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Appendix F

Multilinear algebra

Many of the algebraic constructions we shall carry out rely on fairly elementary
multilinear algebra. While the techniques are indeed fairly elementary, it is well-
advised to be careful with which of the various possible conventions one is using.
Therefore, in this section we give a careful review of multilinear algebra with the
primary intention of establishing and understanding our conventions. We suppose
that the reader is well acquainted with the tensor product and its properties [e.g.,
Hungerford 1980, §IV.5].

F.1 The tensor algebra

We first provide some of the basic constructions for the general tensor algebra. This
is a specific application of tensor products.

We let F be a field and let V be an F-vector space. We denote by

Tk(V) = V ⊗ · · · ⊗ V

the k-fold tensor product of V and by T(V) = ⊕∞k=0Tk(V) the direct sum of all of these
products, with the understanding that T0(V) = F. Note that T(V) is naturally an F-
vector space. We wish to show that it is an F-algebra by defining a suitable product.
To do so we use the following result.

F.1.1 Lemma (Definition of product of tensors) Let F be a field and let V be an F-vector space.
For each k, l ∈ Z≥0 there exists a map mk,l : Tk(V) × Tl(V)→ Tk+l(V) such that

mk,l(v1 ⊗ · · · ⊗ vk,vk+1 ⊗ · · · ⊗ vk+l) = v1 ⊗ · · · ⊗ vk ⊗ vk+1 ⊗ · · · ⊗ vk+l.

Proof Since the tensor product is associative [Hungerford 1980, Theorem IV.5.8], there is
a isomorphism of the F-vector spaces Tk(V) ⊗ Tl(V) and Tk+l(V) defined by

(v1 ⊗ · · · ⊗ vk) ⊗ (vk+1 ⊗ · · · ⊗ vk+l) 7→ v1 ⊗ · · · ⊗ vk ⊗ vk+1 ⊗ · · · ⊗ vk+l.

The map of the lemma is clearly just the bilinear map associated to this isomorphism via
the universal property of the tensor product. �

Clearly the maps mk,l, k, l ∈ Z≥0, define a product that makes T(V) into an associative
algebra over F.

We may now formally make the various definitions we use.
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F.1.2 Definition (k-tensor, tensor algebra) Let F be a commutative unit and let V be an
F-vector space.

(i) For k ∈ Z≥0 a k-tensor is an element of Tk(V). We adopt the convention that a
0-tensor is an element of F.

(ii) The tensor algebra of V is the F-algebra T(V) with the natural F-vector space
structure and the product structure as defined in Lemma F.1.1. •

One readily verifies that T(V) is an associative F-algebra. We leave the unillumi-
nating verification of this to the reader.

The essential characterisation of the tensor product is its universality with respect
to multilinear maps. For the tensor algebra, there is a similarly styled result.

F.1.3 Proposition (Characterisation of the tensor algebra) Let F be a field, let V be an F-
vector space, let A be a unitary F-algebra, and let f ∈ HomF(V; A). Then there exists a unique
homomorphism φf : T(V)→ A of F-algebras such that the diagram

T(V)
φf // A

V

OO

f

==

commutes, where the vertical arrow is the inclusion of V = T1(V) in T(V).
Proof For existence, define a k-multilinear map gk ∈ Lk(V; A) by

gk(v1, . . . , vk) = f (v1) · · · f (vk);

it is easy to check that this map is indeed k-multilinear. Also define g0 : F→ A by g0(r) = re
with e ∈ A the identity element. By the universal property of the tensor product, for each
k ∈ Z≥0 there then exists a unique g′k ∈ HomF(Tk(V); A) such that

g′k(v1 ⊗ · · · ⊗ vk) = gk(v1, . . . , vk), v1, . . . , vk ∈ V.

To get the existence part of the proposition, let φ f be defined so that its restriction to Tk(V)
is g′k.

For uniqueness, if ψ f is an F-algebra homomorphism such that the diagram in the
statement of the proposition commutes, then we necessarily have

ψ f (v1 ⊗ · · · ⊗ vk) = f (v1) · · · f (vk), v1, . . . , vk ∈ V.

Thus ψ f = φ f . �

The point is that, to determine how the tensor algebra can map into another algebra,
it suffices to determine how V = T(V) is mapped into the algebra. This is not surprising,
and this is the essence of the proof, since elements of the form v1⊗· · ·⊗vk, v1, . . . , vk ∈ V,
k ∈ Z>0, generate T(V).

As a useful application of the preceding characterisation of the tensor algebra, we
have the following result. The result may be seen as providing a functorial character-
isation of the tensor algebra.
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F.1.4 Proposition (Induced homomorphisms of tensor algebras) Let F be a field and let V
and U be F-vector spaces. If f ∈ HomF(V; U) then there exists a unique homomorphism f∗ of
the F-algebras T(V) and T(U) such that the diagram

V f //

��

U

��
T(V)

f∗
// T(U)

commutes, where the vertical arrows are the canonical inclusions.
Proof Apply Proposition F.1.3 to the map ιU ◦ f , where ιU : U→ T(U) is the inclusion. �

In tensor analysis, one is often interested in tensors of various “types.” In order
to establish the connection between this and what we define above, we make the
following definition.

F.1.5 Definition (Covariant/contravariant tensors) Let F be a field and let V be an F-vector
space. For r, s ∈ Z≥0, a tensor of contravariant type r and covariant type s is an element
of the F-vector space

Tr
s(V) = Tr(V) ⊗ Ts(V∗). •

In particular, a k-tensor is of covariant type 0 and contravariant type k. We shall
not have much occasion in this book to use tensors of various mixed type.

We shall principally be interested in finite-dimensional vector spaces. In this case
the tensor algebra inherits a natural basis from any basis for V. The following result
records this, and follows immediately from standard results concerning bases for
tensor products, [cf. Hungerford 1980, Corollary IV.5.12].

F.1.6 Proposition (Bases for tensor algebras) Let F be a field and let V be an F-vector space.
If {ea}a∈A is a basis for V then the set

{ea1 ⊗ · · · ⊗ eak | a1, . . . , ak ∈ A}

is a basis for Tk(V).

F.1.7 Remark (Tensor algebras and free associative algebras) Let A be a set and let
F be a field. The free associative F-algebra generated by A is defined as follows.
Let M(A) be the free monoid generated by A. Thus an element of M(A) is a finite
ordered sequence of elements from A (called a word), and the product between two
such sequences is juxtaposition. The identity element is the empty sequence. Now let
A(A) be the set of maps φ : M(A)→ F with finite support. Note that M(A) is naturally
regarded as a subset of A(A). Thus A(A) is the F-vector space generated by M(A).
We make A(A) into an F-algebra by taking the monoid product on M(A) ⊆ A(A) and
extending this to A(A) by linearity.

The point is this. If {ea}a∈A is a basis for V then T(V) is isomorphic as an F-algebra
to A(A), and there is a unique isomorphism which maps 1F ∈ T0(V) to the empty word
and the basis vector ea to the word {a} of length 1. •
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Now we turn to the interior product for tensors. To make the definition, we note
that for k ∈ Z≥0 we may define an isomorphism from Tk(V∗) to Lk(V; F) by assigning to
α1 ⊗ · · · ⊗ αk the multilinear map

(v1, . . . , vk) 7→ α1(v1) · · ·αk(vk).

With this in mind, we make the following definition.

F.1.8 Definition (Interior product) Let F be a field and let V be a finite-dimensional F-vector
space. Forω ∈ Tk(V∗) letφω ∈ Lk(V; F) be the associated k-multilinear map. The interior
product ofωwith v ∈ V is the element of Tk−1(V∗) associated with the mapψ ∈ Lk−1(V; F)
given by

ψ(v1, . . . , vk−1) = φω(v, v1, . . . , vk−1).

We denote the interior product of ω with v by v ω. •

Note that one can in particular apply the definition of the interior product to TSk(V∗)
and T

∧k(V∗). Moreover, it is clear that the interior product with v leaves TS(V∗) and
T
∧

(V∗) invariant.
Let us give the representation of v ω in a basis. To do so we introduce some

multi-index manipulations. If i ∈ {1, . . . ,n} and if J = ( j1, . . . , jn) is an n-multi-index
of degree k and with ji > 0, then we define an n-multi-index J − 1i of degree k − 1 by
subtracting 1 from ji. With this notation we have the following result whose proof
follows from the definitions.

