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Chapter 3

Domains of holomorphy and notions of
convexity in Cn

In this chapter we study an important concept in holomorphic analysis, having to
do with the existence of extensions of holomorphic functions. The objects of interest
here are open subsets possessing an holomorphic functions that cannot be extended
to a larger domain. As we shall see, there is a great deal of difficult analysis wrapped
up in the characterisations of these domains. The topic of this chapter is fundamental
to the theory of complex analysis in several variables, and so is covered in any text on
the subject, such as [Fritzsche and Grauert 2002, Gunning and Rossi 1965, Hörmander
1973, Krantz 1992, Laurent-Thiébaut 2011, Range 1986, Taylor 2002]. In all cases,
there will be different points of emphasis, depending on which aspect of the theory is
most important to a given author. However, the basic points are, by now, pretty well
established.

Unlike Chapters 1 and 2 where the complex and real theory was developed, for the
most part, side-by-side, here the development is exclusively complex, and only gets
real for brief periods where some concepts and intuitions are best developed in R2.

3.1 Domains of holomorphy and holomorphic convexity

We begin our discussion of domains of holomorphy by examining their relationship
with a notion of convexity, so-called holomorphic convexity. We begin by giving the
definition of a domain of holomorphy and examining a few examples that introduce
us to the special character of these domains.

3.1.1 Definitions and elementary properties

Let us give the definition of the domains of interest.

3.1.1 Definition (Domain of holomorphy) A domain Ω ⊆ Cn is a domain of holomorphy if,
for every connected open set V ⊆ Cn for which V∩ bd(Ω) , ∅ and for every connected
component W of Ω∩V, there exists f ∈ Chol(Ω) such that f |W cannot be extended to a
holomorphic function on V. •
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To understand the definition, let us observe that the set W in the definition shares
boundary points with Ω.

3.1.2 Lemma (Boundary points of domains of holomorphy) With Ω, V, and W as in
Definition 3.1.1, bd(W) ∩ V ∩ bd(Ω) , ∅.

Proof Since W is a connected component of the open set Ω∩V, W is an open subset of Cn

and a closed subset of Ω ∩ V. Since V is connected and W ⊆ V, W is not closed in V. Thus
clV(W) ,W and thus there exists z ∈ (bd(W)∩V)−W. Suppose that z < bd(Ω). Then there
exists a neighbourhood N of z such that either (1) N ∩Ω = ∅ or (2) N ∩ (Cn

\Ω) = ∅. Since
W ⊆ Ω, the first condition implies that N ∩W = ∅, contradicting the fact that z ∈ bd(W).
Similarly, the second condition implies that

z ∈ int(Cn
\ (Cn

\Ω)) = Ω.

This again prohibits z from being in bd(W). Thus z ∈ bd(Ω). �

The idea, roughly, is that on a domain of holomorphy Ω there exists a holomorphic
function on Ω that cannot be extended to a larger open set at any point on the boundary
of Ω.

3.1.3 Examples (Domains of holomorphy)
1. If you cannot imagine what a domain of holomorphy will be like based on your

experience with functions of a single complex variable, there is a reason for this.
Indeed, a domain Ω ⊆ C is a domain of holomorphy. To see this, let V ⊆ C be a
connected open set such that V ∩ bd(Ω) , ∅ and let W be a connected component
of Ω ∩ V. Let z0 ∈ bd Ω ∩ V and define f ∈ Chol(Ω) by f (z) = 1

z−z0
. Then we see that

f |W cannot be extended to a holomorphic function on V. Thus Ω is a domain of
holomorphy.

2. If Ω ⊆ Cn is convex (see Section B.2) we claim that Ω is a domain of holomorphy.
Indeed, let V ⊆ Cn be open, connected, and such that V ∩ bd(Ω) , ∅. Let W be
a connected component of Ω ∩ V. For z0 ∈ V ∩ bd(Ω), by Corollary B.2.14 let
φ : Cn

→ R be a R-affine function such that

Ω ⊆ {z ∈ Cn
| φ(z > 0}

and φ(z0) = 0. We can write

φ(z) =

n∑
j=1

λ j(z j − z0 j) +

n∑
j=1

λ̄ j(z̄ j − z̄0 j)

for λ ∈ Cn. Thus we can write φ(z) = Re(g(z)) where

g(z) = 2
n∑

j=1

λ j(z j − z0 j)

is holomorphic. Now note that the function f ∈ Chol(Ω) given by f (z) = (g(z))−1

has the property that f |W is holomorphic but does not extend to a holomorphic
function on V.
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3. Let n ≥ 2. In this example we consider a region Ω in Cn
' C × Cn−1 defined as

follows. Let H′ ⊆ H be open sets in Cn−1 with H connected and let r ∈ R≥0 and
R ∈ R>0 satisfy r < R. Define

Ω = {(z0, z1) ∈ C × Cn−1
| z0 ∈ D1(R, 0) \ D1(r, 0), z1 ∈ H}

∪ {(z0, z1) ∈ C × Cn−1
| z0 ∈ D1(R, 0), z1 ∈ H

′
}. (3.1)

A set defined in this manner is called a Hartogs figure. In Figure 3.1 we illustrate

Cn−1

C

R r

(
)

H′

(
)

H

Figure 3.1 A depiction of a set that is not a domain of holomorphy

with the shaded region how one can think of Ω. We will show that Ω is not a
domain of holomorphy. To do this, take

V = {(z0, z1) ∈ C × Cn−1
| z0 ∈ D1(R, 0), z1 ∈ H},

noting that V ∩ bd(Ω) , ∅. In Figure 3.1 the hatched region depicts V. Let

W = {(z0, z1) ∈ C × Cn−1
| z0 ∈ D1(R, 0), z1 ∈ H

′
}.

Now let f ∈ Chol(Ω), let (z0, z1) ∈ V, and let ρ ∈ R>0 be such that max{|z0|, r} < ρ < R.
Define f̂ : V→ C by asking that

f̂ (z0, z1) =
1

2πi

∫
|ζ|=ρ

f (ζ, z1)
ζ − z0

dζ.

By standard theorems on holomorphic dependence of integrals [Titchmarsh 1939,
page 99], f̂ is holomorphic on V. By the Cauchy Integral Formula, f̂ |W = f |W.
Therefore, since Ω is connected, f̂ |Ω = f . Thus f̂ is an extension of f to V and this
prohibits Ω from being a domain of holomorphy.
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4. The previous example can be used to produce a significant generalisation. Indeed,
let M be a holomorphic manifold and let S ⊆ M be a submanifold of codimension
at least 2. We claim that any holomorphic function on M \ S can be extended to a
holomorphic function on M. It suffices to do this locally, so we suppose, by working
with an appropriate submanifold chart, that M = Dn(R̂, 0) and that

S = {z ∈ M | z1 = · · · = zk = 0}

for some k ≥ 2. In the notation of the preceding example we take H = Dn−1(R̂, 0)
and

H′ = H \ {z ∈ H | z2 = · · · = zk = 0}

(taking points in Dn−1(R̂, 0) to be of the form (z2, . . . , zn)). We also take r = 0 so that,
if Ω = M \ S, then Ω is as in (3.1), with r, R, H′, and H as just defined. We also
define V = Dn(R̂, 0). Thus any holomorphic function on Ω can be extended to Ω, as
desired.
If we were to have given our definition of domains of holomorphy for manifolds,
we would say at this time that M \ S is not a domain of holomorphy.

5. A special case of the preceding example shows the following. Let Ω ⊆ Cn is open
and let D ⊆ Ω be a collection of points possessing no accumulation point in Ω. By
our preceding result, any holomorphic function on Ω \D extends to a holomorphic
function on Ω. That is, holomorphic functions in n-variables, n ≥ 2, cannot have
isolated singularities. •

Let us take note of the examples above that are not domains of holomorphy. A key
idea is that in an open set that is not a domain of holomorphy, there must necessarily
be some constraints present on the holomorphic functions that can be defined on
this domain. These constraints are imposed precisely by the requirement that all
holomorphic functions can be extended to some larger open set. This prohibits, for
example, functions that blow up all along the boundary of open set that is not a domain
of holomorphy. We shall see this made precise in Section 3.1.3.

Our discussion of domains of holomorphy will focus mainly on various character-
isations of these, upon which we now embark.

3.1.2 Holomorphic convexity

Our first seemingly crazy diversion to understand domains of holomorphy will be
a form of convexity. We shall begin by first providing an alternative characterisation
of convex sets in the usual sense. We use the notation

sup
C

( f ) = sup{ f (x) | x ∈ C}

for a R-valued function f defined on a set X with C ⊆ X.
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3.1.4 Proposition (Alternative characterisation of a closed convex set) Let V be a finite-
dimensional R-vector space and let A (V) be the set of affine functions on V, i.e., functions of
the form

v 7→ α(v) + a, α ∈ V∗, a ∈ R.

Then, for a subset C ⊆ V, the following statements are equivalent:
(i) C is closed and convex;
(ii) C = {v ∈ V | f(v) ≤ supC(f) for every f ∈ A (V)}.

Proof We shall show that

convA (V)(C) , {v ∈ V | f (v) ≤ sup
C

( f ) for every f ∈ A (V)} = cl(conv(C)),

and from this the result will follow.
It is clear that C ⊆ convA (V)(C).
First we show that convA (V)(C) is closed by showing that its complement is open. Let

v0 < convA (V)(C). Thus there exists f ∈ A (V) such that f (v0) > supC( f ). By continuity,
f (v) > supC( f ) for v in a neighbourhood of v0, and this gives openness of the complement
of convA (V)(C).

Next we show that convA (V)(C) is convex. Let v1, v2 ∈ convA (V)(C), let s ∈ [0, 1], and
let f ∈ A (V) be given by f (v) = α(v) + a. Then

f ((1 − s)v1 + sv2) = ((1 − s)α(v1) + (1 − s)a) + (svs + sa) = (1 − s) f (v1) + s f (v2)
≤ (1 − s) sup

C
( f ) + s sup

C
( f ) = sup

C
( f ),

showing that (1 − s)v1 + sv2 ∈ convA (V)(C), as desired.
Now we show that if C0 ⊆ V is a closed convex set such that C ⊆ C0, then

convA (V)(C) ⊆ C0. To show this, we first show that convA (V)(C0) = C0. Let v0 < C0
and, by Proposition B.1.3, let u0 ∈ bd(C0) be such that dist(v0,C0) = ‖v0 − u0‖. If s0 ∈ (0, 1)
then

w0 , (1 − s0)u0 + s0v0 < C0

and, by Corollary B.2.14, there exists f ∈ A (V) such that f (w0) = 0 and supC0
( f ) < 0. Since

the function
s 7→ f ((1 − s)u0 + sv0)

is increasing on [0, 1], we conclude that f (v0) ≥ 0 and so v0 < convA (V)(C0). Thus we
indeed have C0 = convA (V)(C0). Now, since C ⊆ C0 we have

convA (V)(C) ⊆ convA (V)(C0) = C0,

completing the proof. �

The preceding result should be seen as motivation for the following definition. We
refer the reader to (1.1) for the notation ‖·‖K used in the definition.
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3.1.5 Definition (Holomorphically convex hull) If Ω ⊆ Cn is a domain and if K ⊆ Ω, the
holomorphically convex hull of K is the set

hconvΩ(K) = {z ∈ Ω | | f (z)| ≤ ‖ f ‖K for all f ∈ Chol(Ω)}.

A set K is called Chol(Ω)-convex if hconvΩ(K) = K. •

Let us give some elementary properties of the holomorphically convex hull.

3.1.6 Proposition (Properties of the holomorphically convex hull) Let Ω ⊆ Cn be a domain
and let K,L ⊆ Ω. Then the following statements hold:

(i) K ⊆ hconvΩ(K);
(ii) if K ⊆ L then hconvΩ(K) ⊆ hconvΩ(L);
(iii) hconvΩ(hconvΩ(K)) = hconvΩ(K);
(iv) hconvΩ(K) is a closed subset in the relative topology of Ω;
(v) if K is bounded then hconvΩ(K) is bounded;
(vi) hconvΩ(K) ⊆ cl(conv(K)).

Proof (i) This is obvious.
(ii) This too is obvious.
(iii) By parts (i) and (ii) we have

hconvΩ(K) ⊆ hconvΩ(hconvΩ(K)).

To prove the opposite inclusion, let z < hconvΩ(K). Then there exists f ∈ Chol(Ω) such
that | f (z)| > ‖ f ‖K. This implies, however, that | f (z)| > | f (w)| for every w ∈ hconvΩ(K) (by
definition of hconvΩ(K)) and so | f (z)| > ‖ f ‖hconvΩ(K), showing that z < hconvΩ(hconvΩ(K)).

(iv) For f ∈ Chol(Ω) note that

C f , {z ∈ Ω | | f (z)| ≤ ‖ f ‖K}

is a closed subset of Ω. Moreover, one can see easily that

hconvΩ(K) = ∩ f∈Chol(Ω)C f ,

giving closedness of hconvΩ(K) in Ω.
(v) Let ζ1, . . . , ζn ∈ Chol(Ω) be the coordinate functions: ζ j(z) = z j, j ∈ {1, . . . ,n}. Since K

is bounded, the functions ζ1, . . . , ζn are bounded on K. Since ζ j(z) ≤ ‖ζ j‖K, j ∈ {1, . . . ,n}, for
all z ∈ hconvΩ(K), it follows that ζ1, . . . , ζn are bounded on hconvΩ(K), and so hconvΩ(K)
is also bounded.

(vi) Let ẑ < cl(conv(K)). Using Corollary B.2.14 and the computations of
Example 3.1.3–2, there exists λ ∈ Cn and z0 ∈ Cn such that

cl(conv(K)) ⊆ {z ∈ Cn
| Re(〈z − z0,λ〉) < 0}, Re(〈ẑ − z0,λ〉) > 0.

Let f ∈ Chol(Ω) be defined by f (z) = 〈λ, z − z0〉. Now, for any z ∈ cl(conv(K)) we have

|exp ◦ f (z)| = exp(Re( f (z))) < 1.

But, in a similar manner, we have |exp ◦ f (ẑ)| > 1 which implies that ẑ < hconvΩ(K) since
exp ◦ f ∈ Chol(Ω). �
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From the previous result, the holomorphically convex hull of a compact set is
always bounded. The situation where it is also always closed (in Cn!) is of interest to
us.

3.1.7 Definition (Holomorphically convex domain in Cn) A domain Ω ⊆ C is holomor-
phically convex if hconvΩ(K) is compact for every compact K ⊆ Ω. •

Let us give some examples of open sets that are and are not holomorphically
convex.

