of the form

{x ∈ V | 〈λ; x〉 = a}

for some λ ∈ V∗ \ {0} and a ∈ R. Such a hyperplane is denoted by Pλ,a.
(ii) A half-space in V is a subset of the form

{x ∈ V | 〈λ; x〉 > a}

for some λ ∈ V∗ \ {0} and a ∈ R. We shall denote

H−λ,a = {x ∈ V | 〈λ; x〉 < a}, H+
λ,a = {x ∈ V | 〈λ; x〉 > a}.

(iii) If A ⊆ V, a support hyperplane for A is a hyperplane Pλ,a such that A ⊆ H+
λ,a∪Pλ,a.

(iv) For subsets A,B ⊆ V, a separating hyperplane is a hyperplane Pλ,a for which

A ⊆ H+
λ,a ∪ Pλ,a, B ⊆ H−λ,a ∪ Pλ,a. •

The following result is a basis for many separation theorems for convex sets.

B.2.13 Theorem (Convex sets possess supporting hyperplanes) If V is a finite-dimensional
R-vector space and if C ⊆ V is a convex set not equal to V, then C possesses a supporting
hyperplane.

Proof For convenience in the proof we suppose that V is equipped with a norm ‖·‖ arising
from an inner product 〈·, ·〉; the statement of the result and the character of the proof is
independent of this choice. We note that the inner product identifies V∗ naturally with V,
and we make this identification without mention in the proof.

Let x0 < cl(C), let z ∈ C, and define r = ‖x0 − z‖. Define A = cl(C) ∩ B(x0, r) noting
that A is a nonempty compact set. Define f : A → R>0 by f (y) = ‖x0 − y‖. The map f is
continuous and so there exists y0 ∈ A ⊆ cl(C) such that f (y0) is the minimum value of f .
Let λ = y0 − x0 and a = 〈y0, y0 − x0〉. We will show that Pλ,a is a support hyperplane for C.

First let us show that Pλ,a separates {x0} and cl(C). A direct computation shows that
〈λ, x0〉 = −‖x0 − y0‖

2 + a < a. To show that 〈λ, x〉 ≥ a for all x ∈ cl(C), suppose otherwise.
Thus let x ∈ C be such that 〈λ, x〉 < a. By Lemma 1 in the proof of Proposition B.2.10 the line
segment from y to y0 is contained in cl(C). Define g : [0, 1]→ R by g(s) = ‖(1−s)y0+sy−x0‖

2.
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Thus g is the square of the distance from x0 to points on the line segment from y to y0. Note
that g(s) ≥ g(0) for all s ∈ (0, 1] since y0 is the closest point in cl(C) to x0. A computation
gives

g(s) = (1 − s)2
‖y0 − x0‖

2 + 2s(1 − s)〈y − x0, y0 − x0〉 + s2
‖y − x0‖

2

and another computation gives g′(0) = 2(〈λ, y〉 − a) which is strictly negative by our
assumption about y. This means that g strictly decreases near zero, which contradicts the
definition of y0. Thus we must have 〈λ, y〉 ≥ a for all y ∈ cl(C). �

During the course of the proof of the theorem we almost proved the following
result.

B.2.14 Corollary (Separation of convex sets and points) If V is a finite-dimensional R-vector
space, if C ⊆ V is convex, and if x0 < int(C) then there exists a separating hyperplane for {x0}

and C.
Proof If x0 < cl(C) then the result follows immediately from the proof of Theorem B.2.13.
If x0 ∈ bd(C) then let (x j) j∈Z>0 be a sequence in V \ cl(C) converging to x0. For each j ∈ Z>0
let λ j ∈ V∗ \ {0} and a j ∈ R have the property that

〈λ j; x j〉 ≤ a j, j ∈ Z>0,

〈λ j; y〉 > a j, y ∈ C, j ∈ Z>0.