F.1.9 Proposition (Component formula for interior product) Let F be a field and let V be a
finite-dimensional F-vector space with basis {e1, . . . , en} and dual basis {e1, . . . , en

}. Accepting
an abuse of notation denote

eJ
γ,� = γj1(e

j1) � · · · � γjn(ejn)

for J = (j1, . . . , jn) ∈ Zn
≥0. Suppose that ω ∈ Tk(V∗) is given by

ω =
∑

i1,...,ik∈{1,...,n}

ωi1···ikei1 ⊗ · · · ⊗ eik

and that v ∈ V is given by v =
∑n

i=1 viei. Then the following statements hold:

(i) v ω =

n∑
i=1

∑
i1,...,ik−1∈{1,...,n}

ωi1···ik−1v
iei1 ⊗ · · · ⊗ eik−1 ;

(ii) if ω ∈ TSk(V∗) then v ω =

n∑
i=1

∑
J=(j1,...,jn)
|J|=k,ji>0

ωJvieJ−1i
γ,� ;

(iii) if ω ∈ T
∧k(V) then v ω =

n∑
i=1

∑
i1,...,ik−1∈{1,...,n}

i1<···<ik

ωii1···ik−1v
iei1 Z · · · Z eik−1 .
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F.2 The symmetric algebra and symmetric tensor algebra

Symmetric and alternating tensors will be rather important for us. These can be a
little confusing to deal with because they arise naturally in two ways. While, for the
cases we are interested in these two ways are isomorphic, there are some annoying
constants to deal with. We shall need to get these constants straight, so we delve a
little systematically into the necessary background so as to indicate the origin of the
various choices one can make.

F.2.1 Tensor products of algebras

When one takes the tensor product of F-algebras A and B, the tensor product
naturally inherits the structure of an F-algebra. In order to describe the product, let us
first prove the following sensibility result.

F.2.1 Proposition (Sensibility of the product for the tensor product of algebras) Let F be
a field and let A1, . . . ,Ak be unitary F-algebras. Define a map m: (⊗k

j=1Aj)× (⊗k
j=1Aj)→ ⊗k

j=1Aj

by first defining

m(v1 ⊗ · · · ⊗ vk,u1 ⊗ · · · ⊗ uk) = v1u1 ⊗ · · · ⊗ vkuk,

and then by extension using linearity. Then m defines a product on the F-vector space ⊗k
j=1Aj

which renders it an F-algebra.
Proof This is a matter of checking the definition, and we leave this to the reader. �

F.2.2 Definition (Tensor product of algebras) Let F be a field and let A1, . . . ,Ak be unitary
F-algebras. The tensor product of A1, . . . ,Ak is the F-algebra ⊗k

j=1A j with the product
as defined in Proposition F.2.1. •

The following obvious result will be useful.

F.2.3 Proposition (The tensor product of commutative algebras is commutative) Let F
be a field and let A1, . . . ,Ak be commutative unitary F-algebras. Then the F-algebra ⊗k

j=1Aj is
commutative.

Note that for each l ∈ {1, . . . , k} there is a canonical homomorphism fl : Al → ⊗
k
j=1A j

given by
fl(vl) = 1A1 ⊗ · · · ⊗ vl ⊗ · · · ⊗ 1Ak , (F.1)

where 1A j is the unit elements of the algebra A j. Let us now indicate how one can extend
algebra homomorphisms from factors in a tensor product to the tensor product.
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F.2.4 Proposition (Homomorphisms from tensor products of algebras) Let F be a field
and let A1, . . . ,Ak,B be unitary F-algebras. For j ∈ {1, . . . ,k} let gj : Aj → B be a unital
homomorphism of F-algebras, supposing that

gj(vj)gl(vl) = gl(vl)gj(vj), vj ∈ Aj, vl ∈ Al, j, l ∈ {1, . . . ,k}.

Then there exists a unique homomorphism g: ⊗k
j=1 Aj → B of F-algebras such that the diagram

Aj
gj //

fj

��

B

⊗
k
j=1Aj

g

>>

commutes for each j ∈ {1, . . . ,k}.
Proof One can define a map g′ :

∏k
j=1 A j → B by

g′(v1, . . . , vk) = g1(v1) · · · gk(vk),

and verify that this map is k-multilinear. Therefore, by universality of the tensor product,
there exists a homomorphism g : ⊗k

j=1 A j → B of F-vector spaces such that

g(v1 ⊗ · · · ⊗ vk) = g1(v1) · · · gk(vk), v j ∈ A j, j ∈ {1, . . . , k}.

Using the fact that the maps g1, . . . , gk are homomorphisms of F-algebras, one can easily
show that g is also a homomorphism of F-algebras. This establishes the existence of the
map in the statement of the proposition.

For uniqueness, suppose that h : ⊗k
j=1 A j → B is another map having the properties

asserted in the statement of the proposition. Since

h(1A1 ⊗ · · · ⊗ v j ⊗ · · · ⊗ 1Ak) = g j(v j), vl ∈ A j, j ∈ {1, . . . , k},

and since h is a homomorphism of F-algebras, we immediately have

h(v1 ⊗ · · · ⊗ vk) = g1(v1) · · · gk(vk), v j ∈ A j, j ∈ {1, . . . , k}.

giving h = g, as desired. �

F.2.2 The symmetric algebra

In this section we define a new F-algebra associated to the tensor algebra of an
F-vector space. This new vector space has defined on it a natural product, and this
product is symmetric. The benefit of this construction is that the product structure is
naturally inherited from that on T(V). One of the less attractive aspects of the construc-
tion is that it is done using quotients, and so is not as concrete as the other construction
we detail involving symmetric tensors. Nonetheless, the two constructions will turn
out to be isomorphic, possibly up to some constants, in the cases which are of interest
to us.

First the definition.
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F.2.5 Definition (Symmetric algebra) Let F be a field and let V be an F-vector space. Let
IS(V) be the two-sided ideal of T(V) generated by elements of the form

v1 ⊗ v2 − v2 ⊗ v1, v1, v2 ∈ V.

The symmetric algebra of V is the F-algebra S(V) = T(V)/IS(V). The product in S(V) is
denoted by

(A1 + IS(V)) · (A2 + IS(V)) , A1 ⊗ A2 + IS(V). •

It is clear that S(V) is an F-algebra. There is a natural degree associated with
elements of S(V) with the elements of degree k ∈ Z≥0 are given by Sk(V) = Tk(V)/Ik

S(V)
where Ik

S(V) = IS(V) ∩ Tk(V). In particular, since I0
S(V) = I1

S(V) = {0} it follows that
S0(V) ' F and S1(V) ' V.

Let us show that the symmetric algebra is symmetric.

F.2.6 Proposition (The product in S(V) is commutative) Let F be a field and let V be an
F-vector space. Then the symmetric algebra is a commutative algebra.

Proof Since {v1 ⊗ · · · ⊗ vk | v1, . . . , vk ∈ V} generates T(V) it suffices to show that

(v1 ⊗ · · · ⊗ vk + IS(V)) · (u1 ⊗ · · · ⊗ ul + IS(V))
= (u1 ⊗ · · · ⊗ ul + IS(V)) · (v1 ⊗ · · · ⊗ vk + IS(V)), v1, . . . , vk,u1, . . . ,ul ∈ V.

By a trivial inductive argument using associativity of the tensor product it actually suffices
to show that

(v + IS(V)) · (u + IS(V)) = (u + IS(V)) · (v + IS(V)), v,u ∈ V.

However, since v ⊗ u + IS(V) = u ⊗ v + IS(V) this immediately follows. �

We note that the set

{v1 ⊗ · · · ⊗ vk + IS(V) | v1, . . . , vk ∈ V}

generates S(V). It is, therefore, convenient to have a compact representation of these
generators. We shall adopt the following notation:

v1 · · · · · vk , v1 ⊗ · · · ⊗ vk + IS(V).

Note that it matters not the order in which one writes the elements in the expression
v1 · · · · · vk.

For the tensor algebra, the characterisation of Proposition F.1.3 is extremely im-
portant and useful. For the symmetric algebra there is an analogous characterisation
which we now give.
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F.2.7 Proposition (Characterisation of the symmetric algebra) Let F be a field, let V be an
F-vector space, let A be a unitary F-algebra, and let f ∈ HomF(V; A) have the property that
f(v1)f(v2) = f(v2)f(v1) for all v1,v2 ∈ V. Then there exists a unique φf ∈ HomF(S(V); A) such
that the diagram

S(V)
φf // A

V

OO

f

==

commutes, where the vertical arrow is the inclusion of V in S(V).
Proof By Proposition F.1.3 let φ′f : T(V) → A be the unique F-algebra homomorphism
such that φ′f agrees with f on V. We claim that φ′f vanishes on the ideal IS(V). Certainly
φ′f vanishes on the generators of the ideal IS(V) since f does. That φ′f vanishes on all of
IS(V) follows since φ′f is an F-algebra homomorphism and since IS(V) is a two-sided ideal,
and so generated as a subspace by elements of the form

v1 ⊗ · · · ⊗ vl−1 ⊗ vl ⊗ · · · ⊗ vk − v1 ⊗ · · · ⊗ vl ⊗ vl−1 ⊗ · · · ⊗ vk, v1, . . . , vk ∈ V, k ∈ Z>0.