3.1.8 Examples (Holomorphically convex sets)
1. As with domains of holomorphy, the notion of holomorphic convexity is not so

interesting in dimension 1 (forgetting, for the moment, that we will later show that
these two notions are equivalent). Indeed, we claim that if Ω ⊆ C is a domain,
then it is holomorphically convex. To see this, we first note that if K ⊆ Ω is
compact then hconvΩ(K) is bounded from Proposition 3.1.6. We must show that
cl(hconvΩ(K)) ⊆ Ω. Suppose otherwise so that there exists z0 ∈ cl(hconvΩ(K)) −Ω.
Since hconvΩ(K) ⊆ Ω this implies that z0 ∈ bd(hconvΩ(K)) ∩ bd(Ω). Define f ∈
Chol(Ω) by f (z) = 1

z−z0
. Let (z j) j∈Z>0 be a sequence in hconvΩ(K) converging to z0.

Then lim j→∞| f (z j)| = ∞ and so there exists N ∈ Z>0 such that | f (zN)| > ‖ f ‖K since
the latter is finite. This is a contradiction.

2. Let Ω ⊆ Cn be holomorphically convex and let f1, . . . , fk ∈ Chol(Ω). We claim that
the set

Ω f = {z ∈ Ω | | f j(z)| < 1}

is then holomorphically convex. Indeed, let K ⊆ Ω f be compact and let r ∈ [0, 1)
be such that | f j(z)| ≤ r for each j ∈ {1, . . . , k} and z ∈ K. Thus | f j(z)| ≤ r for each
j ∈ {1, . . . , k} and z ∈ hconvΩ f (K). Therefore,

hconvΩ f (K) ⊆ {z ∈ Ω | | f j(z)| ≤ r}.

Thus hconvΩ f (K) is a closed subset of the compact (because Ω is holomorphically
convex) set Ω, and so is compact [Runde 2005, Proposition 3.3.6].

3. Let n ≥ 2 and take Ω = Cn
\ {0}. By Example 3.1.3–4 it follows that every holo-

morphic function on Ω can be extended to a holomorphic function on Cn. Let us
consider the compact set

K = {z ∈ Ω | ‖z‖ = 1}.

We claim that hconvΩ(K) = Bn(1, 0) \ {0}. By Proposition 3.1.6(vi) it follows that
hconvΩ(K) ⊆ Bn(1, 0) \ {0}. For the converse inclusion, let f ∈ Chol(Ω). Then let
f̂ ∈ Chol(Cn) be the extension of f to Cn. Note that f̂ is bounded on Bn(1, 0) so that,
by the Maximum Modulus Theorem, | f̂ |Bn(1, 0)| has its maximum on K. Therefore,
for every z ∈ Bn(1, 0) \ {0} we must have | f (z)| ≤ ‖ f ‖K, as desired. This shows that
Ω is not holomorphically convex since hconvΩ(K) is not compact. •

Let us give some properties of holomorphically convex sets.
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3.1.9 Proposition (Basic properties of holomorphically convex sets) The following state-
ments hold:

(i) if domains Ω ⊆ Cn and ∆ ⊆ Cm are holomorphically convex, then so too is Ω × ∆;
(ii) if Ω ⊆ Cn is holomorphically convex, there exists a sequence (Kj)j∈Z>0 of compact subsets

of Ω with the following properties:

(a) hconvΩ(Kj) = Kj;
(b) Kj ⊆ int(Kj+1) for j ∈ Z>0;
(c) Ω = ∪j∈Z>0Kj.

Proof (i) Let K ⊆ Ω × ∆ be compact and let L ⊆ Ω and M ⊆ ∆ be compact subsets for
which K ⊆ L ×M. Note that if f ∈ Chol(Ω) then, f̂ (z,w) = f (z) defines f̂ ∈ Chol(Ω × ∆). If
(z,w) ∈ hconvΩ×∆(L ×M) then

| f̂ (z,w)| = | f (z)| ≤ ‖ f ‖L.

Thus z ∈ hconvΩ(L) and so

hconvΩ×∆(L ×M) ⊆ hconvΩ(L) × ∆.

Similarly,
hconvΩ×∆(L ×M) ⊆ Ω × hconv∆(M)

and so
hconvΩ×∆(L ×M) ⊆ hconvΩ(L) × hconv∆(M).

By hypothesis, the set on the right is compact. Since

hconvΩ×∆(K) ⊆ hconvΩ×∆(L ×M),

we have that hconvΩ×∆(K) is a closed subset of a compact set, and so is compact.
(ii) Let (L j) j∈Z>0 be a sequence of compact subsets of Ω such that L j ⊆ int(L j+1) and

Ω = ∪ j∈Z>0L j (using [Aliprantis and Border 2006, Lemma 2.76]). We let K1 = hconvΩ(L1).
Now suppose that we have defined K1, . . . ,Km with the desired properties. Choose Nm ≥ m
sufficiently large that Km ⊆ LNm and take Km+1 = hconvΩ(LNm). One readily verifies, using
Proposition 3.1.6, that the sequence (K j) j∈Z>0 has the asserted properties. �

We close this section by proving that domains of holomorphy are holomorphically
convex.

3.1.10 Theorem (Domains of holomorphy are holomorphically convex) If a domain Ω ⊆ Cn

is a domain of holomorphy, it is holomorphically convex.
Proof We first prove a lemma.
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1 Lemma If Ω ⊆ Cn is a domain of holomorphy, dist(K, bd(Ω)) = dist(hconvΩ(K), bd(Ω)).
Proof Let r ∈ R>0 be such that dist(K, bd(Ω)) > r, this being possible by compactness of
K. Now define

L = K + Bn(r, 0) = {z + w | z ∈ K, w ∈ Bn(r, 0)},

and an easy argument shows that L is compact. Thus, if f ∈ Chol(Ω), we have M , ‖ f ‖L <
∞. Thus, by Corollary 1.1.24 and Theorem 1.1.17, the Taylor series for f at every point in
z0 ∈ K converges on Bn(r, z0) and, moreover, the derivatives satisfy

|DI f (z0)| ≤ I!Mr−I, I ∈ Zn
≥0.

Since DI f is holomorphic, by definition of hconvΩ(K) we have

|DI f (z0)| ≤ I!Mr−I, I ∈ Zn
≥0

for all z0 ∈ hconvΩ(K). Thus the Taylor series for f at z0 ∈ hconvΩ(K) converges on
Bn(r, z0) for every z0 ∈ hconvΩ(K). Since Ω is a domain of holomorphy, this implies that
Bn(r, z0) ⊆ Ω for every z0 ∈ hconvΩ(K) (since, otherwise, this would give the holomorphic
extension of every f ∈ Chol(Ω) across the boundary of Ω). Thus we have shown that

dist(hconvΩ(K), bd(Ω)) ≤ dist(K, bd(Ω)).

As the opposite inequality follows from the fact that K ⊆ hconvΩ(K), the lemma follows.H

The theorem now follows since, if Ω is a domain of holomorphy and if K ⊆ Ω is
compact, hconvΩ(K) is also compact since it is relatively closed and bounded (Proposi-
tion 3.1.6) and its absolute closure does not intersect bd(Ω). �

3.1.3 Singular functions

In this section we see that holomorphically convex sets possess holomorphic func-
tions with particularly nasty behaviour at the boundary. The following definition
captures the desired behaviour.

3.1.11 Definition (Singular function) Let Ω ⊆ Cn be a domain and let f ∈ Chol(Ω). The
function f is singular if, for any connected open set V ⊆ Cn for which V ∩ bd(Ω) , ∅
and for any connected component W of Ω ∩ V, there does not exist g ∈ Chol(V) such
that g|W = f |W. •

In our definition of a domain of holomorphy, we asked, essentially, that, around
any point in bd(Ω), there should be no holomorphic function that can be extended
across the boundary in a neighbourhood of this point. A singular function cannot be
extended across any point of the boundary. It is thus clear that a domain possessing
a singular function is a domain of holomorphy. What is not clear, yet true, is that
every domain of holomorphy possesses a singular function. We shall not prove this
in this section; the fact will follow from what we prove in this section, along with
Theorem 3.5.1. In this section we explore the relationship between holomorphic
convexity and the existence of singular functions.

We first prove that we can construct functions that are unbounded on sequences of
points without accumulation points.
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3.1.12 Theorem (A characterisation of holomorphically convex sets) A domain Ω ⊆ Cn

is holomorphically convex if and only if, for every sequence (zj)j∈Z>0 in Ω possessing no
accumulation points and for every sequence (aj)j∈Z>0 in C, there exists f ∈ Chol(Ω) such that
f(zj) = aj for every j ∈ Z>0.

Proof First suppose that Ω is holomorphically convex and, by Proposition 3.1.9(ii), let
(K j) j∈Z>0 be a sequence of compact sets such that

(i) hconvΩ(K j) = K j,
(ii) K j ⊆ int(K j+1) for j ∈ Z>0, and
(iii) Ω = ∪ j∈Z>0K j.

We can suppose, without loss of generality, that either the sequence (z j) j∈Z is comprised
of finitely or infinitely many distinct points. In the former case, if there are say N distinct
points, we suppose that these points are z1, . . . , zN, again without loss of generality. In the
latter case, since the sequence (z j) j∈Z>0 has no accumulation points, for each j ∈ Z>0 it must
be the case that K j contains only finitely many of these points. We thus suppose in this
case that the first k1 terms in the sequence are in K1, the next k2 terms in the sequence are
in K2, and so on.

For j ∈ Z>0 let m j ∈ Z>0 be the unique integer with the property that z j ∈ Km j+1 \ Km j .
Since z j < hconv(Km j), let f j ∈ Chol(Ω) be such that | f j(zk)| > ‖ f j‖Kmj

. By rescaling, suppose
that f j(z j) = 1. We take m j = 1 if z j ∈ K1 and just take f j such that f j(z j) = 1 in this case.
Let p j ∈ Chol(Cn) be a polynomial function satisfying

p j(z j) = 1, p j(z1) = · · · = p j(z j−1) = 0.

If we are in the case where there are only finitely many distinct points in the sequence
(z j) j∈Z>0 , we stop this construction after N steps with holomorphic functions f1, . . . , fN
and polynomials p1, . . . , pN. Otherwise, we construct sequences ( f j) j∈Z>0 of holomorphic
functions and (p j) j∈Z>0 of polynomials functions with the prescribed properties. In the first
case we take J = {1, . . . ,N} and in the second case we rake J = Z>0.

Now we recursively define λ j ∈ C and r j ∈ Z>0, j ∈ J, as follows. We let λ1 = a1 and r1
be such that

‖λ1p1 f r1
1 ‖Km1

<
1
2
,

provided that m1 > 1. If m1 = 1 we take r1 = 1. If λ1, . . . , λ j−1 and r1, . . . , r j−1 have been
defined, define λ j and r j to satisfy

λ j = a j −

j−1∑
l=1

λlpl(z j) fl(z j)rl , ‖λ jp j f
r j

j ‖Kmj
≤ 2− j,

provided that m j > 1. If m j = 1 we take r j = 1. Now define

f (z) =
∑
j∈J

λ jp j(z) f j(z)r j .

We claim that the sum converges uniformly on compact sets. We need only consider the
case where J = Z>0. For simplicity, let us suppose that none of the points in the sequence
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(z j) j∈Z>0 lie in K1. This can be done without loss of generality since we can subtract from the
sum for f the front end of the sum corresponding to the k1 terms where z1, . . . , zk1 ∈ K1. This
assumption having been made, let K ⊆ Ω be compact. Note that, with the assumptions in
effect, lim j→∞m j = ∞. Thus we can choose k sufficiently large that K ⊆ Km j for j ≥ k. Let
us also suppose that k is chosen sufficiently large that

p∑
j=q+1

2− j < ε

if p, q ≥ k are chosen such that p > q. (This is possible by convergence of
∑
∞

j=1 2− j.) Then,
for p, q ≥ k with p > q we have

∥∥∥∥ p∑
j=1

λ jp j f
r j

j −

q∑
j=1

λ jp j f
r j

j

∥∥∥∥
K
≤

p∑
j=q+1

‖λ jp j f
r j

j ‖Kmj
< ε,

giving the desired uniform convergence on K. Moreover, since pk(z j) = 0 for k > j, we have

f (z j) =

j∑
l=1

λlpl(z j) fl(z j)rl = λ j +

j−1∑
l=1

λlpl(z j) fl(z j)rl = a j,

giving the “only if” assertion.
For the “if” assertion, note that the hypotheses implies that, given a sequence (z j) j∈Z>0

comprised of distinct points and with no accumulation points, there exists f ∈ Chol(Ω)
such that f (z j) = j. Let K ⊆ Ω be compact and let (z j) j∈Z>0 be a sequence in hconvΩ(K). By
definition of the holomorphically convex hull it follows that, for any f ∈ Chol(Ω),

sup{| f (z j)| | j ∈ Z>0} ≤ ‖ f ‖K < ∞.

In particular, there can be no f ∈ Chol(Ω) such that f (z j) = j for every j ∈ Z>0. But
our hypothesis implies that the sequence (z j) j∈Z>0 must have accumulation points, giving
compactness of hconvΩ(K). �

We can now prove the following theorem.

3.1.13 Theorem (Holomorphically convex sets and singular functions) If Ω is holomor-
phically convex then there exists a singular function on Ω.

Proof We first prove a technical lemma.

1 Lemma Let Ω ⊆ Rn be open and let (Kj)j∈Z>0 be a sequence of compact sets such that (1) Kj ⊆

int(Kj+1) and (2) Ω = ∪j∈Z>0Kj. Then there exists a sequence (kj)j∈Z>0 in Z>0 and a sequence
(xj)j∈Z>0 in Ω such that

(i) xj ∈ Kkj+1 \ Kkj and
(ii) for any x ∈ bd(Ω), any connected neighbourhood V of x, and any connected component W

of Ω ∩ V, we have
card({j ∈ Z>0 | xj ∈W}) = ∞.
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Proof Let (y j) j∈Z>0 be an enumeration of Ω ∩Qn. For each j ∈ Z>0, let r j = dist(y j, bd(Ω))
and denote B j = Bn(r j, y j). Denote by (β j) j∈Z>0 the sequence

β1 = B1, β2 = B1, β3 = B2, β4 = B1, β5 = B2, β6 = B3, . . .

Let k1 = 1 and define (k j) j∈Z>0 and (x j) j∈Z>0 inductively as follows. Suppose that k1, . . . , km
and x1, . . . , xm−1 have been defined for m ≥ 2 so that x j ∈ Kk j+1 \ Kk j for j ∈ {1, . . . ,m − 1}.
Note that βm is not contained in any compact subset of Ω since it shares a boundary point
with Ω. Thus there exists xm ∈ βm\Kkm . Let us choose km+1 sufficiently large that xm ∈ Kkm+1 .
Thus the sequences (k j) j∈Z>0 and (x j) j∈Z>0 satisfy the first conclusion of the lemma.