Let us without loss of generality take a j = 〈λ j; x j〉; this corresponds to choosing the

hyperplane separating C from x j to pass through x j. Let α j =
λ j

‖λ j‖
, j ∈ Z>0. The sequence

(α j) j∈Z>0 is a sequence in the unit sphere in V∗ which is compact. Thus we can choose a
convergent subsequence which we also denote, by an abuse of notation, by (α j) j∈Z>0 . Let
α ∈ V∗ denote the limit of this sequence. Defining c j = 〈α j; x j〉we then have

〈α j; x j〉 = c j, j ∈ Z>0,

〈α j; y〉 > c j, y ∈ C, j ∈ Z>0.

Let c = lim j→∞ c j. For y ∈ C this gives

〈α; x0〉 = lim
j→∞
〈α j; x j〉 = c,

〈α; y〉 = lim
j→∞
〈α j; y〉 ≥ c,

as desired. �

The following consequence of Theorem B.2.13 is also of independent interest.

B.2.15 Corollary (Disjoint convex sets are separated) If V is a finite-dimensional R-vector
space and of C1,C2 ⊆ V are disjoint convex sets, then there exists a hyperplane separating C1

and C2.
Proof Define

C1 − C2 = {x1 − x2 | x1 ∈ C1, x2 ∈ C2}.

One checks directly that C1 − C2 is convex. Since C1 and C2 are disjoint it follows that
0 < C1 −C2. By Theorem B.2.13 there exists a hyperplane P, passing through 0, separating
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C1 − C2 from 0. We claim that this implies that the same hyperplane P, appropriately
translated, separates C1 and C2. To see this note that P gives rise to λ ∈ V∗ \ {0} such that

〈λ; x1 − x2〉 ≥ 0, x1 ∈ C1, x2 ∈ C2.

Let
a1 = inf{〈λ; x1〉 | x1 ∈ C1}, a2 = sup{〈λ; x2〉 | x2 ∈ C2}

so that a1 − a2 ≥ 0. For any a ∈ [a2, a1] we have

〈λ; x1〉 ≥ a, x1 ∈ C1,

〈λ; x2〉 ≤ a, x2 ∈ C2,

giving the separation of C1 and C2, as desired. �

We shall require the following quite general result concerning separation of convex
sets by hyperplanes.

B.2.16 Theorem (A general separation theorem) If V is a finite-dimensional R-vector space
and if C1,C2 ⊆ V are convex sets, then they possess a separating hyperplane if and only if
either of the following two conditions holds:

(i) there exists a hyperplane P such that C1,C2 ⊆ P;
(ii) rel int(C1) ∩ rel int(C2) = ∅.

Proof Suppose that C1 and C2 possess a separating hyperplane P. Therefore, there exists
λ ∈ V∗ \ {0} and a ∈ R such that

〈λ; x1〉 ≥ a, x1 ∈ C1,

〈λ; x2〉 ≤ a, x2 ∈ C2.

If 〈λ; x〉 = a for all x ∈ C1 ∪ C2 then (i) holds. Now suppose that 〈λ; x1〉 > a for some
x1 ∈ C1 (a similar argument will obviously apply if this holds for some x2 ∈ C2) and let
x0 ∈ rel int(C1). Since P is a support hyperplane for C1 and since C1 1 P, it follows that
the relative interior, and so x0, lies in the appropriate half-space defined by P. Since P
separates C1 and C2 this precludes x0 from being in C2. Thus (ii) holds.

Now suppose that (i) holds. It is then clear that P is a separating hyperplane for C1
and C2.

Finally, suppose that (ii) holds. From Proposition B.2.10 and Corollary B.2.15 it holds
that rel int(C1) and rel int(C2) possess a separating hyperplane. Thus there existsλ ∈ V∗\{0}
and a ∈ R such that

〈λ; x1〉 ≤ a, x1 ∈ rel int(C1),
〈λ; x2〉 ≥ a, x2 ∈ rel int(C2).

Therefore, by Proposition B.2.11 we also have

〈λ; x1〉 ≤ a, x1 ∈ cl(C1),
〈λ; x2〉 ≥ a, x2 ∈ cl(C2),

which implies this part of the theorem. �
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