It then follows that there exists a linear map φ f of the F-vector spaces S(V) and A such that
the diagram

T(V)
φ′f //

��

A

S(V)
φ f

>>

commutes, where the vertical arrow is the canonical projection. That φ f is a homomor-
phism of F-algebras follows since IS(V) is an ideal. Since the canonical projection maps
V ⊆ T(V) to V ' S1(V), this gives the existence part of the proof.

To show uniqueness, let ψ f : S(V)→ A be an F-algebra homomorphism agreeing with
f on V and such that the diagram in the statement of the proposition commutes. Thus,
since ψ f is an F-algebra homomorphism,

ψ f (v1 · · · · · vk) = f (v1) · · · f (vk), v1, . . . , vk ∈ V.

However, given the construction of φ′f in the proof of Proposition F.1.3 and the related
construction of φ f above, it follows that

ψ f (v1 · · · · · vk) = ψ f (v1 · · · · · vk), v1, . . . , vk ∈ V.

Since the elements v1 · · · · · vk, v1, . . . , vk ∈ V, k ∈ Z≥0, generate S(V), the result follows. �

The main value of the result is that it allows for the unique extension to S(V) of a
linear map from V. The idea, roughly, is that if one has commutativity of the image
for elements of V ' S1(V), this carries over to the generators v1 · · · · · vk, v1, . . . , vk ∈ V,
k ∈ Z>0, for S(V) in a natural way.

As with tensor algebras, linear maps between vector spaces induce homomor-
phisms of their symmetric algebras.
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F.2.8 Proposition (Induced homomorphisms of symmetric algebras) Let F be a field and
let V and U be F-vector spaces. If f ∈ HomF(V; U) then there exists a unique homomorphism
f∗ of the F-algebras S(V) and S(U) such that the diagram

V f //

��

U

��
S(V)

f∗
// S(U)

commutes, where the vertical arrows are the canonical inclusions.
Proof Apply Proposition F.2.7 to the map ιU ◦ f , where ιU : U→ S(U) is the inclusion. �

Let us now consider bases for symmetric algebras of finite-dimensional vector
spaces.

F.2.9 Proposition (The symmetric algebra of a finite-dimensional vector space) Let F
be a field and let V be a finite-dimensional F-vector space with basis E = {e1, . . . , en}. For an
n-multi-index J = (j1, . . . , jn) denote

eJ
� = ej1

1 · · · · · e
jn
n .

Then the set
E� = {e

J
� | J an n multi-index}

is a basis for S(V).
Proof Let us first prove a lemma.

1 Lemma Let F be a field and let V1, . . . ,Vk be F-vector spaces. There then exists a unique
isomorphism Φ of the F-algebras ⊗k

j=1S(Vj) and S(⊕k
j=1Vj) such that the diagram

S(Vj)
ιj∗ //

fj

��

S(⊕k
j=1Vj)

⊗
k
j=1S(Vj)

Φ

99

commutes for each j ∈ {1, . . . ,k}, where ιj : Vj → ⊕
k
j=1Vj is the canonical inclusion, ιj∗ is the induced

homomorphism of symmetric algebras (cf. Proposition F.2.8), and fj is the homomorphism defined
by

fj(vj) = 1S(V1) ⊗ · · · ⊗ vj ⊗ · · · ⊗ 1S(Vk).

Proof For brevity denote V = ⊕k
j=1V j. Since we have the homomorphisms ι j∗ : S(V j)→ S(V)

for each j ∈ {1, . . . , k} and since S(V) is commutative, by Proposition F.2.4 there exists a
unique homomorphism Φ for which the diagram in the proposition commutes. Thus need
only show that Φ is an isomorphism.

For j ∈ {1, . . . , k} define g j : V j → ⊗
k
j=1S(V j) by g j = f j ◦ ι j. Then let g : V → ⊗k

j=1S(V j)

be defined by its agreeing with g j on V j for each j ∈ {1, . . . , k}. Note that ⊗k
j=1S(V j) is
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commutative by Proposition F.2.3. We may thus apply Proposition F.2.7 to assert the
existence of a unique F-algebra homomorphism Ψ : S(V) → ⊗k

j=1S(V) such that Ψ ◦ ιV = g.
It is now an exercise using the definitions to show that Ψ ◦Φ and Φ ◦Ψ are both the identity
map. H

We write V = ⊕n
j=1(Fe j). By the lemma we then have

S(V) ' ⊗n
j=1S(Fe j). (F.2)

Taking components of degree k we have

Sk(V) ' ⊕(S j1(F(e1)) ⊗ · · · ⊗ S jn(Fen)),

where the direct sum is over all multi-indices ( j1, . . . , jn) of degree k. Note that, by the
properties of bases for tensor products [Hungerford 1980, Corollary IV.5.12], a basis for

⊕(S j1(F(e1)) ⊗ · · · ⊗ S jn(Fen))

is given by elements of the form b j1⊗· · ·⊗b jn where ( j1, . . . , jn) is an n-multi-index of degree
k and where b jl runs over a basis for S jl(Fel), l ∈ {1, . . . ,n}. Since the image of b j1 ⊗ · · · ⊗ b jn
under the inverse of the isomorphism (F.2) is simply b j1 · · · · · b jn , it follows that it suffices
to prove the proposition when V = Fe for some e ∈ V, i.e., when V is of dimension 1.
However, in this case we have S(Fe) = T(Fe) (IS(V) = {0} in this case), and so the result
follows from Proposition F.1.6 since the product in S(V) is simply the tensor product. �

A consequence of the preceding result is that one can determine the dimension of
the degree k component of the symmetric algebra. Recall that

(
k
l

)
= k!

l!(k−l)! for k, l ∈ Z≥0

with l ≤ k.

F.2.10 Corollary (Dimension of degree k component of S(V)) Let F be a field and let V be a
finite-dimensional F-vector space of dimension n. Then, for k ∈ Z≥0, Sk(V) is of dimension( n+k−1

n−1
)
.

Proof The dimension of Sk(V) is equal to the number of n-multi-indices of degree k. This
is in turn equal to the number of combinations, allowing repetitions, of k elements from a
set of n objects. A combination of this form, corresponding to a multi-index J = ( j1, . . . , jn)
of degree k, can be written after ordering as

(1, . . . , 1,︸   ︷︷   ︸
j1 terms

. . . ,n, . . . ,n︸  ︷︷  ︸
jn terms

)

Thus this combination is uniquely determined by the location of the n−1 divisions between
the elements 1, 2, . . . ,n in the list. That is to say, to each such combination is uniquely
associated n − 1 divisions chosen from a possible n + k − 1 divisions. The number of such
divisions is

(
n+k−1

n−1

)
, from elementary combinatorics. �
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F.2.3 Symmetric tensors

In the preceding section we constructed the symmetric algebra of a vector space as
a quotient algebra of the tensor algebra by a certain ideal. In this section we consider
symmetric tensors, which form a subspace of the tensor algebra.

We fix k ∈ Z≥0 and let σ ∈ Sk. We let F be a field with V an F-vector space. We can
define a map σ :

∏k
j=1 V→ Tk(V) (slight abuse of notation) by

σ(v1, . . . , vk) = vσ−1(1) ⊗ · · · ⊗ vσ−1(k).

It is clear thatσ is k-multilinear and so defines a homomorphismσ ∈ HomF(Tk(V); Tk(V))
(another slight abuse of notation) satisfying

σ(v1 ⊗ · · · ⊗ vk) = vσ−1(1) ⊗ · · · ⊗ vσ−1(k), v1, . . . , vk ∈ V.

We now make the following definition.

F.2.11 Definition (Symmetric tensor) Let F be a field and let V be an F-vector space. An
element A ∈ Tk(V), k ∈ Z≥0, is a symmetric tensor of order k if σ(A) = A for all σ ∈ Sk.
The set of symmetric elements of Tk(V) is denoted by TSk(V), and we denote

TS(V) = ⊕k∈Z≥0TSk(V). •

One readily checks that TS(V) is a subspace of T(V). We can define an F-linear map
Sym′k : Tk(V)→ TSk(V) by

Sym′k(A) =
∑
σ∈Sk

σ(A).