For the second, with V and W as given in the second of the conclusions, let x ∈
bd(W) ∩ V ∩ bd(Ω) by virtue of Lemma 3.1.2. We can then choose ym sufficiently close to
x that Bm ⊆W. Let

J = { j ∈ Z>0 | β j = Bm},

noting that card(J) = ∞. Since x j ∈ β j = Bm for each j ∈ J, we conclude that W contains
infinitely many points from (x j) j∈Z>0 . H

Now we proceed with the proof of the theorem. First of all, the theorem holds if Ω = Cn,
so we suppose otherwise. Since Ω is holomorphically convex, by Proposition 3.1.9(ii) let
(K j) j∈Z>0 be a sequence of convex sets such that

1. hconvΩ(K j) = K j;
2. K j ⊆ int(K j+1) for j ∈ Z>0;
3. Ω = ∪ j∈Z>0K j.

Let (k j) j∈Z>0 and (z j) j∈Z>0 satisfy the conclusions of the lemma above. By Theorem 3.1.12,
let f ∈ Chol(Ω) be such that lim j→∞| f (z j)| = ∞. Let us show that f is singular on Ω. Let
z ∈ bd(Ω), let V be a connected neighbourhood of z, and let W be a connected component
of Ω ∩ V. Suppose that there exists g ∈ Chol(V) such that f |W = g|W. Let V′ be a relatively
compact neighbourhood of z for which cl(V′) ⊆ V. Let W′ be the connected component of
V′ ∩Ω having intersection with W. We then have

‖g‖W′ ≤ ‖g‖V′ < ∞

since g is holomorphic on V. By the second of the conclusions from the lemma above the
set W′ contains infinitely many of the points (z j) and lim j→∞|g(z j)| = ∞, and so we arrive
at a contradiction. Thus there can be no such function g as asserted. �

3.2 Harmonic, subharmonic, and plurisubharmonic functions

In this section we introduce an important analytical tool in the study of domains of
holomorphy. This class of functions has its roots in the theory of functions of a single
complex variable. This is where we begin our discussion.

3.2.1 Harmonic and subharmonic functions

One of the characterisations we shall use for domains of holomorphy involves a
sort of peculiar class of functions called “plurisubharmonic.” These shall be discussed
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in the next section. The “pluri” here is a reference to the fact that these are functions of
more than one complex variable, and the “subharmonic” makes reference to the notion
of subharmonic functions of a single complex variable. That is, plurisubharmonic
functions are the generalisation to several complex variables of subharmonic functions
of a single complex variable.

In this section we thus recall the basic facts about subharmonic functions of a single
complex variable. As with the notion of holomorphic convexity, we can get some
insight by thinking first about standard notions of convexity. A function u : I → R
defined on an interval I is convex if

u((1 − s)x1 + sx2) ≤ (1 − s)u(x1) + su(x2)

for every distinct x1, x2 ∈ I and for every s ∈ (0, 1). In Figure 3.2 we depict how

u(a)

a

u(b)

b

Figure 3.2 A convex function

the definition works. The idea—and one that relates to how we will think of how
subharmonic relates to harmonic—is that if u agrees with a linear function at points a
and b, then u does not exceed the linear function on (a, b). Said in this way, it is perhaps
not unreasonable to think of “convex” functions as being “sublinear.” Moreover,
the linear functions can be thought of those twice differentiable functions with zero
second derivative. It is a classical result that a function of class C2 is convex if and
only if u′′(x) ≥ 0 for every x ∈ I [Webster 1994, Theorem 5.5.5]. We shall see in
Theorem 3.2.2(x) below that a similar interpretation holds for subharmonic functions,
but with “second derivative” being replaced with “Laplacian.”

Now we turn to harmonic and subharmonic functions. We recall that a function
f : S→ [−∞,∞) is upper semicontinuous if f −1([−∞, α)) is open for every α ∈ R.1

1A function f : S→ [−∞,∞) is upper semicontinuous if and only if, for each x0 ∈ S and each ε ∈ R>0,
there exists a neighbourhood N of x0 such that f (x) ≤ f (x0) + ε for every x ∈ N. From this, one can easily
see, for example, that upper semicontinuous functions are locally bounded from above.
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3.2.1 Definition (Harmonic function, subharmonic function) Let Ω ⊆ C be open and let
u : Ω→ [−∞,∞).

(i) The function u is harmonic if it is of class C2 and if ∂2u
∂z∂z̄ (z) = 0 for every z ∈ Ω.

(ii) The function u is subharmonic if
(a) it is upper semicontinuous;

(b) for every r ∈ R>0 and z0 ∈ Ω for which D1(r, z0) ⊆ Ω and for every continuous
σ : D1(r, z0) → R such that (1) σ|D1(r, z0) is harmonic, and (2) σ(z) ≥ u(z) for
z ∈ bd(D1(r, z0)), we have σ(z) ≥ u(z) for every z ∈ D1(r, z0). •

It will be convenient on occasion to use the notation

∆u(z) = 4
∂2u
∂z∂z̄

(z),

this being the Laplacian of u.
Let us give some of the basic properties of harmonic and subharmonic functions.

3.2.2 Theorem (Properties of harmonic and subharmonic functions) If Ω ⊆ C is open,
the following statements hold:

(i) if Φ ∈ Chol(Ω) then Re(Φ) is harmonic;
(ii) if Ω is an open disk and if u: Ω → R is harmonic, then there exists Φ ∈ Chol(Ω) such

that u = Re(Φ);
(iii) if u: Ω → R is harmonic then, for each z0 ∈ Ω, there exists ρ ∈ R>0 such that

D1(ρ, z0) ⊆ Ω and such that

u(z0) =
1

2π

∫ 2π

0
u(z0 + reiθ) dθ

for every r ∈ (0, ρ];
(iv) if u is harmonic then it is subharmonic;
(v) if (uj)j∈Z>0 is a sequence of subharmonic functions on Ω such that uj+1(z) ≤ uj(z) for

each j ∈ Z>0 and z ∈ Ω, then the function u on Ω defined by u(z) = limj→∞ uj(z) is
subharmonic;

(vi) if (ua)a∈A is a family of subharmonic functions on Ω then the function u on Ω defined by

u(z) = sup{ua(z) | a ∈ A}

is subharmonic if it is upper semicontinuous and everywhere finite;
(vii) if u1, . . . ,uk : Ω→ [−∞,∞) are subharmonic and if F: Rk

→ R is continuous, convex,
and nondecreasing in each component, and if we extend F to F̄ : ([−∞,∞))k

→ [−∞,∞)
by continuity,2 then the function

z 7→ F(u1(z), . . . ,uk(z))
2A little precisely, we define F̄ as follows. Suppose that we wish to evaluate F̄ at a point where

xj1 = · · · = xjm = −∞ for and only for some j1, . . . , jm ∈ {1, . . . ,k}. We then let each of the coordinates
xj1 , . . . , xjm tend together monotonically to ∞, while fixing the remaining coordinates at their desired
values. The value of F̄ at this point is then the limit of the values of F.
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is subharmonic;
(viii) if u: Ω → R is upper semicontinuous, then it is subharmonic if and only if, for each

z0 ∈ Ω, there exists ρ ∈ R>0 such that D1(ρ, z0) ⊆ Ω and such that

u(z0) ≤
1

2π

∫ 2π

0
u(z0 + reiθ) dθ

for every r ∈ (0, ρ];
(ix) if Ω is connected and if u is subharmonic and has a global maximum in Ω, then u is

constant;
(x) if u is of class C2, then it is subharmonic if and only if ∂2u

∂z∂z̄ (z) ≥ 0 for every z ∈ Ω.
Proof (i) Write Φ(z) = u(z) + iv(z) for R-valued smooth functions u and v on Ω. Referring
to (1.11) we have

∂2u
∂z∂z̄

=
1
4

(∂2u
∂x2 +

∂2u
∂y2

)
.

The Cauchy–Riemann equations are

∂u
∂x

=
∂v
∂y
,

∂u
∂y

= −
∂v
∂x
,

and from this we immediately see that ∂2u
∂z∂z̄ = 0 by equality of mixed partials.

(ii) We will define v : Ω→ R such that Φ , u + iv is holomorphic. Let z0 = x0 + iy0 ∈ Ω
be the centre of the disk Ω and let r ∈ R>0 be the radius. For z = x + iy ∈ Ω define

v(z) =

∫ y

y0

∂u
∂x

(x, η) dη −
∫ x

x0

∂u
∂y

(ξ, y0) dξ.

One can verify by direct computation that Φ = u + iv satisfies the Cauchy–Riemann
equations, and so is holomorphic.

(iii) Let Φ be holomorphic in a neighbourhood of z containing D1(r, z). By the Cauchy
integral formula,

Φ(z) =
1

2πi

∫
bd(D1(r,z))

Φ(ζ)
ζ − z

dζ.

Letting ζ = z0 + reiθ and taking real parts gives the result.
(iv) If u is harmonic it is continuous and so upper semicontinuous. By parts (iii)

and (viii) below, it then follows that if u is harmonic it is subharmonic.
(v) By [Aliprantis and Border 2006, Lemma 2.41] we have that u is upper semicontin-

uous. Let z0 ∈ Ω and r ∈ R>0 be such that D1(r, z0) ⊆ Ω. Let σ be a continuous function
on D1(r, z0) that is harmonic on D1(r, z0) and is such that σ(z) ≥ u(z) for all z ∈ bd(D1(r, z0)).
Let ε ∈ R>0 and for j ∈ Z>0 define

K j,ε = {z ∈ bd(D1(r, z0)) | u j(z) ≥ σ(z) + ε}.

Note that K j,ε is compact, that K j+1,ε ⊆ K j,ε, and that ∩ j∈Z>0K j,ε = ∅, the latter since
lim j→∞ u j(x) = u(x) ≤ σ(x). It follows, since the intersection of a nested sequence of
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nonempty compact sets is nonempty [Rudin 1976, Corollary to Theorem 2.36], that there
exists N ∈ Z>0 such that KN,ε = ∅. Thus, for j ≥ N, u j(z) < σ(z) + ε for every z ∈ bd(D1(r, z0))
and so u j(z) < σ(z) + ε for every z ∈ D1(r, z0). It follows that u(z) < σ(z) + ε for every
z ∈ D1(r, z0), and so u(z) ≤ σ(z) for every z ∈ D1(r, z0), as desired.

(vi) Let z0 ∈ Ω and r ∈ R>0 be such that D1(r, z0) ⊆ Ω. Let σ : D1(r, z0) → R be
continuous, harmonic on D1(r, z0), and satisfying σ(z) ≥ u(z) for z ∈ bd(D1(r, z0)). We then
have σ(z) ≥ ua(z) for z ∈ bd(D1(r, z0)) and a ∈ A. It follows that σ(z) ≥ ua(z) for z ∈ D1(r, z0)
and a ∈ A, and so σ(z) ≥ u(z) for z ∈ D1(r, z0), as desired.

(vii) Let (φa)a∈A be a family of affine functions φa : Rk
→ R such that

{(x, y) ∈ Rk
× R | y ≥ F(x)} = ∩a∈A{(x, y) ∈ Rk

× R | y ≥ φa(x) for all a ∈ A}

(this is possible since the epigraph of a convex function is convex). Then we havewhat

F(x) = sup{φa(x) | a ∈ A}

for every x ∈ Rk [Webster 1994, Theorem 5.4.2]. If we writeφa(x) = 〈ma, x〉+ba, a ∈ A, the fact
that F is increasing implies that the components of m are nonnegative. By subharmonicity
of u1, . . . ,uk and part (viii) below we thus have

k∑
j=1

ma, ju j(z) + ba ≤
1

2π

k∑
j=1

ma, j

∫ 2π

0
(u j(z + reiθ) + ba) dθ

≤
1

2π

∫ 2π

0
F(u1(z + reiθ), . . . ,uk(z + reiθ)) dθ

for sufficiently small r ∈ R>0 and for all a ∈ A. This part of the result follows by taking the
supremum over a ∈ A and again applying part (viii) below.

(viii) First consider a general upper semicontinuous function v : Ω→ R that satisfies

v(z0) ≤
1

2π

∫ 2π

0
v(z0 + reiθ) dθ

for r ∈ R>0 and z0 ∈ Ω such that D1(r, z0) ⊆ Ω. A look through the proof of part (ix) below
shows that this implies that v is constant on any connected component of Ω on which it
attains its maximum.

Now suppose that

u(z0) ≤
1

2π

∫ 2π

0
u(z0 + reiθ) dθ

for r ∈ R>0 and z0 ∈ Ω such that D1(r, z0) ⊆ Ω. Now let r ∈ R>0 and z0 ∈ Ω be such that
D1(r, z0) ⊆ Ω and let σ : D1(r, z0) → R be continuous, harmonic on D1(r, z0), and be such
that u(z) ≤ σ(z) for z ∈ bd(D1(r, z0)). If we take v = u − σ then we have, by hypothesis and
harmonicity of σ,

v(z0) ≤
1

2π

∫ 2π

0
v(z0 + reiθ) dθ.
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As mentioned in the preceding paragraph, this implies that v attains its maximum on
bd(D1(r, z0)). That is,

u(z) − σ(z) ≤ sup{u(ζ) − σ(ζ) | ζ ∈ bd(D1(r, z0))} ≤ 0

for every ζ ∈ D1(r, z0). Thus u is subharmonic.
For the converse assertion, we use a lemma which makes reference to the so-called

Poisson kernel. This is a family of maps Pr defined for each r ∈ R>0 by

Pr : D1(r, 0) × bd(D1(r, 0))→ R

(z, reiθ) 7→
1

2π
r2
− |z|2

|z − reiθ|2
.

We shall require the following fact that is rather important in its own right, as it is the
solution to the so-called Dirichlet Problem for the unit disk.

1 Lemma If u: bd(D1(1, 0))→ R is continuous, then the function σ : D1(1, 0)→ R defined by

σ(z) =


∫ 2π

0
u(eiφ)P1(z, eiφ) dφ, z ∈ D1(1, 0),

u(z), z ∈ bd(D1(1, 0)),

is continuous and harmonic on D1(1, 0).

Proof First we prove that σ is continuous at points on bd(D1(1, 0)). Let z0 = eiθ0 ∈

bd(D1(1, 0)). Denote
M = sup{|u(z)| | z ∈ bd(D1(1, 0))}.

Let ε ∈ R>0 and use uniform continuity of u to choose δ ∈ R>0 such that if |a − b| < δ
then |u(eia) − u(eib)| < ε

2 . Let z = reiθ
∈ D1(1, 0) be chosen sufficiently close to z0 so that

|θ − θ0| < δ
3 and r ∈ [ 1

2 , 1) and 1 − r < δ2ε
100M . We then perform a couple of preliminary

estimates.
First we note that

1
2π

∫ 2π

0

1 − |reiθ
|
2

|reiθ − eiφ|2
dφ = 1. (3.2)

(This can be proved by using the Poisson Integral Formula; I used Mathematica®.) We
have ∣∣∣∣ 1

2π

∫
|φ−θ0|<δ

(u(eiθ0) − u(eiφ))
1 − r2

|reiθ − eiφ|2
dφ

∣∣∣∣ ≤ ε2 1
2π

∫ 2π

0

1 − r2

|reiθ − eiφ|2
dφ ≤

ε
2
,

using (3.2) and the fact that
1 − r2

|reiθ − eiφ|2
≥ 0.