Note that if A ∈ TSk(V) then Sym′k(A) = k!A. If A 7→ k!A is invertible in TSk(V), e.g., if F
is a field of characteristic zero, then we can define Symk : Tk(V)→ TSk(V) by

Symk(A) =
1
k!

∑
σ∈Sk

σ(A).

This homomorphism has the advantage of being a projection when it is defined. One
can extend Sym′k (and Symk, when it is defined) to all of TS(V) by homogeneity. The
resulting map will be denoted by Sym′ (and Sym, when it is defined).

We additionally render TS(V) a subalgebra by defining on it a suitable product.
Note that the tensor product itself will not typically suffice since the tensor product
of two symmetric tensors is generally not symmetric (and is never symmetric in the
cases of most interest to us). For k, l ∈ Z≥0 let us define a subset Sk,l of Sk+l consisting
of permutations σ satisfying

σ(1) < · · · < σ(k), σ(k + 1) < · · · < σ(k + l).

For A ∈ TSk(V) and B ∈ TSl(V) we then define

A � B =
∑
σ∈Sk,l

σ(A ⊗ B).

Equipped with this product, let us record some properties of TS(V).
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F.2.12 Proposition (Properties of the algebra TS(V)) Let F be a field and let V be an F-vector
space. For k, l,m ∈ Z≥0 and A ∈ TSk(V), B ∈ TSl(V), and C ∈ TSm(V), the following
statements hold:

(i) A � B ∈ TSk+l(V);
(ii) A � B = B �A;
(iii) A � (B � C) = (A � B) � C.

In particular, TS(V) is a commutative subalgebra of T(V).
Proof Before getting to the proof we first engage in a general discussion which reveals
the character of the product in TS(V). The work here will pay off in the remainder of the
proof, and also in our discussion of exterior algebra.

The first part of this discussion concerns the symmetric group. Let k1, . . . , km ∈ Z≥0 be
such that

∑m
j=1 km = k. Let Sk1|···|km be the subgroup of Sk with the property that elements

σ of Sk1|···|km take the form(
1 · · · k1 · · · k1 + · · · + km−1 + 1 · · · k1 + · · · + km

σ1(1) · · · σ1(k1) · · · k1 + · · · + km−1 + σm(1) · · · k1 + · · · + km−1 + σm(km)

)
,

where σ j ∈ Sk j , j ∈ {1, . . . ,m}. The assignment (σ1, . . . , σm) 7→ σ with σ as above is an
isomorphism of Sk1 × · · · × Skm with Sk1|···|km . Also denote by Sk1,...,km the subset of Sk
having the property that σ ∈ Sk1,...,km satisfies

σ(k1 + · · · + k j + 1) < · · · < σ(k1 + · · · + k j + k j+1), j ∈ {0, 1, . . . ,m − 1}.

Now we have the following lemma.

1 Lemma With the above notation, the map (σ1, σ2) 7→ σ1 ◦σ2 from Sk1,...,km ×Sk1|···|km to Sk is a
bijection.

Proof Let P be the set of partitions (S1, . . . ,Sm) of {1, . . . , k} (i.e., {1, . . . , k} =
◦

∪
m
j=1 S j) such

that card(S j) = k j, j ∈ {1, . . . ,m}. Note that Sk acts in a natural way on P. Now specifically
choose S = (S1, . . . ,Sm) ∈ P by

S j = {k0 + · · · + k j−1 + 1, . . . , k1 + · · · + k j}, j ∈ {1, . . . ,m},

taking k0 = 0. For a general T = (T1, . . . ,Tm) ∈ P let SS→T be the set of σ ∈ Sk that map S
to T. Clearly if σ ∈ SS→T then

SS→T = {σ ◦σ′ | σ′ ∈ Sk1|···|km}.

That is to say, SS→T is a left coset of Sk1|···|km in Sk. Now note that there exists a unique
σ ∈ Sk1,...,km ∩SS→T. This gives the result. H

Now let us reinterpret the product in TS(V). The preceding lemma tells us that each
left coset of Sk1|···|km in Sk is uniquely identified with an element of Sk1,...,km . Thus the sum
in the expression ∑

σ∈Sk1 ,...,km

σ(A1 ⊗ · · · ⊗ Am)
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is a sum over representatives inSk/Sk1|···|km . Let us show that this sum is, in fact, indepen-
dent of the choice of representative. That is to say, if σ ∈ Sk1,...,km and if σ′ ∈ Sk1|···|km then∑

σ∈Sk1 ,...,km

σ ◦σ′(A1 ⊗ · · · ⊗ Ak) =
∑

σ∈Sk1 ,...,km

σ(A1 ⊗ · · · ⊗ Am) (F.3)

for all A j ∈ TSk j(V), j ∈ {1, . . . ,m}. This equality, however, follows since

σ′(A1 ⊗ · · · ⊗ Am) = A1 ⊗ · · · ⊗ Am,

as may be verified by first considering how σ′ acts on generators for T(V) then using the
fact that A1, . . . ,Am are symmetric.

Using this interpretation of the product in TS(V) let us give a useful lemma.

2 Lemma With the above notation,

A1 � · · · �Am =
∑

σ∈Sk1 ,...,km

σ(A1 ⊗ · · · ⊗Am).

Proof This is vacuously true for m = 1, so suppose it true for m ∈ {1, . . . , r− 1} for r ∈ Z>0.
Thus

A2 � · · · � Ar =
∑

σ∈Sk2 ,...,km

σ(A2 ⊗ · · · ⊗ Ar).

We now have the natural identifications

Sk1|k2+···+kr/Sk1|···|kr ' Sk2,...,kr

and
Sk/Sk1|k2+···+kr ' Sk1,k2+···+kr .

Thus Sk/Sk1|···|kr is identified with the set

{σ1 ◦σ2 | σ1 ∈ Sk1,k2+···+kr , σ2 ∈ Sk2,...,kr}

Thus both this set andSk1,...,kr are representatives forSk/Sk1|···|kr . Now, using (F.3) we have

A1 � · · · � Ar = A1 � (A2 � · · · � Ar)

=
∑

σ∈Sk1 ,k2+···+kr

σ(A1 ⊗ (A2 � · · · � Ar))

=
∑

σ∈Sk1 ,k2+···+kr

∑
σ′∈Sk2 ,...,kr

σ ◦σ′(A1 ⊗ · · · ⊗ Ar)

=
∑

σ′′∈Sk1 ,...,kr

σ′′(A1 ⊗ · · · ⊗ Ar),

as desired. H
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(i) Let σ ∈ Sk+l and by the lemma write σ = σ1 ◦σ2 for σ1 ∈ Sk,l and σ2 ∈ Sk|l. We now
have

σ(A � B) =
∑
σ′∈Sk,l

σ ◦σ′(A ⊗ B)

=
∑
σ′∈Sk,l

σ2 ◦σ1 ◦σ
′(A ⊗ B)

=
∑

σ′′∈Sk,l

σ2 ◦σ
′′(A ⊗ B)

= σ2(A � B) = A � B,

using (F.3) in the third step and using the fact that Sk|l fixes TSk(V) ⊗ TSl(V).
(ii) Let σ0 ∈ Sk+l be defined by

σ0(1, . . . , k, k + 1, . . . , k + l) = (k + 1, . . . , k + l, 1, . . . , k),

and note that the map σ 7→ σ ◦σ0 is an isomorphism of the subgroups Sk,l and Sl,k. Also,
for v1, . . . , vk,u1, . . . ,ul ∈ V we have

σ0((v1 ⊗ · · · ⊗ vk) ⊗ (u1 ⊗ · · · ⊗ ul)) = (u1 ⊗ · · · ⊗ ul) ⊗ (v1 ⊗ · · · ⊗ vk).

Thus, for A′ ∈ Tk(V) and B′ ∈ Tl(V), we have

σ0(A′ ⊗ B′) = B′ ⊗ A′.

We then have

B � A =
∑
σ∈Sk,l

σ(B ⊗ A) =
∑
σ∈Sk,l

σ ◦σ0(A ⊗ B)

=
∑
σ′∈Sl,k

σ′(A ⊗ B) = A � B.

(iii) This follows immediately from Lemma 2. �

A consequence of Lemma 2 that was given in the proof is the following useful
relation.

F.2.13 Corollary (Product of elements of degree one in TS(V)) Let F be a field, let V be an
F-vector space, and let v1, . . . ,vk ∈ V. Then

v1 � · · · � vk = Sym′k(v1 ⊗ · · · ⊗ vk)

Proof This follows since S1,··· ,1 = Sk. �

For nice fields there is an alternative formula for the product in TS(V). Indeed, this
is the formula one most often sees, although it does not make sense for vector spaces
over general fields.
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F.2.14 Proposition (Alternative formula for product in TS(V)) Let F be a field of characteristic
zero and let V be an F-vector space. If k, l ∈ Z≥0, and if A ∈ TSk(V) and B ∈ TSl(V). Then

A � B =
(k + l)!

k!l!
Symk+l(A ⊗ B).

Proof Since F is a field of characteristic zero the map A 7→ k!A is an isomorphism of TSk(V)
for every k ∈ Z≥0. Using Lemma 1 of Proposition F.2.12, for σ ∈ Sk+1 we write σ = σ1 ◦σ2
for σ1 ∈ Sk,l and σ2 ∈ Sk|l. We have

Symk+l(A ⊗ B) =
1

(k + l)!

∑
σ∈Sk+l

σ(A ⊗ B)

=
1

(k + l)!

∑
σ1∈Sk,l

∑
σ2∈Sk|l

σ1 ◦σ2(A ⊗ B)

=
k!l!

(k + l)!

∑
σ1∈Sk,l

σ1(A ⊗ B) =
k!l!

(k + l)!
A � B,

using the fact that σ2(A ⊗ B) = A ⊗ B for all σ2 ∈ Sk|l. �

This alternative formula for the product in TS(V) explains why other formulae
can be posed for a product in TS(V). For example, one could define a product by
(A,B) 7→ Symk+l(A⊗B), this making sense at least for vector spaces. Our definition for
the product has multiple advantages. For one, it is naturally defined in all cases. Also,
it serves to eliminate certain annoying constants that can arise is the tensor analysis
of symmetric tensors. Finally, the product we use allows the identification of TS(V)
with S(V) in those cases of most interest to us. The matter of alternative definitions
for products is typically more problematic in exterior algebra, where these competing
conventions become quite annoying in dealing with differential forms in differential
geometry.

Now let us consider bases for TS(V). It is convenient to introduce, for k ∈ Z≥0, a
map γk : V→ TSk(V) defined by

γk(v) = v ⊗ · · · ⊗ v︸      ︷︷      ︸
k times

.

We adopt the convention that γ0(v) = 1F. Let us prove some properties of this map
γk.

F.2.15 Lemma (Properties of γk) Let F be a field and let V be an F-vector space. For k,m ∈ Z>0

let k1, . . . ,km ∈ Z≥0 be such that k1 + · · · + km = k and let Sk1,...,km be the set of maps
φ : {1, . . . ,k} → {1, . . . ,m} such that

card(φ−1(1)) = k1, . . . , card(φ−1(m)) = km.

Then the following statements hold:
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(i) v � · · · � v︸      ︷︷      ︸
k times

= k!γk(v);

(ii) for v1, . . . ,vm ∈ V we have

γk(v1 + · · · + vm) =
∑

k1,...,km
k1+···+km=k

γk1(v1) � · · · � γkm(vm);

(iii) for v1, . . . ,vm ∈ V, for k,m ∈ Z>0, and for k1, . . . ,km ∈ Z≥0 such that k1 + · · ·+ km = k,

γk1(v1) � · · · � γkm(vm) =
∑

σ∈Sk1 ,...,km

vσ(1) ⊗ · · · ⊗ vσ(k);

(iv) for k, l ∈ Z≥0 and for v ∈ V we have

γk(v) � γl(v) =
(k + l)!

k!l!
γk+l(v);

(v) for v1, . . . ,vm ∈ V we have

(−1)mv1 � · · · � vm =

m∑
k=1

∑
{j1,...,jk}⊆{1,...,m}

(−1)kγm(vj1 + · · · + vjk).

Proof (i) This follows from Corollary F.2.13.
(ii) We prove the result for m = 2, the general case following from an induction from

this case. We first claim that

(v1 + v2) ⊗ · · · ⊗ (v1 + v2) =
∑
k1,k2

k1+k2=k

∑
σ∈Sk1 ,k2

σ(v1 ⊗ · · · ⊗ v1︸        ︷︷        ︸
k1 times

⊗ v2 ⊗ · · · ⊗ v2︸        ︷︷        ︸
k2 times

).

This can be proved using an induction on k, and we leave the details to the reader. We
now have

γk(v1 + v2) =
∑
k1,k2

k1+k2=k

∑
σ∈Sk1 ,k2

σ(v1 ⊗ · · · ⊗ v1 ⊗ v2 ⊗ · · · ⊗ v2)

=
∑
k1,k2

k1+k2=k

∑
σ∈Sk1 ,k2

σ(γk1(v1) ⊗ γk2(v2))

=
∑
k1,k2

k1+k2=k

γk1(v1) � γk2(v2).

(iii) By Lemma 2 of Proposition F.2.12 we have

γk1(v1) � · · · � γkm(vm) =
∑

σ∈Sk1 ,...,km

σ(v1 ⊗ · · · ⊗ v1︸        ︷︷        ︸
k1 times

⊗ · · · ⊗ vm ⊗ · · · ⊗ vm︸          ︷︷          ︸
km times

).
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By definition of Sk1,...,km (and a moment’s thought) the result follows.
(iv) This is a special case of (iii).
(v) Here we prove a lemma. Let

Polk(V; U) = { f : V→ U | there exists φ ∈ Lk(V; U) such that f (v) = φ(v, . . . , v)}

be the set of polynomial mappings from V to U that are homogeneous of degree k.

1 Sublemma Let F be a field and let V and U be F-vector spaces. Then, for f ∈ Polk(V; U) there
exists a unique φ ∈ Lk

sym(V; U) such that

f(v) = φ(v, . . . ,v).

Moreover, for v1, . . . ,vk ∈ V we have

φ(v1, . . . ,vk) =
1
k!

k∑
l=1

∑
{j1,...,jl}⊆{1,...,k}

(−1)k−lφ(vj1 + · · · + vjl , . . . ,vj1 + · · · + vjl). (F.4)

Proof For the evistence part of the result, let φ′ ∈ Lk(V; U) be such that

f (v) = φ′(v, . . . , v)

and define φ ∈ Lk
sym(V; U) by

φ(v1, . . . , vk) =
1
k!

∑
σ∈Sk

φ′(vσ(1), . . . , vσ(k)).

Clearly we have f (v) = φ(v, . . . , v).
For the uniqueness part of the result we will show that, if φ ∈ Lk

sym(V; U) satisfies
f (v) = φ(v, . . . , v), then φ must be given by (F.4). We prove this by examining the terms in
the sum. For l ∈ {1, . . . , k} and for { j1, . . . , jl} ⊆ {1, . . . , k}, if we expand the expression

φ(v j1 + · · · + v jl , . . . , v j1 + · · · + v jl)

using multilinearity of φ, we obtain the sum of all terms of the form φ(vr1 , . . . , vrk) where
r1, . . . , rk ∈ { j1, . . . , jl}. Thus this is a sum with lk terms. Therefore, the right-hand side of the
expression (F.4) will itself be a linear combination of terms of the form φ(vr1 , . . . , vrk) where
r1, . . . , rk ∈ {1, . . . , k}. To prove the proposition we shall show that the coefficient in the
linear combination is 0 unless r1, . . . , rk are distinct. When r1, . . . , rk are distinct, we shall
show that the coefficient in the linear combination is 1. This will prove the proposition
since the terms on the right-hand side corresponding to the case when r1, . . . , rk are distinct
correspond exactly to the terms on the left-hand side of the expression (F.4).

Let us fix r1, . . . , rk ∈ {1, . . . , k} (not necessarily distinct) and examine how many terms
of the form φ(vr1 , . . . , vrk) appear in the sum on the right in (F.4). This will depend on how
many distinct elements of {1, . . . , k} appear in the set {r1, . . . , rk}. Let us suppose that there
are s distinct elements. For l ≥ s, in the set of subsets { j1, . . . , jl} ⊆ {1, . . . , k} there will be
D(k, l, s) members which contain {r1, . . . , rk} as a subset, where

D(k, l, s) =
(k − s)!

(l − s)!(k − l)!
.
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To see this, note that to each subset { j1, . . . , jl} ⊆ {1, . . . , k} that contains {r1, . . . , rk} as a
subset, there corresponds a unique subset of l − s elements of a set of k − s elements (the
complement to {r1, . . . , rk} in { j1, . . . , jl}). There are D(k, l, s) such subsets after we note that
D(k, l, s) =

(
k−s
l−s

)
. This means that there will be D(k, l, s) terms of the form φ(vr1 , . . . , vrk)

which appear in the sum∑
{ j1,..., jl}⊆{1,...,k}

(−1)k−lφ(v j1 + · · · + v jl , . . . , v j1 + · · · + v jl).