By elementary computations we have

|reiθ
− eiφ

|
2 = |1 − rei(θ−φ)

|
2 = 1 − 2r cos(θ − φ) + r2
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Now we estimate

|reiθ
− eiφ

|
2 = (1 − r)2 + 2r(1 − cos(θ − φ))

≥ 2r(1 − cos(θ − φ)) ≥ 2r
(θ − φ)2

2
≥

(θ − φ)2

4
,

using the Taylor expansion of cos for small angles and using the definition of r. Given that
|θ − θ0| < δ

3 and if we take |φ − θ0| ≥ δ we have that |θ − φ| ≥ 2δ
3 . Thus we have∣∣∣∣ 1

2π

∫
|φ−θ0|≥δ

(u(eiθ0) − u(eiφ))
1 − r2

|reiθ − eiφ|2
dφ

∣∣∣∣ ≤ 1
2π

8M
∫
|φ−θ0|≥δ

1 − r2

(θ − φ)2 dφ

≤
1

2π
72M
4δ2

∫ 2π

0
(1 + r)(1 − r) dφ

≤
1

2π
72M
4δ2 2

δε
100M

≤
ε
2
.

Now let us put the preceding estimates together. Using (3.2) we have

σ(z0) − σ(z) =
1

2π

∫ 2π

0
(u(z0) − u(z))

1 − |z2
|

|z − eiφ|2
dφ.

Then ∣∣∣∣σ(z0) − σ(z)
∣∣∣∣ =

∣∣∣∣ 1
2π

∫ 2π

0
(u(z0) − u(z))

1 − |z2
|

|z − eiφ|2
dφ

∣∣∣∣
≤

∣∣∣∣ 1
2π

∫
|φ−θ0|≤δ

u(z0) − u(z))
1 − |z2

|

|z − eiφ|2
dφ

∣∣∣∣
+

∣∣∣∣ 1
2π

∫
|φ−θ0|≥δ

u(z0) − u(z))
1 − |z2

|

|z − eiφ|2
dφ

∣∣∣∣ ≤ ε,
giving continuity at boundary points, as desired.

Now we show that σ is harmonic on D1(1, 0). Here we use the directly verified identity

1 − |z|2

|z − eiφ|2
=

eiφ

eiφ − z
+

e−iφ

e−iφ − z
− 1.

Thus, for z ∈ D1(1, 0),

σ(z) =
1

2π

∫ 2π

0
u(eiφ)

eiφ

eiφ − z
dφ +

1
2π

∫ 2π

0
u(eiφ)

e−iφ

e−iφ − z
dφ −

1
2π

∫ 2π

0
u(eiφ) dφ.

The first term on the right is holomorphic in z. The second term can be verified to be
harmonic (i.e., its real and imaginary parts are harmonic) by simply differentiating under
the integral sign to verify the conditions for a harmonic function. The last term is constant
and so harmonic. Since u is real, we can take real parts to see that the right-hand side, each
of which will be harmonic, to see that u is harmonic. H
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Now suppose that u is continuous and subharmonic. Let z0 ∈ Ω and r ∈ R>0 be such
that D1(r, z0) ⊆ Ω. By the lemma (and an elementary change of variable to translate 1→ r
and 0→ z0), if we define

σ(z) =
1

2π

∫ 2π

0
Pr(z − z0, reiθ)(u(z0 + reiθ)) dθ,

then σ is harmonic on D1(r, z0) for each ε ∈ R>0. Moreover, σ(z) = u(z) for each z ∈
bd(D1(r, z0)). Since u is subharmonic, this implies that u(z) ≤ σ(z) for z ∈ D1(r, z0). This
implies, for example, that

u(z0) ≤ σ(z0) =
1

2π

∫ 2π

0
u(z0 + reiθ) dθ.

It remains to show that if u is upper semicontinuous and subharmonic, then

u(z0) ≤
1

2π

∫ 2π

0
u(z0 + reiθ) dθ.

for z0 ∈ Ω and for sufficiently small r. By [Aliprantis and Border 2006, Theorem 3.13] we
let (u j) j∈Z>0 be a sequence of continuous functions converging pointwise from above to u
on D1(r, z0). Then we have

u(z0) = lim
j→∞

u j(z0) ≤ lim
j→∞

1
2π

∫ 2π

0
u j(z0 + reiθ) dθ =

1
2π

∫ 2π

0
u(z0 + reiθ) dθ,

as desired.
(ix) Let

M = sup{u(z) | z ∈ Ω},

noting that M < ∞by hypothesis. Indeed, there is z0 ∈ Ω such that u(z0) = M. We first claim
that u is constant in some neighbourhood of z0. Suppose otherwise, and let r ∈ R>0 be such
that, for some z1 ∈ bd(D1(r, z0)) we have u(z0) > u(z1). Since u is upper semicontinuous,
let (v j) j∈Z>0 be a sequence of continuous functions on bd(D1(r, z0)) converging pointwise
to u and such that v j(z) ≥ u(z) for every z ∈ bd(D1(r, z0)) [Aliprantis and Border 2006,
Theorem 3.13]. Choose N sufficiently large that vN(z1) < M. Then the function

σ(z) = min{vN(z),M}, z ∈ bd(D1(r, z0)),

is continuous. By the lemma above, we can extend σ to a harmonic function, which we
also denote by σ, on D1(r, z0). We then have, by part (iii) and noting that σ(z1) < M,

σ(z0) =
1

2π

∫ 2π

0
σ(z0 + reiθ) dθ < M = u(z0),

contradicting the fact that u is subharmonic.
Thus u is constant in any neighbourhood of a point where it attains its maximum.

Thus the set of points where u attains its maximum is open. As this set is clearly closed
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(its complement is u−1([−∞,M)) which is open since u is upper semicontinuous) and since
Ω is connected, u is everywhere equal to M.

(x) We first prove a lemma known as Green’s third formula. We use the following
vector calculus notation. If I ⊆ R is an interval, if γ : I → R2 is a differentiable curve for
which ‖γ′(s)‖ = 1 for each s ∈ I, and if u : R2

→ R is differentiable, we denote

∂u
∂nγ

(s) = grad u(γ(s)) · nγ(s),

where nγ(s) = (γ′2(s),−γ′1(s)) is the normal vector to γ at s. With this notation, if I is compact
we denote ∫

image(γ)

∂u
∂n

ds ,
∫

I

∂u
∂nγ

(s) ds.

With this notation we have the following result.

2 Lemma Let Ω ⊆ C be a connected open set for which bd(Ω) is the image of a finite number of
differentiable curves and let z0 ∈ Ω. Let u: cl(Ω) → R be continuous on cl(Ω), of class C2 on
Ω, and such that Du extends to a continuous function on bd(Ω). Let v: cl(Ω) \ {z0} → R be
continuous, harmonic on Ω\{z0}, be such that Dv extends to a continuous function on cl(Ω)\{z0},
and such that z 7→ v(z) − log(|z − z0|

−1) is harmonic in a neighbourhood of z0. Then, denoting
z = x + iy,

u(z0) = −
1

2π

∫
Ω

v(x,y)
(∂2u
∂x2 (x,y) +

∂2u
∂y2 (x,y)

)
dxdy −

1
2π

∫
bd(Ω)

(
u
∂v
∂n
− v

∂u
∂n

)
ds. (3.3)

Proof Let γ j : [0,L j] → C, j ∈ {1, . . . , k}, be differentiable curves for which (1) γ j|[0,L j) is
a injection into bd(Ω) for each j ∈ {1, . . . , k} and (2) bd(Ω) is a disjoint union of γ([0,L j)),
j ∈ {1, . . . , k}. Let u be as in the statement of the lemma, and let σ also have the same
properties. Then, using Green’s Theorem [Lang 1987, Chapter XIV],∫

bd(Ω)
u
∂σ
∂n

ds =

k∑
j=1

∫ L j

0
u(γ j(s))

(∂σ
∂x

(γ j(s))γ′j,2(s) −
∂σ
∂y

(γ j(s))γ′j,1(s)
)

ds

=

∫
Ω

(∂u
∂x

(x, y)
∂σ
∂x

(x, y) +
∂u
∂y

(x, y)
∂σ
∂y

(x, y) + u
∂2v
∂x2 (x, y) + u

∂2σ

∂y2 (x, y)
)

dxdy

=

∫
Ω

(grad u(x, y) · grad σ(x, y) + u(x, y)∆σ(x, y)) dxdy.

This is Green’s first formula. Swapping the rôles of u and σ and subtracting then gives∫
bd(Ω)

(
u
∂σ
∂n
− σ

∂u
∂n

)
ds =

∫
Ω

(u(x, y)∆σ(x, y) − σ(x, y)∆u(x, y)) dxdy,

which is Green’s second formula.
Let u and v be as in the statement of the lemma and let σ satisfy the same conditions

as u, plus the condition that σ is harmonic on Ω. By Green’s second formula we then have∫
bd(Ω)

(
u
∂σ
∂n
− σ

∂u
∂n

)
ds +

∫
Ω

σ(x, y)∆u(x, y) dxdy = 0.
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Thus, in the formula (3.3), we can add a harmonic function to v and the formula still holds.
In particular, we can add to v the harmonic function z 7→ −v(z) + log(|z− z0|

−1) to conclude
that, without loss of generality, we may take v(z) = log(|z − z0|

−1). Thus, in the remainder
of the proof, we take this as v. One easily verifies that v is harmonic on C \ {z0}. Indeed, if
we write (z − z0)−1 = reiθ,

log((z − z0)−1) = log(|z − z0|
−1) + iθ,

and so, in any neighbourhood of any point in C \ {z0}, v is the real part of a holomorphic
function, and so is harmonic by part (i).

Now let r ∈ R>0 be such that D1(r, z0) ⊆ Ω and define Ωr = Ω \ D1(r, z0). One then
applies Green’s second formula on Ωr:∫

bd(Ω)

(
u
∂v
∂n
− v

∂u
∂n

)
ds −

∫
bd(D1(r,z0))

(
u
∂v
∂n
− v

∂u
∂n

)
ds = −

∫
Ωr

v(x, y)∆u(x, y) dxdy. (3.4)

Note that the singularity of v at z0 is integrable. Indeed, making the change of variables to
polar coordinates, ∫

D1(1,0)
log(|z − z0|

−1) dxdy =

∫ 2π

0

∫ 1

0
log(r−1)r drdθ.

Since limr→0 r log(r−1) = 0, the integral is finite. From this we conclude that the right-hand
side of (3.4) tends to 0 as r tends to 0. Let us now turn to the other terms in (3.4). First we
denote by M a bound for grad u in a neighbourhood of z0 containing D1(r, z0). Then we
have ∫

bd(D1(r,z0))
v
∂u
∂n

ds ≤ 2πrM log(r−1).

Thus

lim
r→0

∫
bd(D1(r,z0))

v
∂u
∂n

ds = 0.

On bd(D1(r, z0)), writing z = z0 + reiθ, we have

∂v
∂n

=
∂
∂r

log(r−1) = −r−1

and ds = rdθ. Thus

−

∫
bd(Ω)

u
∂v
∂n

ds =

∫ 2π

0
u(z0 + reiθ) dθ.

Now let ε ∈ R>0 and choose r sufficiently small that |u(z) − u(z0)| < ε
2π for z ∈ D1(r, z0).

Then we have∣∣∣∣2πu(z0) −
∫ 2π

0
u(z0 + reiθ) dθ

∣∣∣∣ ≤ ∫ 2π

0
|u(z0) − u(z0 + reiθ)|dθ < ε.

Thus

lim
r→0

(
−

∫
bd(Ω)

u
∂v
∂n

ds
)

= 2πu(z0).

Putting this all together gives the lemma. H
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Proceeding with the proof of this part of the result, let r ∈ R>0 and z0 be such that
B1(r, z0) ⊆ Ω. By the lemma and the computations from the proof of the lemma we have

u(z0) = −
1

2π

∫
D1(r,z0)

∆u(x, y) log(r|z − z0|
−1) dx dy +

1
2π

∫ 2π

0
u(z0 + reiθ) dθ. (3.5)

Note that log(r|z − z0|
−1) is nonnegative on D1(r, z0) and only zero on the boundary.

Now suppose that ∆u(z0) < 0 for some z0 ∈ Ω. We then choose r ∈ R>0 such that
∆u(z) < 0 for all z ∈ D1(r, z0), and we then see from (3.5) that

u(z0) >
1

2π

∫ 2π

0
u(z0 + reiθ) dθ

By part (viii) it follows that u is not subharmonic.
Conversely, suppose that u is not subharmonic. By part (viii) there exists z0 ∈ Ω and

r ∈ R>0 such that

u(z0) >
1

2π

∫ 2π

0
u(z0 + reiθ) dθ.

By (3.5) we conclude that ∆u must be negative at points in a neighbourhood of z0. �

3.2.3 Remarks (Harmonic and subharmonic functions)
1. Note that it is clear that the imaginary part of a holomorphic function is also a

harmonic function (since multiplication of a holomorphic function by −i produces
another holomorphic function). Given a harmonic function u and a holomorphic
function Φ for which u = Re(Φ), we say that Im(Φ) is the harmonic conjugate of u.

2. Since a harmonic function is the real part of a holomorphic function, it follows
that harmonic functions are infinitely differentiable, although their definition only
requires them to be of class C2.

3. The condition of upper semicontinuity for subharmonic functions might seem a lit-
tle unmotivated. Many natural subharmonic functions are continuous (and in fact
many authors assume continuity in their definitions of subharmonic functions.)
However, it comes as a consequence of properties (v) and (vi) that upper semicon-
tinuity can arise in limiting processes where continuity is present. •

The preceding result then allows us to construct some examples of harmonic and
subharmonic functions.