Therefore, there will be
∑k

l=s(−1)k−lD(k, l, s) terms of the formφ(vr1 , . . . , vrk) in the right-hand
side of the expression (F.4). We claim that

k∑
l=s

(−1)k−lD(k, l, s) =

1, s = k,
0, s < k.

For s = k the equality is checked directly. For s < k we note that, for r1, r2 ∈ F and for
k − s > 0, we have

(r1 + r2)k−s =

k−s∑
j=0

(
k − s

j

)
r j

1rk−s− j
2 =

k∑
l=s

D(k, l, s)rl−s
1 rk−l

2 .

Letting r1 = 1F and r2 = −1F we obtain

k∑
l=s

(−1)k−lD(k, l, s) = 0,

as desired. H

This part of the proof follows from part (i) and the lemma by replacing f and φ in the
lemma with γk and

(v1, . . . , vm) 7→ m!v1 � · · · � vm,

respectively. �

With this notation we have the following result.

F.2.16 Proposition (The symmetric tensor algebra of a finite-dimensional vector space)
Let F be a field and let V be a finite-dimensional F-vector space with basis E = {e1, . . . , en}.
For an n-multi-index J = (j1, . . . , jn) denote

eJ
γ,� = γj1(e1) � · · · � γjn(en).

Then the set
{eJ
γ,� | J is an n-multi-index}

is a basis for TS(V).
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Proof Recall from Proposition F.1.6 that the set

Tk = {e j1 ⊗ · · · ⊗ e jk | j1, . . . , jk ∈ {1, . . . ,n}}

is a basis for Tk(V). We will show that

Sk = {eJ
γ,� | J is an n-multi-index of degree k}

is a basis for TSk(V). Note that TSk(V) is the subspace of fixed points for the action of Sk
on Tk(V) given by (σ,A) 7→ σ(A). Note that the set Tk is invariant under this action. From
part (iii) of Lemma F.2.15,

γ j1(e1) � · · · � γ jn(en) =
∑

σ∈S j1 ,..., jn

σ(e1 ⊗ · · · ⊗ e1︸        ︷︷        ︸
j1 times

⊗ · · · ⊗ en ⊗ · · · ⊗ en︸        ︷︷        ︸
jn times

)

=
∑

φ∈S j1 ,..., jn

eφ(1) ⊗ · · · ⊗ eφ(k). (F.5)

In particular, for J = ( j1, . . . , jn) with |J| = k, eJ
γ,� is the sum over all basis elements for Tk(V)

in which el appears jl times for each l ∈ {1, . . . ,n}. Now note that σ(eJ
γ,�) = eJ

γ,� for each
σ ∈ Sk and so

spanF(Sk) ⊆ TSk(V).

Next suppose that A ∈ TSk(V) and write

A =
∑

i1,...,ik∈{1,...,n}

Ai1···ikei1 ⊗ · · · ⊗ eik .

We then have σ(A) = A for each σ ∈ Sk and so∑
i1,...,ik∈{1,...,n}

Ai1···ikei1 ⊗ · · · ⊗ eik =
∑

i1,...,ik∈{1,...,n}

Ai1···ikeiσ−1(1)
⊗ · · · ⊗ eiσ−1(k)

for each σ ∈ Sk. Therefore, it follows that

Ai1···ik = Aiσ(1)···iσ(k)

for each σ ∈ Sk. For i1, . . . , ik ∈ {1, . . . ,n} define an n-multi-index ( j1, . . . , jn) of degree k by
asking that jl be the number of times l appears in the list i1, . . . , ik. Then, with J so defined,
define AJ = Ai1···ik and note that

AJ = Aiσ(1)···iσ(k) , σ ∈ Sk.

Therefore, given (F.5) and the interpretation following that formula,

A =
∑

J∈Zn
≥0,|J|=k

AJ
∑

φ∈S j1 ,..., jn

eφ(1) ⊗ · · · ⊗ eφ(k) =
∑

J∈Zn
≥0,|J|=k

AJeJ
γ,�.

Thus
TSk(V) ⊆ spanF(Sk).
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Thus Sk generates TSk(V).
Finally, we need to show that Sk is linearly independent. Suppose that∑

J∈Zn
≥0,|J|=k

AJeJ
γ,� = 0.

Then, following the computations above and switching from multi-indices to indices, we
have ∑

i1,...,ik∈{1,...,n}

Ai1···ikei1 ⊗ · · · ⊗ eik = 0.

This gives Ai1···ik = 0 for every i1, . . . , ik ∈ {1, . . . ,n} and so gives the result. �

It is easy to see from the proof that the condition that V be finitely generated can be
relaxed with the penalty of a little more notation. However, since the finitely generated
case is of most interest to us, we stick to this.

The proof of the proposition contains some notation that is useful to record. Note
that if A ∈ TSk(V) then, using the proposition, we can write

A =
∑

J∈Zn
≥0,|J|=k

AJeJ
γ,�,

for AJ
∈ F with J an n-multi-index of degree k. However, since TSk(V) ⊆ Tk(V), we can

also write
A =

∑
i1,...,ik∈{1,...,n}

Ai1···ikei1 ⊗ · · · ⊗ eik ,

for Ai1···ik ∈ F with i1, . . . , ik ∈ {1, . . . ,n}. As is shown in the proof, symmetry of A implies
that

Ai1···ik = Aiσ(1)···iσ(k) , σ ∈ Sk.

The matter at hand is, “What is the relationship between the AJ’s and the Ai1···ik ’s?”
This relationship is given in the proof and it is as follows.
1. From AJ to Ai1···ik : Let J = ( j1, . . . , jn). For an index i1 · · · ik having the property

that, for each l ∈ {1, . . . ,n}, the number l appears jl times in the list i1 · · · ik, define
Ai1···ik = AJ.

2. From Ai1···ik to AJ: Define the n-multi-index J = ( j1, . . . , jn) by asking that, for each
l ∈ {1, . . . ,n}, jl is the number of times l appears in the list i1 · · · ik. Define AJ = Ai1···ik .

This business is entirely analogous to the discussion concerning indices and multi-
indices in Section 1.1.2.

F.2.4 Homomorphisms involving symmetric algebras and symmetric tensors

In the preceding two sections we introduced two commutative algebras S(V) and
TS(V). In this section we explore some natural correspondences between these algebras
and other sorts of algebraic objects. These alternative ways of thinking about the
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algebras S(V) and TS(V) will be of direct benefit for us. We also show that in the case
of interest to us—that when V is a finite-dimensional vector space—all objects are
canonically isomorphic.

First let us describe the natural homomorphisms that exist between S(V) and TS(V).
By Proposition F.1.3 there exists a unique F-algebra homomorphism from T(V) to TS(V)
which extends the canonical injection of V into TS(V). Since Sym′ : T(V) → TS(V) is
such an F-algebra homomorphism, it must be the only one. By Proposition F.2.7 there
exists a unique homomorphism φV from S(V) to TS(V) which extends the inclusion of
V in S(V). Moreover, the diagram

T(V)
Sym′

##��
S(V)

φV

// TS(V)

(F.6)

commutes, where the vertical arrow is the canonical projection.
We also have, just by composition of the injection of TS(V) in T(V) with the projection

from T(V) to S(V) the following commutative diagram

T(V)

��
TS(V)

;;

ψV

// S(V)

which defines the F-algebra homomorphism ψV.
The following result indicates how the homomorphisms φV and ψV are related.

F.2.17 Proposition (Relationship between S(V) and TS(V)) Let F be a field and let V be an
F-vector space. Then the following statements hold:

(i) ψV ◦φV(A) = k!A for A ∈ S(V);
(ii) φV ◦ψV(A) = k!A for A ∈ TS(V).

Proof (i) For v1, . . . , vk ∈ V we have

φV(v1 · · · · · vk) = v1 � · · · � vk =
∑
σ∈Sk

vσ(1) ⊗ · · · ⊗ vσ(k).

Now, by definition of ψV, we have

ψV ◦φV(v1 · · · · · vk) =
∑
σ∈Sk

ψV(vσ(1) ⊗ · · · ⊗ vσ(k))

= k!v1 · · · · · vk,

giving the result.
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(ii) Consider an element of TSk(V) of the form

m∑
j=1

v j
1 ⊗ · · · ⊗ v j

k,

for v j
l ∈ V, j ∈ {1, . . . ,m}, l ∈ {1, . . . , k} (every element of TSk(V) is a linear combination of

such elements). Then

ψV

( m∑
j=1

v j
1 ⊗ · · · ⊗ v j

k

)
=

m∑
j=1

v j
1 · · · · · v

j
k.