3.2.4 Examples (Harmonic and subharmonic functions)
1. If Ω ⊆ C is open and if f ∈ Chol(Ω) then the function

Ω 3 z 7→ log(| f |)(z) ,

log(| f (z)|), f (z) , 0,
−∞, f (z) = 0,
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is harmonic on Ω \ f −1(0) and subharmonic on Ω. To see that log(| f |) is harmonic
on Ω \ f −1(0), let z0 ∈ Ω \ f −1(0) and in a neighbourhood of z0 write

log( f (z)) = log(| f (z)|) + iθ,

where f (z) = reiθ. Thus log(| f |) is the real part of a holomorphic function, and so
harmonic in a neighbourhood of z. If f is identically zero in a neighbourhood of
z ∈ Ω, it is immediate that log(| f |) is subharmonic on this neighbourhood. It remains
to consider points z0 ∈ Ω such that f (z0) = 0 but, on any neighbourhood of z0, f is
not identically zero. Let r ∈ R>0 be such that D1(r, z0) ⊆ Ω and let σ : D1(r, z0) → R
be a continuous function, harmonic on D1(r, z0), such that log(| f (z)|) ≤ σ(z) for
z ∈ bd(D1(r, z0)). Note that we clearly have

log(| f (z0)|) ≤
∫ 2π

0
log(| f (z0 + reiθ)|) dθ.

The same condition holds for log(| f |) − σ. Referring to the proof of part (ix) of
Theorem 3.2.2, we see that this implies that log(| f |) − σ, not being a constant
function, has the property that it must achieve its maximum on bd(D1(r, z0)). This
implies that log(| f (z)|) ≤ σ(z) for z ∈ D1(r, z0), giving subharmonicity of log(| f |).

2. If Ω ⊆ C is open, define the boundary distance function δΩ : Ω → R≥0 (here
R≥0 = R≥0 ∪ {∞}) by

δΩ(z) = sup{r ∈ R>0 | D1(r, z) ⊆ Ω}.

Note that if Ω , C then

δΩ(z) = dist(z,C \Ω) = dist(z, bd(Ω)).

From Proposition B.1.2 we know that δΩ is continuous. The function− log δΩ : Ω→
[−∞,∞) defined by

− log δΩ(z) =

− log(δΩ(z)), δΩ(z) ∈ R,
−∞, δΩ(z) = ∞,

is subharmonic. If Ω = C then the claim is trivial. In case Ω ⊆ C, δΩ is continuous,
finite, and positive-valued on Ω. Thus − log δΩ is continuous and R-valued. If
w ∈ bd(Ω) define φw(z) = − log(|z − w|), noting that this function is harmonic on Ω
by our preceding example. Moreover, note that

− log δΩ(z) = sup{φw(z) | w ∈ bd(Ω)},

which shows that − log δΩ is indeed subharmonic, it being continuous and the
pointwise supremum of subharmonic functions. •
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3.2.2 Plurisubharmonic functions

As mentioned at the beginning of the preceding section, the notion of a plurisub-
harmonic function generalises that of a subharmonic function to several variables. The
notions one arrives at were introduced by Oka [1942a] and Lelong [1942], although the
notion has shadows in the older work of Hartogs. One way that one might think to
do the generalisation we are after is to use the 2n-dimensional Laplacian for functions
on Cn,

∆u(z) =

n∑
j=1

(∂2u
∂x2

j

(z) +
∂2u
∂y2

j

(z)
)
, z = x + iy,

to define the class of harmonic functions on Cn, and then define the notion of sub-
marmonicity as in the dimension 1 case. This, however, will not give us what we
want. For example, one loses the connections with holomorphic functions one has
in dimension 1. Also, this sort of generalisation turns out not to be invariant under
holomorphic diffeomorphisms, so limiting its usefulness in differential geometry. It
turns out, in any case, that the correct generalisation is done as follows.

3.2.5 Definition (Plurisubharmonic function) If Ω ⊆ Cn is open, an upper semicontinuous
function u : Ω→ [−∞,∞) is plurisubharmonic if, for every (z,w) ∈ Ω×Cn, the function

C 3 ζ 7→ u(z + ζw) ∈ [−∞,∞)

is subharmonic on the connected component of

{ζ ∈ C | z + ζw ∈ Ω}

containing 0. By Psh(Ω) we denote the set of plurisubharmonic functions on Ω. •

Many of the basic properties of plurisubharmonic functions are derived from those
for subharmonic functions. Let us catalogue these.

3.2.6 Proposition (Properties of plurisubharmonic functions) If Ω ⊆ Cn is open, the
following statements hold:

(i) if (uj)j∈Z>0 is a sequence in Psh(Ω) such that uj+1(z) ≤ uj(z) for each j ∈ Z>0 and z ∈ Ω,
then the function u on Ω defined by u(z) = limj→∞ uj(z) is plurisubharmonic;

(ii) if (ua)a∈A is a family of functions in Psh(Ω) then the function u on Ω defined by

u(z) = sup{ua(z) | a ∈ A}

is plurisubharmonic if it is upper semicontinuous and everywhere finite;
(iii) if Ω is connected and if u is plurisubharmonic and has a global maximum in Ω, then u

is constant;
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(iv) if u1, . . . ,uk : Ω → [−∞,∞) are plurisubharmonic and if F: Rk
→ R is continuous,

convex, and nondecreasing in each component, and if we extend F to F̄ : ([−∞,∞))k
→

[−∞,∞) as in Theorem 3.2.2(vii), then the function

z 7→ F(u1(z), . . . ,uk(z))

is plurisubharmonic.

Let us now turn to the analogue for plurisubharmonic functions of the second-
derivative condition of Theorem 3.2.2(x) for subharmonic functions.

3.2.7 Definition (Levi form) If Ω ⊆ Cn is open, if u ∈ C2(Ω), and if z ∈ Ω, the Levi form of u
at z is the quadratic form

w 7→ Lev(u)(z; w) ,
n∑

j,k=1

∂2u
∂z j∂z̄k

(z)w jw̄k. •

It is illustrative to consider a special case of the Levi form.

3.2.8 Example (The Levi form of a quadratic function) Let B be a real symmetric bilinear
map on Cn, i.e., an element of S2(Cn), thinking of Cn as a R-vector space. Let us denote
a point in Cn

' R2n by (x, y). Let fB be the corresponding quadratic function

fB(x, y) = B((x, y), (x, y)).

Let us write
fB(x, y) = B11(x, x) + B12(x, y) + B21(y, x) + B22(y, y).

Then, using (1.11) and denoting w = u + iv, we directly compute

n∑
j,k=1

∂2 fB

∂z j∂z̄k
w jw̄k = 1

2 (B11(u,u) + B12(u,v) + B21(v,u) + B22(v,v))

+ 1
2 (B11(−v,−v) + B12(−v,u) + B21(u,−v)).

Noting that−v+iu = i(u+iv) and that B = 1
2 Hess fB (Hess denoting the Hessian, i.e., the

second derivative) we thus have

Lev( fB)(z; w) = Hess fB(w,w) + Hess fB(iw, iw).

That is, the Levi form in the direction of w is twice the “complex average” of the
Hessian in the direction of w.

Let us consider the special case when B is diagonal:

fB(z) =

n∑
j=1

(α jx2
j + β jy2

j ).
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In this case we have

Lev( fB)(z; w) =

n∑
j=1

(α jx2
j + β jy2

j ) +

n∑
j=1

(α jy2
j + β jx2

j ) =

n∑
j=1

(α j + β j)|z j|
2.

Thus we see that fB is plurisubharmonic if and only if α j + β j ≥ 0 for every j ∈
{1, . . . ,n}, cf. Proposition 3.2.12 below. •

The preceding example, while special, immediate gives the following fact.

3.2.9 Lemma (The Levi form and the Hessian) If Ω ⊆ Cn is open and if u ∈ C2(Ω), then

Lev(u)(z; w) = D2u(z) · (w,w) + D2u(z) · (iw, iw).

The following result relates the Levi form Lev(u) in a precise way to the Taylor
expansion of u.

3.2.10 Lemma (The Levi form and the Taylor expansion) Let Ω ⊆ Cn be open, let u ∈ C2(Ω),
and define

P(u)(z; w) = −
(
2

n∑
j=1

∂u
∂zj

(z)wj +

n∑
j,k=1

∂2u
∂zj∂zk

(z)wjwk

)
.

Then the second-order Taylor polynomial for u at z is

w 7→ u(z) − Re(P(u)(z; w)) + Lev(u)(z; w).

Proof This is a mere direct, tedious computation. �

The Levi form seems to resemble the Hessian from real multivariable calculus.
However, it has some important differences, among them the following nice transfor-
mation law.

3.2.11 Lemma (The Levi form under holomorphic mappings) If Ω ⊆ Cn and V ⊆ Cm are
open, if u ∈ C2(V), and if Φ : Ω→ V is holomorphic, then

Lev(u ◦Φ)(z; w) = Lev(u)(Φ(z); DΦ(z) ·w)

for every z ∈ Ω and w ∈ Cn.
Proof This can be directly, if tediously, verified using the definition. �

A consequence of the preceding lemma is the Levi form is a well-defined quadratic
form under holomorphic changes of coordinate. This will be of importance when we
come to discussing the generalisations of this section to manifolds.

Unsurprisingly, the Levi form is the appropriate device for proving the appropriate
condition for plurisubharmonicity.
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3.2.12 Proposition (Plurisubharmonic functions of class C2) If Ω ⊆ Cn is open and if
u ∈ Psh(Ω) ∩ C2(Ω), then u is plurisubharmonic if and only if Lev(u)(z; w) ≥ 0 for every
z ∈ Ω and w ∈ Cn.

Proof Let z ∈ Ω and w ∈ Cn. Define `z,w : C→ Cn by

`a,w(ζ) = z + ζw.

We must show that u ◦`z,w is subharmonic for every z ∈ Ω and w ∈ Cn. Since u ◦`z,w is of

class C2, u ◦`z,w is subharmonic if and only if ∂2(u ◦ `z,w)
∂ζ∂ζ̄

(ζ) ≥ 0 for ζ in a neighbourhood of
0. Since

`z,w(ζ) = `z+ζw,w(0),

it follows that ∂2(u ◦ `z,w)
∂ζ∂ζ̄

(ζ) ≥ 0 for every z ∈ Ω, w ∈ Cn, and ζ in a neighbourhood of 0 if

and only if ∂2(u ◦ `z,w)
∂ζ∂ζ̄

(0) ≥ 0 for every z ∈ Ω and w ∈ Cn. But, using the Chain Rule, we
compute

∂2(u ◦`z,w)
∂ζ∂ζ̄

(0) = Lev(u ◦`z,w)(0, 1) = Lev(u)(z; w),

and from this our result follows. �

The preceding result can be extended to the case of functions that are not sufficiently
smooth, provided that one is willing to interpret derivatives in a distributional sense,
as in Section D.2.2. Let us be clear what we mean by this. We let Ω ⊆ Cn be open and
let θ ∈ D ′(Ω;R). We then define, for each j ∈ {1, . . . ,n}, the distributions ∂θ

∂z j
and ∂θ

∂z̄ j
by

∂θ
∂z j

(φ) = −θ
(∂φ
∂z j

)
,

∂θ
∂z̄ j

(φ) = −θ
(∂φ
∂z̄ j

)
for φ ∈ D(Ω;R). Thus we make the following definition.

3.2.13 Definition (Levi form for distributions) If Ω ⊆ Cn is open and if θ ∈ D ′(Ω;R), the
Levi form of θ is the quadratic D ′(Ω;R)-valued function w 7→ Lev(θ)(w) defined by

Lev(θ)(w) · φ = θ(Lev(φ)(w)),

where, for φ ∈ D(Ω;R), Lev(φ)(w) ∈ D(Ω;R) is defined by

z 7→ Lev(φ)(z; w). •

We should check that this generalised notion of the Levi form agrees with the usual
definition in cases where both apply.
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3.2.14 Proposition (Compatibility of two definitions of the Levi form) If Ω ⊆ Cn is open
and if u ∈ C2(Ω), then Lev(θu(w)) = θLev(u)(w) for every w ∈ Cn, where by Lev(u)(w) we
denote the function on Ω given by z 7→ Lev(u)(z; w).

Proof Let φ ∈ D(Ω;R) and compute

Lev(θu(w)) · φ =

∫
Ω

u(z)Lev(φ)(z; w) dλ(z) =

∫
Ω

Lev(u)(z; w)φ(z) dλ(z) = θLev(u)(w)(φ),

as desired, where we have used integration by parts. �

Then we have the following result, making reference to the notion given in Sec-
tion D.1.3 of a nonnegative distribution.

3.2.15 Proposition (Distributional derivative characterisation of plurisubharmonic
function) If Ω ⊆ Cn is open, then u ∈ L1

loc(Ω;R) is plurisubharmonic if and only if the
distribution Lev(θu)(w) is nonnegative for every w ∈ Cn.

Proof Let ρ ∈ C∞(Cn) have the following properties:
1. ρ(z) ≥ 0;
2. supp(ρ) = Bn(1, 0);
3. ρ(z1) = ρ(z2) whenever ‖z1‖ = ‖z2‖;
4.

∫
Cn ρ(z) dλ(z) = 1.

Let ρε(z) = ε−2nρ(εz) for ε ∈ R>0. Let K ⊆ Ω be compact and let χK ∈ C∞(Ω) have compact
support and be such that χK(z) = 1 for z in a neighbourhood of K. Define uε , (χKu) ∗ ρε.
By standard results on approximation using convolution [Kecs 1982], the domain of uε
is contained in Ω for ε ∈ R>0 sufficiently small and limε→0 uε|K = u|K, with convergence
being uniform. Moreover, each of the functions uε is smooth.

We claim that
Lev(θuε)(w) = Lev(θχKu)(w) ∗ ρε. (3.6)

To see this, first let φ ∈ D(Ω;R) and compute

Lev(θuε)(w) · φ = θuε

( n∑
j,k=1

∂2φ

∂z j∂z̄k
w jw̄k

)
=

n∑
j,k=1

w jw̄k

∫
Cn
ρε ∗ (χKu)(z)

∂2φ

∂z j∂z̄k
(z) dλ(z)

=

n∑
j,k=1

w jw̄k

∫
Cn

∫
Cn
ρε(ζ − z)χK(ζ)u(ζ)

∂2φ

∂z j∂z̄k
(z) dζdλ(z).

We also have

(Lev(θχKu)(w) ∗ ρε) · φ = 〈Lev(θχKu)(w) ⊗ ρε; ∆∗φ〉

=

n∑
j,k=1

w jw̄k

∫
Cn

∫
Cn
χK(z)u(z)ρε(ζ)

∂2φ

∂z j∂z̄k
(z + ζ) dζdλ(z)

=

n∑
j,k=1

w jw̄k

∫
Cn

∫
Cn
χK(z)u(z)ρε(ζ − z)

∂2φ

∂z j∂z̄k
(ζ) dλ(ζ)dλ(z),
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giving (3.6). Since this holds for every compact set K we, in fact, have

Lev(θu ∗ ρε)(w) = Lev(θu)(w) ∗ ρε.

Using this fact, it is more or less straightforward to complete the proof.
First suppose that u is plurisubharmonic. As we will see in Sublemma 5 from the proof

of Lemma GA2.7.1.4, u ∗ ρε is plurisubharmonic. Thus Lev(u ∗ ρε)(w) is a nonnegative
distribution by Propositions 3.2.12 and D.2.5. Since

Lev(θu)(w) = lim
ε→0

Lev(θu)(w) ∗ ρε = lim
ε→0

Lev(θu ∗ ρε)(w)

(limits being taken in D ′(Ω;R)), it follows that Lev(θu)(w) is also a nonnegative distribu-
tion.

Conversely, suppose that Lev(θu)(w) is nonnegative for every w ∈ Cn. Then we have

Lev(θu ∗ ρε)(w) = Lev(θu)(w) ∗ ρε.

The distribution on the right is nonnegative being a convolution of two nonnegative
distributions. Thus Lev(θu ∗ ρε)(w) is nonnegative and so u ∗ ρε is plurisubharmonic
by Propositions 3.2.12 and D.2.5. From the proof of Sublemma 5 from the proof of
Lemma GA2.7.1.4, we see that the family (u ∗ ρε)ε∈R>0 is nonincreasing as ε→ 0, and as a
result u is plurisubharmonic by Proposition 3.2.6(i). �

We shall make use of the preceding characterisation of plurisubharmonic functions
in Section 6.1.2 when we approximate plurisubharmonic functions on manifolds with
smooth plurisubharmonic functions.

The case where the inequality for the Levi form is strict is singled out.

3.2.16 Definition (Strictly plurisubharmonic function) If Ω ⊆ Cn is open, a function u ∈
C2(Ω) is strictly plurisubharmonic if Lev(u)(z; w) > 0 for every z ∈ Ω and every
w ∈ Cn

\ {0}. •

With all of the above, we can give some examples of plurisubharmonic functions.

3.2.17 Examples (Plurisubharmonic functions)
1. We claim that if f ∈ Chol(Ω) then z 7→ log(| f (z)|) is plurisubharmonic. This follows

from Example 3.2.4–1, noting that, for each (z,w) ∈ Ω × Cn,

ζ 7→ f (z + ζw)

is holomorphic the connected component of its domain of definition containing 0.
2. Sometimes the function − log δΩ is not plurisubharmonic, even though in dimen-

sion 1 it always is, as we saw in Example 3.2.4–2. Let us consider an example of
this. We let Ω = Cn

\{0}, n ≥ 2, and take z = e1 and w = e2, with (e1, . . . , en) denoting
the standard basis. We then have

− log δΩ(z + ζw) = − log(‖e1 + ζe2‖) = − log
√

1 + |ζ|2.
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Note that the function
ζ 7→ − log

√
1 + |ζ|2

has a strict maximum at ζ = 0 and so is not subharmonic. The reader will note that
in Example 3.1.8–3 we showed that Ω is not holomorphically convex. It is not a
coincidence that Ω is not holomorphically convex and also has the property that
− log δΩ is not plurisubharmonic.

3. Let H be a R-hyperplane in Cn. As we saw in Example 3.1.3–2, this means that
H = φ−1(0) for a functionφ : Cn

→ R of the formφ(z) = Re(〈z−z0,λ〉). If we assume,
without loss of generality, that ‖λ‖ = 1, then the distance δCn\H(z) from z < H to H is
|φ(z)|. On Cn

\ H, δCn\H is smooth. Moreover, we compute

∂δCn\H

∂z j
(z) =

1
2
λ j,

∂δCn\H

∂z̄ j
(z) =

1
2
λ̄ j, j ∈ {1, . . . ,n},

and
∂2δC\H
∂z j∂z̄k

(z) = 0, j, k ∈ {1, . . . ,n},

as long as φ(z) > 0. Thus, for such z,

∂2 log δCn\H

∂z j∂z̄k
(z) = −

1
4δCn\H(z)2λ jλ̄k.

Using this formula we readily deduce that Lev(− log δCn\H)(z;λ) > 0 and that
Lev(− log δCn\H)(z; w) = 0 if w is orthogonal to λ. Thus − log δCn\H is plurisub-
harmonic. •

The following plurisubharmonic characterisation of domains of holomorphy is
important.

3.2.18 Theorem (The log boundary distance for domains of holomorphy) If Ω ⊆ Cn is a
domain of holomorphy then − log δΩ is continuous and plurisubharmonic.

Proof We prove a couple of technical lemmata.

1 Lemma Let Ω ⊆ C be open and let u: Ω→ [−∞,∞) be upper semicontinuous with the property
that, if D ⊆ Ω is a closed disk and if p ∈ Chol(Ω) is a polynomial such that

u(z) ≤ Re(p(z)), z ∈ bd(D),

then u(z) ≤ Re(p(z)) for z ∈ D. Then u is subharmonic.

Proof Let D1(r, z0) ⊆ Ω be a closed disk and let σ : D1(r, z0)→ R be continuous, harmonic
on D1(r, z0), and with the property that σ(z) ≥ u(z) for z ∈ bd(D1(r, z0)). For λ ∈ (0, 1) the
function σλ(z) = σ(z0 +λ(z−z0)) is harmonic on the open disk D1( r

λ , z0) containing D1(r, z0).
Moreover, limλ→1 σλ = σ in the topology of uniform convergence on D1(r, z0), as may be
easily verified. By Theorem 3.2.2(ii), for each λ ∈ (0, 1) there is a holomorphic function gλ
defined on D1( r

λ , z0) such that σλ(z) = Re(gλ(z)) for all z ∈ D1( r
λ , z0).
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Let ε ∈ R>0. Let λ ∈ (0, 1) be sufficiently close to 1 that ‖σ − σλ‖D1(r,z0) <
ε
2 , this by

uniform convergence of σλ → σ as λ → 1. Also, since the Taylor series for gλ converges
uniformly to gλ on D1(r, z0), let m be sufficiently large that ‖q− gλ‖D1(r,z0) <

ε
4 , where q is the

degree m Taylor expansion for gλ. Taking real parts, we also have ‖Re(q) − σλ‖D1(r,z0) <
ε
4 .

Thus we have
σ(z) ≤ σλ(z) + ε

2 ≤ σ(z) + ε

and
σλ(z) ≤ Re(q(z)) + ε

4 ≤ σλ(z) + ε
2

for every z ∈ bd(D1(r, z0)), and so we deduce that

σ(z) ≤ Re(p(z)) ≤ σ(z) + ε

for z ∈ bd(D1(r, z0)), after taking p = q + ε
4 .

By our hypothesis and Theorem 3.2.2(iii), there exists ρ ∈ R>0 such that

u(z0) ≤ Re(p(z0)) =
1

2π

∫ 2π

0
Re(p(z0 + reiθ)) dθ ≤

∫ 2π

0
σ(z0 + reiθ) dθ + ε

for r ∈ (0, ρ]. As ε ∈ R>0 is arbitrary, we ascertain that

u(z0) ≤
∫ 2π

0
σ(z0 + reiθ) dθ

for every function σ that is continuous on bd(D1(r, z0)) and satisfies u(z) ≤ σ(z) for
z ∈ bd(D1(r, z0)). Recall now that the integral of the upper semicontinuous function
u| bd(D1(r, z0)) on the compact domain bd(D1(r, z0)) is the infimum of the integral of those
continuous functions on bd(D1(r, z0)) bounding u from above on bd(D1(r, z0)) cf. [Aliprantis
and Border 2006, Theorem 3.13] and the Monotone Convergence Theorem. This implies
that

u(z0) ≤
∫ 2π

0
u(z0 + reiθ) dθ,

and the subharmonicity of u follows from Theorem 3.2.2(viii). H

2 Lemma Let Ω ⊆ Cn be a domain of holomorphy and let K ⊆ Ω be compact. If f ∈ Chol(Ω) satisfies
|f(z)| ≤ δΩ(z) for all z ∈ K, then |f(z)| ≤ δΩ(z) for all z ∈ hconvΩ(K).

Proof Let us perform a preliminary little construction. For r ∈ Rn
>0 and for z ∈ Ω, denote

δr
Ω(z) = sup{ρ ∈ R>0 | z + ρDn(r, 0) ⊆ Ω}.

We claim that
dist(z, bd(Ω)) = inf{δr

Ω(z) | r ∈ Rn
>0, ‖r‖ = 1}.

Certainly, for ‖r‖ = 1 we have

(z + δr
Ω(z)Dn(r, 0)) ∩ bd(Ω) , ∅.
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Let w ∈ Dn(r, 0) be such that
z + δr

Ω(z)w ∈ bd(Ω).

Then, since ‖w‖ ≤ 1 (note that the points in Dn(r, 0) furthest from 0 are the points where
the radii in all coordinates are maximal, and these points are distance 1 from 0), we have

dist(z, bd(Ω)) ≤ δr
Ω(z)‖w‖ ≤ δr

Ω(z) (3.7)

for every r ∈ Rn
>0 such that ‖r‖ = 1. Now let ẑ ∈ bd(Ω) be such that dist(z, bd(Ω)) =

‖z− ẑ‖, cf. Proposition B.1.3. Let (ρ j) j∈Z>0 be a sequence in R>0 such that Bn(ρ j, z) ⊆ Ω and
such that ẑ ∈ bd(∪ j∈Z>0B

n(ρ j, z)). Thus there exists a sequence (z j) j∈Z>0 converging to ẑ and
such that z j ∈ bd(Bn(ρ j, z)). Suppose that the sequence (z j) j∈Z>0 is chosen so that none of
the coordinates of the points is zero. Thus, if z j = (z j,1, . . . , z j,n), r j,l , |z j,l| > 0. Now let
r j = (r j,1, . . . , r j,n) ∈ Rn

>0 and note that

Dn(r j, z) ⊆ Bn(ρ j, z) ⊆ Ω.

Moreover, ẑ ∈ bd(∪ j∈Z>0D
n(r j, z)). Note that δ

r j

Ω
(z) ≤ ‖r j‖ and lim j→∞‖r j‖ = dist(z,Ω). Thus

dist(z, bd(Ω)) ≥ inf{δr
Ω(z) | r ∈ Rn

>0, ‖r‖ = 1},

which gives equality of both sides of this equation when combined with (3.7).
Let f ∈ Chol(Ω) be such that | f (z)| ≤ δΩ(z) for every z ∈ K. From our computations

in the preceding paragraph, | f (z)| ≤ δr
Ω

(z) for every z ∈ K and every r ∈ Rn
>0 satisfying

‖r‖ = 1. Let us for the moment fix r ∈ Rn
>0 with ‖r‖ = 1. Let us also fix t ∈ (0, 1). For such r

and t, and for z ∈ K, note that Dn(tr| f (z)|, z) ⊆ Ω. Thus the closure of the set

C , ∪z∈KDn(tr| f (z)|, z)

is a compact subset of Ω. Using the Cauchy estimates of Corollary 1.1.24, for g ∈ Chol(Ω)
we have

|DI g(z)|t|I|rI
| f (z)||I| ≤ I!‖g‖C (3.8)

for every z ∈ K. Since
z 7→ DI g(z) f (z)|I|

is holomorphic on Ω, by definition of the holomorphically convex hull we conclude that
the estimate (3.8) holds for every z ∈ hconvΩ(K). Since (3.8) holds for every z ∈ hconvΩ(K)
and every t ∈ (0, 1), we conclude that the Taylor series for every g ∈ Chol(Ω) converges
on Dn(| f (z)|r, z) for every z ∈ hconvΩ(K) and every r ∈ Rn

>0 satisfying ‖r‖ = 1. Since Ω is
a domain of holomorphy, this implies that Dn(| f (z)|r, z) ⊆ Ω for every z ∈ hconvΩ(K) and
every r ∈ Rn

>0 satisfying ‖r‖ = 1. (Indeed, were this not the case, this would imply the
existence of a holomorphic function on Ω that can be extended across a point on boundary
of Ω.) Thus we have | f (z)| ≤ δr

Ω
(z) for every z ∈ hconvΩ(K) and every r ∈ Rn

>0 satisfying
‖r‖ = 1. Thus, by our constructions from the first paragraph, | f (z)| ≤ δΩ(z) for every
z ∈ hconvΩ(K). H
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Now we complete the proof of the theorem. Let z0 ∈ Ω and let w ∈ Cn
\ {0}. Choose

r ∈ R>0 sufficiently small that

Dr , {z0 + ζw | ζ ∈ D1(r, 0)} ⊆ Ω.

Let us denote
∂Dr = {z0 + ζw | ζ ∈ bd(D1(r, 0))}

(noting that this is not the boundary of Dr when n ≥ 2). Let p : C → C be a polynomial
function satisfying

− log δΩ(z0 + ζw) ≤ Re(p(ζ))

for every ζ ∈ bd(D1(r, 0)). One directly verifies that there exists a polynomial P : Cn
→ C

satisfying P(z0 + ζw) = p(ζ) for every ζ ∈ C. We then have |exp(−P(z))| ≤ δΩ(z) for every
z ∈ ∂Dr.

Let f ∈ Chol(Ω) and note that the function

ζ 7→ f (z0 + ζw)

is holomorphic on D1(r, 0). Thus, by the Maximum Modulus Theorem, | f (z)| ≤ ‖ f ‖∂Dr for
every z ∈ Dr. Therefore, Dr ⊆ hconvΩ(∂Dr). By the second lemma above, this implies that

|exp(−P(z))| ≤ δΩ(z), z ∈ Dr,

which then implies that

− log δΩ(z0 + ζw) ≤ Re(p(ζ)), ζ ∈ D1(r, 0).

By the first lemma above, the function

ζ 7→ − log δΩ(z0 + ζw)

is subharmonic in a neighbourhood of 0, implying that δΩ is plurisubharmonic. �

We also have the following result, although it will be seen that the proof relies on
techniques from Section GA2.7.1.3.

3.2.19 Proposition (Plurisubharmonicity is invariant under holomorphic mappings) If
Ω ⊆ Cn and ∆ ⊆ Cm are open subsets, if Φ : Ω→ ∆ is holomorphic, and if u ∈ Psh(∆), then
u ◦Φ ∈ Psh(Ω).

Proof We suppose without loss of generality that ∆ is connected and that u is not identi-
cally −∞ on ∆. Let

Ω j = {z ∈ Ω | ‖z‖ < j, δΩ(z) > 1
j }

and
∆ j = {w ∈ ∆ | ‖w‖ < j, δ∆(w) > 1

j }.

Let (u j) j∈Z>0 be the sequence of smooth plurisubharmonic functions on ∆ j as in Sublemma 2
from the proof of Lemma GA2.7.1.4. Let z ∈ Ω and let j be sufficiently large that z ∈ Ω j. Let
k ∈ Z>0 be sufficiently large that Ω j ⊆ Φ

−1(Vk). By Lemma 3.2.11 and Proposition 3.2.12
we have that u j ◦Φ|Ω j is plurisubharmonic. Moreover, for each z ∈ Ω, (u j ◦Φ(z)) j∈Z>0

decreases monotonically to u ◦Φ(z) by Sublemma 3 from the proof of Lemma GA2.7.1.4.
By Proposition 3.2.6(i) we have that u is plurisubharmonic. �



34 3 Domains of holomorphy and notions of convexity in Cn 28/02/2014

3.3 Pseudoconvexity

In Section 3.1 we saw that domains of holomorphy are connected with one notion of
convexity, namely convexity with respect to holomorphic functions. In the preceding
section we introduced a special class of functions for which it is difficult to imagine
their relationship with domains of holomorphy: the plurisubharmonic functions. In
this section we begin to examine just this relationship.