By definition of φV (especially the commutative diagram (F.6)) we have

φV ◦ψV

( m∑
j=1

v j
1 ⊗ · · · ⊗ v j

k

)
=

m∑
j=1

Sym′k(v j
1 ⊗ · · · ⊗ v j

k)

= Sym′k
( m∑

j=1

v j
1 ⊗ · · · ⊗ v j

k

)
= k!

m∑
j=1

v j
1 ⊗ · · · ⊗ v j

k,

as desired. �

In particular, if the map A 7→ k!A is an isomorphism of TSk(V) for each k ∈ Z≥0,
then 1

k!ψV|TSk(V) is the inverse of φV|TSk(V) for each k ∈ Z≥0. This gives the following
corollary.

F.2.18 Corollary (Symmetric tensors and the symmetric algebra for vector spaces over
fields of characteristic zero) Let F be a field of characteristic zero and let V be an F-vector
space. Then φV is an isomorphism of F-algebras S(V) and TS(V).

Why do we use φV rather than ψV as the isomorphism? The reason is that φV

preserves the bases for S(V) and TS(V) in a nice way. Let us describe this. Suppose that
V is finite-dimensional with basis E = {e1, . . . , en}. For an n-multi-index J = ( j1, . . . , jn)
define

eJ
� = e j1

1 · · · · · e
jn
n , eJ

γ,� = γ j1(e1) � · · · � γ jn(en).

Recall from Propositions F.2.9 and F.2.16 that the sets

E� = {e
J
� | J an n multi-index},

Eγ,� = {eJ
γ,� | J is an n-multi-index}

form bases for S(V) and TS(V), respectively. Note that

el � · · · � el︸      ︷︷      ︸
jl times

= jl!γ jl(el).
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Under the assumption that A 7→ k!A is an isomorphism of TSk(V) for each k ∈ Z≥0, it
follows that we can define

eJ
�

= e j1
1 � · · · � e jn

n =
1

j1! · · · jn!
eJ
γ,�,

where the powers are defined relative to the product �. Moreover, the set

E� = {eJ
�
| J is an n-multi-index}

is a basis for TS(V). This basis has the property that φV(eJ
� ) = eJ

�
. Thus TS(V) has two

naturally defined bases, Eγ,� and E�, in the case that A 7→ k!A is an isomorphism of
TSk(V) for each k ∈ Z≥0. The basis Eγ,� has the advantage of always being definable
when V is finite-dimensional. The basis E� has the advantage of corresponding with
the natural basis for S(V) is cases when the latter is isomorphic to TS(V).

It is worthwhile understanding the consequences of this in terms of representing
the elements of TS(V) using the two sorts of bases. We still suppose that V is finite-
dimensional with basis {e1, . . . , en}, and we suppose that A 7→ k!A is an isomorphism
of TSk(V) for each k ∈ Z≥0. As we saw in the proof of Proposition F.2.16, and as
was further elucidated following the proof, there is a natural way of moving between
index and multi-index notation for representations of symmetric tensors. Using this
convention, if we write A ∈ TSk(V) as

A =
∑

i1,...,ik∈{1,...,n}

Ai1···ikei1 ⊗ · · · ⊗ eik ,

we have
A =

∑
J∈Zn

≥0,|J|=k

AJeJ
γ,�, (F.7)

where the AJ’s are related to the Ai1···ik is the manner prescribed following the proof
of Proposition F.2.16. The point is that it is the basis elements eJ

γ,� for which this
expression is valid. If we instead use the basis elements eJ

�
which correspond to the

basis of S(V) under the isomorphism φV, then we instead have

A =
∑

J∈Zn
≥0,|J|=k

AJ

J!
eJ
�
, (F.8)

where J! is stands for j1! · · · jn! if J = ( j1, . . . , jn). Both representations (F.7) and (F.8)
have their uses. For identifications of TS(V) with polynomials the basis Eγ,� is most
natural. For thinking of TS(V) as the space of partial derivatives (see Section 1.1.2) the
basis E� is most natural.
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F.3 The exterior algebra and the algebra of alternating tensors

In the preceding several sections we delved intensely into the symmetric algebra
and algebra of symmetric tensors, and arrived at some interesting conclusions as
concerns the interpretations of bases for these algebras. This whole operation may
be repeated in its entirety for “alternating” (meaning skew-symmetric, essentially)
algebras. Since many of the details here are exactly like their symmetric counterparts,
we shall merely reproduce the definitions and main results without proofs. Only in
the few places where there are differences with the symmetric case will we dwell for
a moment.

F.3.1 The exterior algebra

First we consider the quotient construction of the exterior algebra.

F.3.1 Definition (Exterior algebra) Let F be a field and let V be an F-vector space. Let
IA(V) be the two-sided ideal of T(V) generated by elements of the form v ⊗ v for v ∈ V.
The exterior algebra of V is the F-algebra

∧
(V) = T(V)/IA(V). The product in

∧
(V) is

denoted by
(B1 + IA(V)) ∧ (B2 + IA(V)) , B1 ⊗ B2 + IA(V),

and called the wedge product. •

As with S(V), one has a notion of degree for elements of
∧

(V). The elements of
degree k ∈ Z≥0 are given by

∧k(V) = Tk(V)/Ik
A(V) where Ik

A(V) = IA(V) ∩ Tk(V). In
particular, since I0

A(V) = I1
A(V) = {0} it follows that

∧0(V) ' F and
∧1(V) ' V.

Now let us characterise the algebra structure in
∧

(V).

F.3.2 Proposition (The product in
∧

(V) is alternating) Let F be a field and let V be an F-vector
space. If B1 + IA(V) ∈

∧k1(V) and if B2 + IA(V) ∈
∧k2(V) then

(i) (B1 + IA(V)) ∧ (B2 + IA(V)) = (−1)k1k2(B2 + IA(V)) ∧ (B1 + IA(V)) and
(ii) (B1 + IA(V)) ∧ (B1 + IA(V)) = 0 if k1 is odd.

The exterior algebra has a characterisation in terms of extending maps into a general
algebra, just as does the symmetric algebra.

F.3.3 Proposition (Characterisation of the exterior algebra) Let F be a field, let V be an
F-vector space, let A be a unitary F-algebra, and let f ∈ HomF(V; A) have the property that
f(v)f(v) = 0 for all v ∈ V. Then there exists a unique φf ∈ HomF(

∧
(V); A) such that the

diagram ∧
(V)

φf // A

V

OO

f

==

commutes, where the vertical arrow is the inclusion of V in
∧

(V).
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Linear maps induce homomorphisms of their exterior algebras.

F.3.4 Proposition (Induced homomorphisms of exterior algebras) Let F be a field and let
V and U be F-vector spaces. If f ∈ HomF(V; U) then there exists a unique homomorphism f∗
of the F-algebras S(V) and S(U) such that the diagram

V f //

��

U

��∧
(V)

f∗
//
∧

(U)

commutes, where the vertical arrows are the canonical inclusions.

Using the characterisation of the exterior algebra of a direct sum we can prove the
following description of a basis for the exterior algebra of a finite-dimensional vector
space.

F.3.5 Proposition (The exterior algebra of a finite-dimensional vector space) Let F be a
field and let V be a finite-dimensional F-vector space with basis E = {e1, . . . , en}. Then the set

E∧ = {ei1 ∧ · · · ∧ eik | i1, . . . , ik ∈ {1, . . . ,n}, i1 < · · · < ik, k ∈ Z≥0}

is a basis for
∧

(V).
Proof This is proved using the following lemma.

1 Lemma Let F be a field and let V1, . . . ,Vk be F-vector spaces. There then exists a unique right?

isomorphism Φ of the F-algebras ⊗k
j=1

∧
(Vj) and

∧
(⊕k

j=1Vj) such that the diagram

∧
(Vj)

ιj∗ //

fj

��

∧
(⊕k

j=1Vj)

⊗
k
j=1

∧
(Vj)

Φ

99

commutes for each j ∈ {1, . . . ,k}, where ιj : Vj → ⊕
k
j=1Vj is the canonical inclusion, ιj∗ is the induced

homomorphism of exterior algebras (cf. Proposition F.3.4), and fj is the homomorphism defined
in (F.1).
Proof The proof here follows that for the lemma from the proof of Proposition F.2.9. H

The proposition follows from the lemma like Proposition F.2.9 follows from the lemma
in its proof. �

For the symmetric algebra and symmetric tensors we expended some effort un-
derstanding the connection between index notation and multi-index notation. This
connection really relied on the fact that the objects under consideration were symmet-
ric. Thus we will not see this come up in our discussion of the exterior algebra and
alternating tensors.