3.3.1 Exhaustion functions

For our purposes, we are interested in plurisubharmonic functions having a special
property, as prescribed by the following general definition.

3.3.1 Definition (Exhaustion function) If S is a topological space domain, a function u : S→
[−∞,∞) is an exhaustion function for S if the sublevel set u−1([−∞, α)) is a relatively
compact subset of S for every α ∈ R. •

The following elementary general result will be useful in a few places.

3.3.2 Lemma (Characterisation of exhaustion functions) A continuous map u: S →
[−∞,∞) is an exhaustion function for a topological space S if and only if, for any α ∈ R,
there exists a compact set K ⊆ S such that u(x) > α for every x ∈ S \ K.

Proof First suppose that u is an exhaustion function and let α ∈ R>0. Since u is an
exhaustion function, u−1([−∞, α]) is compact. Moreover, u(x) > α for every x ∈ S \

u−1([−∞, α]).
For the converse, suppose that, for any α ∈ R>0, there exists a compact set K ⊆ S

such that u(x) > α for every x ∈ S \ K. Let α ∈ R and note that u−1([−∞, α]) is compact,
being a closed subset of a compact set [Runde 2005, Proposition 3.3.6], showing that u is
an exhaustion function. �

Next let us show that exhaustion functions often exist.

3.3.3 Lemma (Existence of exhaustion functions) If S is a locally compact, second countable,
regular topological space, then there exists a continuous exhaustion function on S. Moreover,
if S has a smooth differentiable structure, then there exists a smooth exhaustion function on S.

Proof Since S is locally compact, it can be covered by relatively compact sets. Since it
is second countable and Hausdorff, it is paracompact [Dugundji 1966, Theorem VIII.6.5]
and possesses a countable open cover by relatively compact open sets [Dugundji 1966,
Theorem VIII.6.3]. We can thus take a partition of unity subordinate to such an open
cover, so defining continuous compactly supported functions ρ j, j ∈ Z>0, which sum
to 1 [Dugundji 1966, Theorem VIII.4.2]. We claim that the function u =

∑
∞

j=1 jρ j is an
exhaustion function. Indeed, let α ∈ R and let N ∈ Z>0 be such that N > α. Let K be a
compact set containing the supports of ρ1, . . . , ρN. We claim that u−1((−∞, α]) ⊆ K. Indeed,
suppose that

x < K =⇒ x < ∪N
j=1 supp(ρ j).
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Then
∞∑

j=N+1

ρ j(x) =

∞∑
j=1

ρ j(x) = 1

and so

u(x) =

∞∑
j=1

jρ j(x) =

∞∑
j=N+1

jρ j(x) ≥ N
∞∑

j=N+1

ρ j(x) = N > α,

as desired. By Lemma 3.3.2 it follows that u is indeed an exhaustion function.
The last statement follows by the existence of smooth partitions of unity in this

case [Abraham, Marsden, and Ratiu 1988, Theorem 5.5.7]. �

Our interest is primarily in exhaustion functions that are plurisubharmonic, so let
us consider these for a moment. A couple of useful examples of plurisubharmonic
exhaustion function are the following.

3.3.4 Examples (Exhaustion functions)
1. If Ω = Cn we claim that the function u defined by u(z) = ‖z‖2 is a plurisubharmonic

exhaustion function. Using the fact that

‖z‖2 =

n∑
j=1

z jz̄ j,

we compute Lev(u)(z; w) = ‖w‖2, and so u is strictly plurisubharmonic. It is clear
that u is an exhaustion function for Cn.

2. Let Ω ⊆ Cn and define δΩ : Ω→ R≥0 by δΩ(z) = dist(z,Cn
\ {Ω}), which we call the

boundary distance function, as in the single variable case. By Proposition B.1.2 we
have that δΩ is continuous. If Ω is bounded, then − log δΩ is an exhaustion function
since (− log δΩ)−1((−∞, α) has bounded closure. For general Ω, − log δΩ may not be
an exhaustion function. For example, if

Ω = {z ∈ C | Im(z) > 0},

then, for α ∈ R>0,

(− log δΩ)−1((−∞, α) = {z ∈ Ω | Im(z) < e−α},

which is not relatively compact.
3. As we just showed, − log δΩ is not an exhaustion function when Ω is unbounded,

it is easy to modify it so as to produce an exhaustion function. Indeed, the function
u : Ω→ R defined by

u(z) = max{‖z‖2,− log δΩ}

is readily verified to be a continuous exhaustion function. •

An important facet of the theory of general plurisubharmonic functions is their
approximation by plurisubharmonic functions that have additional properties such
as smoothness and strictness. In the case of domains in Cn, the result we have is the
following.
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3.3.5 Theorem (The plurisubharmonic smoothing lemma) If Ω ⊆ Cn is a domain, if u ∈
C0(Ω) is a plurisubharmonic exhaustion function for Ω, if K ⊆ Ω is compact, and if ε ∈ R>0,
there exists a smooth strictly plurisubharmonic exhaustion function v for Ω such that (1) v(z) ≥
u(z) for all z ∈ Ω and (2) ‖v − u‖K < ε.

Proof Our proof relies on the local constructions of Lemma GA2.7.1.4. Let

V j = {z ∈ Ω | u(z) < j}, j ∈ Z≥0.

Let Ω j, j ∈ Z>0 and (u j) j∈Z>0 be as in Sublemma 5 from the proof of Lemma GA2.7.1.4. Let
us without loss of generality (by adding a suitable constant to u if necessary) suppose that
K ⊆ V0. By Sublemma 5 from the proof of Lemma GA2.7.1.4, let u0 ∈ C∞(Ω) be such that
u0|V2 is strictly plurisubharmonic and such that

u(z) < u0(z) < u(z) + ε, z ∈ cl(V1).

Also by Sublemma 5 from the proof of Lemma GA2.7.1.4, for j ≥ 1 let u j ∈ C∞(Ω) be such
that

u(z) < u j(z) < u(z) + 1, z ∈ V j.

Given our definition of V j, j ∈ Z≥0, it follows that

u j(z) + 1 − j < 0, z ∈ V j−2,

u j(z) + 1 − j > 0, z ∈ cl(V j) \ V j−1,

for j ≥ 2.
Now let β ∈ C∞(R) have the property that β(x) = 0 for x ≤ 0 and that β(r)(x) > 0 for

x > 0. Thus

β ◦u j(z) + 1 − j

= 0, z ∈ V j−2,

≥ 0, otherwise.

For α ∈ C∞(Ω) we have

∂2(β ◦α)
∂z j∂z̄k

(z) = β(2)(α(z))
∂α
∂z j

(z)
∂α
∂z̄k

(z) + β(1)(α(z))
∂2α
∂z j∂z̄k

(z).

Therefore, using Proposition 3.2.12, we deduce that

z 7→ β ◦u j(z) + 1 − j

is plurisubharmonic on V j−1 and strictly plurisubharmonic and positive on cl(V j) \V j−1 for
every j ≥ 2. Therefore, we can choose N1 sufficiently large that

z 7→ v1(z) , u0(z) + N1β ◦u1(z) + 1 − 1

is strictly plurisubharmonic V1. Proceeding inductively, for j ∈ Z>0 we choose N1, . . . ,N j
such that

z 7→ v j(z) , u0(z) +

j∑
k=1

N j(β ◦u j(z) + 1 − j)

is strictly plurisubharmonic on V j. By Proposition 3.2.6(i) we conclude that if v(z) =
lim j→∞ v j(z), then v has the required properties of the theorem. �
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3.3.2 Weak and strong pseudoconvexity

The rather detailed presentation of plurisubharmonic functions in the preceding
section seems like an absurd excursion the first time one sees it. However, it turns out
the plurisubharmonicity is exactly the notion needed to provide another of the several
characterisations of domains of holomorphy that we shall provide.

Let us define the concept we shall use.

3.3.6 Definition (Weakly pseudoconvex, strongly pseudoconvex) A domain Ω ⊆ Cn

is weakly pseudoconvex (resp. strongly pseudoconvex) if there exists a continuous,
plurisubharmonic (resp. strictly plurisubharmonic) exhaustion function on Ω. •

We shall see that, for subsets of Cn, weak and strong pseudoconvexity are indistin-
guishable. However, for manifolds, this is no longer true, and the distinction between
weak and strong pseudoconvexity is important. To this end, the following result is
helpful.

3.3.7 Lemma (Smoothness and strictness of exhaustion functions) If Ω ⊆ Cn is a do-
main, then Ω is weakly pseudoconvex if and only if there exists a smooth, strictly plurisubhar-
monic exhaustion function on Ω. In particular, Ω is weakly pseudoconvex if and only if it is
strongly pseudoconvex.

Proof The “if” assertions are obvious. So suppose that u ∈ Psh(Ω)∩C0(Ω) is an exhaustion
function. By Theorem 3.3.5 there exists a smooth, strictly plurisubharmonic exhaustion
function. This proves both assertions of the lemma. �

By virtue of the lemma, it is not uncommon for the definition of pseudoconvexity
require that the plurisubharmonic exhaustion function be smooth and strictly plurisub-
harmonic, and we shall freely make these assumptions on our exhaustion functions,
without loss of generality. We shall also sometimes simply say “pseudoconvex,”
rather than “weakly pseudoconvex” or “strongly pseudoconvex,” when referring to
open subsets of Cn.

The following result gives an important property of domains of holomorphy.

3.3.8 Theorem (Domains of holomorphy are strongly pseudoconvex) If Ω ⊆ Cn is a
domain of holomorphy, then it is strongly pseudoconvex.

Proof From Theorem 3.2.18, − log δΩ is plurisubharmonic. From Example 3.3.4–1 we
know that z 7→ ‖z‖2 is plurisubharmonic. Therefore, the function

u(z) , max{‖z‖2,− log δΩ(z)}

is continuous and plurisubharmonic, the latter by Proposition 3.2.6(ii). Moreover, for
α ∈ R, the set u−1((−∞, α]) obviously closed and bounded, and thus u is a continuous
plurisubharmonic exhaustion function. The result now follows from Lemma 3.3.7. �

As with domains of holomorphy (see Theorem 3.2.18), it is possible to relate
pseudoconvex domains with the log boundary distance function.
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3.3.9 Theorem (The log boundary distance for pseudoconvex domains) If Ω ⊆ Cn is
pseudoconvex, then − log δΩ is continuous and plurisubharmonic.

Proof As Ω is pseudoconvex, let u be a continuous plurisubharmonic exhaustion function
on Ω.

The idea of the proof mirrors that for Theorem 3.2.18. Thus we let z0 ∈ Ω and
w ∈ Cn

\ {0}, and choose r ∈ R>0 sufficiently small that

Dr , {z0 + ζw | ζ ∈ D1(r, 0)} ⊆ Ω.

As in the proof of Theorem 3.2.18, we denote

∂Dr = {z0 + ζw | ζ ∈ bd(D1(r, 0))}.

Also as in the proof of Theorem 3.2.18, let p : C→ C be a polynomial function satisfying

− log δΩ(z0 + ζw) ≤ Re(p(ζ))

for every ζ ∈ bd(D1(r, 0)). Equivalently,

|exp(−p(ζ))| ≤ δΩ(z0 + ζw) (3.9)

for every ζ ∈ bd(D1(r, 0)). By Lemma 1 from the proof of Theorem 3.2.18, and using
the same argument as in the last part of the proof of Theorem 3.2.18, it suffices to show
that (3.9) holds for ζ ∈ D1(r, 0).

To this end we prove a lemma, making use of the following definition for K ⊆ Ω
compact:

pconvΩ(K) = {z ∈ Ω | u(z) ≤ sup
K

u, u ∈ Psh(Ω) ∩ C0(Ω)}.

This is the plurisubharmonic convex hull, and for it we have the following lemma.

1 Lemma If Ω ⊆ Cn is weakly pseudoconvex and if K ⊆ Ω is compact, then pconvΩ(K) is compact.

Proof Let u be a continuous plurisubharmonic exhaustion function on Ω and let α =
supK u. It follows that u(z) ≤ supK u for all z ∈ pconvΩ(K) and so

pconvΩ(K) = {z ∈ Ω | v(z) ≤ sup
K

v, v ∈ Psh(Ω) ∩ C0(Ω)}

⊆ {z ∈ Ω | u(z) ≤ sup
K

v} ⊆ u−1((−∞, α]).

Since pconvΩ(K) is closed (cf. the proof in Proposition 3.1.6 if the same fact for hconvΩ(K)),
it follows that cl(pconvΩ(K)) ⊆ Ω, as claimed. H

Next, for a ∈ Cn, define a map

ga : D1(r, 0)→ Cn

ζ 7→ z0 + ζw + a exp(−p(ζ)).

We claim that image(ga) ⊆ Ω if ‖a‖ ≤ 1. To see this, let us denote

A = {α ∈ [0, 1] | image(ga) ⊆ Ω whenever ‖a‖ ≤ α}.



28/02/2014 3.3 Pseudoconvexity 39

First of all, image(g0) = Dr and so 0 ∈ A. Moreover, A is clearly open and so it suffices to
show that A is closed. Let

K = {z0 + ζw + a exp(−p(ζ)) | ζ ∈ bd(D1(r, 0)), a ∈ Bn(1, 0)},

noting that K is compact and contained in Ω. Let u ∈ Psh(Ω) ∩ C0(Ω) and note that, by
Proposition 3.2.19, the function

ζ 7→ u(z0 + ζw + a exp(−p(ζ)))

is subharmonic on a neighbourhood of D1(r, 0) whenever ‖a‖ ∈ A. By the Maximum
Principle for subharmonic functions, this implies that

u(z0 + ζw + a exp(−p(ζ))) ≤ sup
K

u

for every ζ ∈ D1(r, 0) whenever ‖a‖ ∈ A. By the definition of the plurisubharmonic hull,
image(ga) ⊆ pconvΩ(K) if ‖a‖ ∈ A. Suppose now that A is not closed. Since it is open and
contains 0, this implies that there exists α0 ∈ [0, 1) such that [0, α0) ⊆ A but α0 < A. Let
(α j) j∈Z>0 be a strictly increasing sequence in [0, α0) converging to α0. Since α0 < A, there
exists ζ ∈ D1(r, 0) and a0 ∈ Cn such that ‖a0‖ = α0 and

z0 + ζw + a0 exp(−p(ζ)) < Ω.