We can give the dimension of the homogeneous components of the exterior alge-
bra.
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F.3.6 Corollary (Dimension of degree k component of
∧

(V)) Let F be a field and let V be a
finite-dimensional F-vector space of dimension n. Then, for k ∈ Z≥0,

∧k(V) is of dimension
( n

k ) = n!
k!(n−k)! . In particular, dim(

∧n(V)) = 1 and
∧k(V) = {0} for k > n.

F.3.2 Alternating tensors

Now we switch gears, as we did with the symmetric algebra and symmetric tensors,
and talk about a subalgebra of T(V) that consists of tensors that are “skew-symmetric.”
To do this we recall the notion of the sign of a permutation. Any permutation σ ∈ Sk

is the composition of a finite number of transpositions:1

σ = σ1 ◦ · · · ◦σl.

The number l of transpositions is not unique. However, the evenness or oddness of the
number of these transpositions only depends on σ. Thus (−1)l is well-defined, and we
denote this number by sign(σ). With this notation we have the following definition.

F.3.7 Definition (Alternating tensor) Let F be a field and let V be an F-vector space. An
element A ∈ Tk(V), k ∈ Z≥0, is an alternating tensor of order k if σ(A) = sign(σ)A for all
σ ∈ Sk. The set of alternating elements of Tk(V) is denoted by T

∧k(V), and we denote

T
∧

(V) = ⊕k∈Z≥0T
∧k(V). •

One readily checks that T
∧

(V) is a subspace of T(V). We can define an F-linear
map Alt′k : Tk(V)→ T

∧k(V) by

Alt′k(A) =
∑
σ∈Sk

sign(σ)σ(A).

Note that if A ∈ T
∧k(V) then Alt′k(A) = k!A. If A 7→ k!A is invertible in T

∧k(V), e.g., if
F is a field of characteristic zero, then we can define Altk : Tk(V)→ T

∧k(V) by

Altk(A) =
1
k!

∑
σ∈Sk

sign(σ)σ(A).

This linear map has the advantage of being a projection when it is defined. One can
extend Alt′k (and Altk, when it is defined) to all of T

∧
(V) by homogeneity. The resulting

map will be denoted by Alt′ (and Alt, when it is defined).
We additionally render T

∧
(V) a subalgebra by defining on it a suitable product.

Note that the tensor product itself will not typically suffice since the tensor product
of two alternating tensors is generally not alternating (and is never alternating in the
cases of most interest to us). For A ∈ T

∧k(V) and B ∈ T
∧l(V) we then define

A Z B =
∑
σ∈Sk,l

sign(σ)σ(A ⊗ B).

Equipped with this product, let us record some properties of T
∧

(V).
1A transposition is a swapping of two elements.
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F.3.8 Proposition (Properties of the algebra T
∧

(V)) Let F be a field and let V be an F-vector
space. For k, l,m ∈ Z≥0 and A ∈ T

∧k(V), B ∈ T
∧l(V), and C ∈ T

∧m(V), the following
statements hold:

(i) A Z B ∈ T
∧k+l(V);

(ii) A Z B = (−1)klB ZA;
(iii) A Z (B Z C) = (A Z B) Z C.

In particular, T
∧

(V) is an alternating subalgebra of T(V).

This also gives the following convenient formula for the product of elements of
degree one.

F.3.9 Corollary (Product of elements of degree one in T
∧

(V)) Let F be a field, let V be an
F-vector space, and let v1, . . . ,vk ∈ V. Then

v1 Z · · · Z vk = Alt′k(v1 ⊗ · · · ⊗ vk)

This also gives the following commonly encountered formula for the product in
T
∧

(V).

F.3.10 Proposition (Alternative formula for product in T
∧

(V)) Let F be a field of characteristic
zero and let V be an F-vector space. If k, l ∈ Z≥0, and if A ∈ T

∧k(V) and B ∈ T
∧l(V). Then

A Z B =
(k + l)!

k!l!
Altk+l(A ⊗ B).

F.3.11 Proposition (The alternating tensor algebra of a finite-dimensional vector space)
Let F be a field and let V be a finite-dimensional F-vector space with basis E = {e1, . . . , en}.
Then the set

EZ = {ei1 Z · · · Z eik | i1, . . . , ik ∈ {1, . . . ,n}, i1 < · · · < ik, k ∈ Z≥0}

is a basis for T
∧

(V).

Let us now clearly give the relationship between the components of a tensor A ∈
T
∧k(V) thought of first as a general tensor and second as an alternating tensor. Thus

let V be finite-dimensional with basis {e1, . . . , en} and let A ∈ T
∧k(V). Since A ∈ Tk(V)

we can write
A =

∑
i1,...,ik∈{1,...,n}

Ai1...ikei1 ⊗ · · · ⊗ eik . (F.9)

That A is alternating means that, for every σ ∈ Sk we have∑
i1,...,ik∈{1,...,n}

Ai1···ikei1 ⊗ · · · ⊗ eik =
∑

i1,...,ik∈{1,...,n}

sign(σ)Ai1···ikeiσ−1(1)
⊗ · · · ⊗ eiσ−1(k)

.

Thus
Ai1···ik = sign(σ)Aiσ(1)···iσ(k)
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for each σ ∈ Sk. In particular, this implies that Ai1···ik = 0F if i j = il for any distinct
j, l ∈ {1, . . . , k}. Thus the sum in (F.9) is in actuality over distinct sets of indices. Now
one can use this fact, along with an argument just like that for symmetric tensors, to
show that

A =
∑

i1,...,ik∈{1,...,n}
i1<···<ik

Ai1···ikei1 Z · · · Z eik .

The punchline is that the component of A ∈ T
∧k(V) corresponding to the basis element

ei1 Z · · ·Z eik is simply Ai1···ik . Other bases following from other definitions of the product
in T

∧
(V) will (annoyingly) not have this property.

Now we connect the exterior algebra to certain multilinear maps.

F.3.12 Definition (Alternating multilinear map) Let F be a field and let V and U be F-vector
spaces. A k-multilinear map φ ∈ Lk(V; U) is alternating if, for every σ ∈ Sk and every
v1, . . . , vk ∈ V, it holds that

φ(vσ(1), . . . , vσ(k)) = sign(σ)φ(v1, . . . , vk).

The set of such alternating k-multilinear maps is denoted by Lk
alt(V; U). •

With this notion we have the following result.

F.3.13 Proposition (Homomorphisms of exterior algebras and multilinear maps) Let F
be a field and let V and U be F-vector spaces. The map Φ from Lk

alt(V; U) to HomF(
∧k(V); U)

defined by
Φ(φ)(v1 · · · · · vk) = φ(v1, . . . ,vk)

is an isomorphism of F-vector spaces.

Now we can relate
∧

(V) and T
∧

(V). By arguments just like those for symmetric
algebras, but replacing the use of Proposition F.2.7 with a use of Proposition F.3.3, we
arrive at F-algebra homomorphisms φV :

∧
(V)→ T

∧
(V) and ψV : T

∧
(V)→

∧
(V) such

that the diagrams
T(V)

Alt′

$$��∧
(V)

φV

// T
∧

(V)

and
T(V)

��
T
∧

(V)

::

ψV

//
∧

(V)

commute. These homomorphisms satisfy the following relationships.
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F.3.14 Proposition (Relationship between
∧

(V) and T
∧

(V)) Let F be a field and let V be an
F-vector space. Then the following statements hold:

(i) ψV ◦φV(A) = k!A for A ∈
∧

(V);
(ii) φV ◦ψV(A) = k!A for A ∈ T

∧
(V).

The case when A 7→ k!A is an isomorphism of T
∧k(V) for each k ∈ Z≥0 is again of

importance. A special case of this is the following.

F.3.15 Corollary (Alternating tensors and the exterior algebra for vector spaces over
fields of characteristic zero) Let F be a field of characteristic zero and let V be an F-vector
space. Then φV is an isomorphism of the F-algebras

∧
(V) and T

∧
(V).

Suppose that V is finite-dimensional with basis E = {e1, . . . , en} and if A 7→ k!A is
an isomorphism of T

∧k(V) for each k ∈ Z≥0. Then the isomorphism φV has the nice
feature that

φV(ei1 ∧ · · · ∧ eik) = ei1 Z · · · Z eik

for every i1, . . . , ik ∈ {1, . . . ,n}. Thus the bases E∧ and EZ are in natural correspondence
in this case. Note that, unlike for symmetric tensors, we do not have the ambiguity of
two natural bases for T

∧
(V).
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