Let (a j) j∈Z>0 be a sequence in Bn(1, 0) converging to a0 and such that ‖a j‖ = α j, j ∈ Z>0.
Since α j ∈ A for each j ∈ Z>0, our computations above give

z0 + ζw + a j exp(−p(ζ)) ∈ pconvΩ(K), j ∈ Z>0.

Since pconvΩ(K) is compact by Lemma 1,

z0 + ζw + a0 exp(−p(ζ)) = lim
j→∞

z0 + ζw + a j exp(−p(ζ)) ∈ pconvΩ(K) ⊆ Ω,

and the resulting contradiction allows us to conclude that A is closed, and so A = [0, 1].
Thus (3.9) holds for ζ ∈ D1(r, 0), and the reorganisation of this to

− log δΩ(z0 + ζw) ≤ Re(p(ζ))

for ζ ∈ D1(r, 0) proves the theorem. �

Using the above properties of pseudoconvex domains, it is relatively easy to prove
some basic facts about these.

3.3.10 Proposition (Basic properties of pseudoconvex sets) The following statements hold:
(i) if Ω ⊆ Cn and ∆ ⊆ Cm are weakly pseudoconvex then Ω × ∆ is weakly pseudoconvex;
(ii) if Ω ⊆ Cn and ∆ ⊆ Cm are weakly pseudoconvex and if Φ : Ω → Cm is holomorphic,

thenΦ−1(∆) is weakly pseudoconvex;
(iii) if (Ωa)a∈A is a family of weakly pseudoconvex sets in Cn for which int(∩a∈AΩa) , ∅,

then each connected component of int(∩a∈AΩa) , ∅ is weakly pseudoconvex;
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(iv) if (Ωj)j∈Z>0 is a sequence of weakly pseudoconvex sets in Cn for which Ωj ⊆ Ωj+1, j ∈ Z>0,
then ∪j∈ZΩj is weakly pseudoconvex.

Proof (i) Let u ∈ Psh(Ω) ∩ C0(Ω) and v ∈ Psh(∆) ∩ C0(∆) be exhaustion functions. Let
û : Ω × ∆→ R and v̂ : Ω × ∆→ R be defined by

û(z,w) = u(z), v̂(z,w) = v(w).

We claim that both û and v̂ are plurisubharmonic. To see this for û, let pr1 : Ω × ∆ → Ω
be the projection onto the first factor, which is a holomorphic map. By Proposition 3.2.19
it follows that û = u ◦ pr1 is plurisubharmonic. Similarly, v̂ is plurisubharmonic. Now
define

σ(z,w) = max{u(z), v(w)} = max{û(z,w), v̂(z,w)}.

The function σ is continuous (obvious) and plurisubharmonic (by Proposition 3.2.6(ii)).
Since

σ−1((−∞, α)) ⊆ u−1((−∞, α)) × v−1((−∞, α)),

it follows that σ is also an exhaustion function.
(ii) Let u ∈ Psh(Ω)∩C0(Ω) and v ∈ Psh(∆)∩C0(∆) be exhaustion functions. We define

σ(z) = max{u(z), v ◦Φ(z)},

noting that σ is continuous (obvious) and plurisubharmonic (by Proposition 3.2.19 and
Proposition 3.2.6(ii)). Moreover,

σ−1((−∞, α)) ⊆ u−1((−∞, α)) ∩ (v ◦Φ)−1((−∞, α)),

showing that σ is also an exhaustion function.
(iii) Let V be a connected component of ∩a∈AΩa. Note that we obviously have

δV(z) ≤ inf{δΩa(z) | a ∈ A}.

For the converse inequality, if ẑ ∈ bd(V) there is then a sequence of (a j) j∈Z>0 in A and (z j) j∈Z>0

in Cn such that z j ∈ bd(Ω j) and ẑ = lim j→∞ z j. Thus, for z ∈ V, ‖z − ẑ‖ = lim j→∞‖z − z j‖.
Since this is particularly true if ẑ satisfies δV(z) = ‖z − ẑ‖, it follows that

δV(z) = inf{δΩa(z) | a ∈ A}.

Thus
− log δV(z) = sup{− log δΩa(z) | a ∈ A}.

By Proposition 3.2.6(ii) it follows that − log δV is plurisubharmonic. Its continuity follows
from Proposition B.1.2, and so follows the weak pseudoconvexity of V.

(iv) Let Ω = ∪ j∈Z>0Ω j. For j ∈ Z>0 define u j : Ω→ [−∞,∞) by

u j(z) =

− log δU|
(z), z ∈ Ω j,

−∞, z < Ω j.

One directly verifies (for example using the characterisation of part (vii) of Theorem 3.2.2
of subharmonic functions) that u j ∈ Psh(Ω). We claim that − log δΩ(z) = lim j→∞ u j(x). We
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clearly have − log δΩ(z) ≥ lim j→∞ u j(x). For the opposite inequality, if z ∈ Ω then there
exists N ∈ Z>0 such that z ∈ Ω j for all j ≥ N. If ẑ ∈ bd(Ω) is such that δΩ(z) = ‖z − ẑ‖, then
there exists a sequence (z j) j∈Z>0 in Cn such that z j ∈ bd(Ω j) and such that ẑ = lim j→∞ z j.
We then have

− log δΩ(z) ≤ lim
j→∞

u j(z),

with the limit being nonincreasing for j ≥ N. Note that by Proposition 3.2.6(i) this argu-
ment also implies that − log δΩ is plurisubharmonic in some neighbourhood of any point
in Ω, and so is plurisubharmonic. Since − log δΩ is continuous by Proposition B.1.2, we
conclude that Ω is pseudoconvex. �

Using the preceding developments, it is then possible to give examples of pseudo-
convex open sets.

3.3.11 Examples (Pseudoconvex domains in Cn)
1. By Theorem 3.3.8 and Example 3.2.4–2 we have that every open subset of C is

strongly pseudoconvex.
2. Let φ : Cn

→ R be defined by φ(z) = Re(〈z − z0,λ〉) and take

Ω = {z ∈ Cn
| φ(z) > 0}.

We note that Ω is strongly pseudoconvex by Example 3.2.17–3.
3. We claim that if Ω ⊆ Cn is a convex open set, then Ω is strongly pseudoconvex.

We can show this as follows. Let w ∈ bd(Ω) and let Hw be a R-hyperplane passing
through w not intersecting Ω. Thus, for z ∈ Ω, ‖z−w‖ = dist(z,Hw). Let uw : Ω→ R
be given by uw(z) = dist(z,Hw). Note that

δΩ(z) = inf{uw(z) | w ∈ bd(Ω)}.

Thus
− log δΩ(z) = sup{− logφw(z) | w ∈ bd(Ω)}.

As we saw in Example 3.2.17–3, − logφw is plurisubharmonic for each w ∈ bd(Ω).
By Proposition 3.2.6(ii), − log δΩ is also plurisubharmonic, and so Ω is convex.
Alternatively, one could use the fact that a convex set is the intersection of its
bounding half-spaces, and each of these half-spaces is strongly pseudoconvex as
in the preceding example. Strong pseudoconvexity of the intersection then follows
from Proposition 3.3.10(iii). •

3.3.3 Open sets with regular boundaries

The next part of our discussion regarding domains of holomorphy concerns char-
acterising these by considerations of only their boundary. This that should be possible
is suggested by the initial definition of a domain of holomorphy. In this section we
consider open subsets of Cn having nice boundaries. These, historically, have played
a crucial rôle in the study of domains of holomorphy, beginning with the work of Levi
[1910].

We begin with a definition in Rn; later we specialise to Cn
' R2n.
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3.3.12 Definition (Regular boundary of class Ck) Let k ∈ Z>0 ∪ {∞}. An open set U ⊆ Rn

has a regular boundary of class Ck if, for every x̂ ∈ bd(U) there exists a neighbourhood
V of x̂ and a function r ∈ Ck(V) such that dr(x) , 0 for every x ∈ V and such that

U ∩ V = {x ∈ V | r(x) < 0}.

The function r is called a Ck-local defining function for U. •

If r is a local defining function for U ⊆ Rn defined on V, r−1(0) = bd(U) ∩ V, and
the hypothesis that the derivative of r does not vanish ensures that bd(U) ∩ V is a
submanifold of Rn of dimension n − 1. Thus, if U has a regular boundary of class Ck,
bd(U) is a submanifold of dimension n − 1.

It is possible to make some simplifying assumptions about local defining functions.
The following one is particularly useful.

3.3.13 Lemma (The gradient of local defining functions) Let U ⊆ Rn be an open set with
regular boundary of class Ck for some k ∈ Z>0 ∪ {∞} and let r1 and r2 be local defining
functions defined on a neighbourhood V of x0 ∈ bd(U). Then there exists a neighbourhood
V′ ⊆ V of x0 and ψ ∈ Ck−1(V′) such that

(i) ψ(x) ∈ R>0 for every x ∈ V′,
(ii) r1|V

′ = ψr2|V
′, and

(iii) grad r1(x) = ψ(x) grad r2(x) for every x ∈ bd(U) ∩ V′.
In particular, given a local defining function r defined on V, there exists another local defining
function r̂ defined on a smaller neighbourhood V′ such that ‖grad r̂(x)‖ = 1 for x ∈ bd(U)∩V′.

Proof Using the Implicit Function Theorem, we make a change of coordinates so that
r2(x) = xn. For simplicity, we also make a change of coordinates so that x0 = 0. Suppose
that these coordinates are defined on V′ = Bn−1(ε, 0)×B1(ε, 0) for some ε ∈ R>0 sufficiently
small. We denote a point in V′ by (x′, xn). Then compute

r1(x′, xn) = r1(x′, xn) − r1(x′, 0) =

∫ xn

0

∂r1

∂xn
(x′, ξ) dξ

= xn

∫ 1

0

∂r1

∂xn
(sxn) ds = r2(x′, xn)ψ(x′, xn),

where

ψ(x′, xn) =

∫ 1

0

∂r1

∂xn
(sxn) ds.

It follows from standard theorems on parameter dependence of integrals thatψ ∈ Ck−1(V′).
Since r2 vanishes on bd(U) ∩ V′, condition (iii) holds. Note that grad r1 and grad r2 are
collinear on bd(U) ∩ V′, and in fact are positive multiples of one another. Thus ψ(x0) > 0,
and this implies the positivity of ψ, possibly after shrinking ε.

For the final assertion of the lemma, as above we suppose that r(x′, xn) = xn and
that V′ is a product of balls. We note that for (x′, 0) ∈ bd(U) ∩ V′ can write n(x′, 0) =
ψ(x′, 0) grad r(x′, 0) for some ψ(x′, 0) ∈ R>0, where n(x′, 0) is the unit outward pointing
normal at (x′, 0). Now, if we define ψ(x′, xn) = ψ(x′, 0) and r̂ = ψr, we can verify that r̂ is a
local defining function with the appropriate properties. �
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Let us exhibit a particular and useful local defining function. For U ⊆ Rn open let
us adapt our definition of δU : x 7→ dist(x, bd(U)) by

dU(x) =


−δU(x), x ∈ U,
0, x ∈ bd(U),
δCn\U(x), x < cl(U).

For this function, we have the following result.

3.3.14 Lemma (A natural local defining function) If k ∈ Z>0 ∪ {∞}, if U ⊆ Rn is open with
regular boundary of class Ck, and if x̂ ∈ bd(U), then there exists a neighbourhood V of x̂ such
that dU|V is a Ck-local defining function for U.

Proof We clearly have
U = {x ∈ Rn

| dU(x) < 0}.

Thus we need to show that dU is of class Ck and has nonvanishing derivative in a neigh-
bourhood of every point in bd(U).

We let x̂ ∈ bd(U) and let r be a Ck-local defining function for U defined on a neighbour-
hood V of x̂. By Lemma 3.3.13 we assume, without loss of generality, that grad r(x) = n(x)
for x ∈ bd(U)∩V, possibly after shrinking V. By relabelling the coordinates we can ensure
that ∂r

∂xn
(x̂) , 0. By the Implicit Function Theorem, let V′ × V′′ ⊆ Rn−1

× R and φ : V′ → V′′

be such that
bd(U) ∩ (V′ × V′′) = {(x′, φ(x′)) ∈ Rn−1

× R | x′ ∈ V′}.

An exercise in multivariable minimisation subject to constraints gives that, for x sufficiently
near to x̂, the distance from x to bd(U) is given by ‖x−b(x)‖where b(x) lies on a line segment
through x which intersects bd(U) orthogonally at b(x). Let us suppose that V′ is chosen
sufficiently small that this holds for all x ∈ V′ × V′′. We can thus write

x = b(x) + dU(x)n(x),

and this expression is unique provided that x is sufficiently close to bd(U). We can define
a map

Φ : V′ × R→ Rn = Rn−1
× R

(x′, ξ) 7→ (x′, φ(x′)) + ξn(x′).

The Jacobian of this mapping is

DΦ(x′, ξ) =

[
In−1 + ξA(x′) D1r(x′, φ(x′))T

gradφ(x′) + ξb(x′) ∂r
∂xn

(x′, φ(x′))

]
for some (n− 1)× (n− 1)-matrix A(x′) and (n− 1)-vector b(x′). Differentiating r(x′, φ(x′) = 0
for x′ ∈ V′ gives

DΦ(x′, ξ) =

 In−1 + ξA(x′) −
∂r
∂xn

(x′, φ(x′)) gradφ(x′)T

gradφ(x′) + ξb(x′) ∂r
∂xn

(x′, φ(x′))

 .
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We wish to compute the determinant of this Jacobian at (x′, 0). We note that properties of
determinant with respect to multiplication of a column with respect to a constant gives

det DΦ(x′, 0) =
∂r
∂xn

(x′, φ(x′)) det
[

In−1 −gradφ(x′)T

gradφ(x′) 1

]
.

Now, by performing row operations which leave the determinant unchanged, we have

det DΦ(x′, 0) =
∂r
∂xn

(x′, φ(x′)) det
[
In−1 −gradφ(x′)T

0 1 + ‖grad r(x′)‖2

]
=
∂r
∂xn

(x′, φ(x′))(1 + ‖grad r(x′)‖2).

Thus, by the Inverse Function Theorem, for some sufficiently small ε ∈ R>0 and by
shrinking V′,Φ is a diffeomorphism of class Ck from V′ ×B1(ε, 0) onto a neighbourhood V

of x̂. Moreover,Φ(V′ × {0}) = bd(U) ∩ V and −dU(x) is the nth-component ofΦ−1(x), and
so we conclude that dU is of class Ck on V. Now define

π′ : V′ × B1(ε, 0)→ V′ × B1(ε, 0)
(x′, ξ) 7→ (x′, 0)

and denote π = π′ ◦Φ. Note that

−dU(x) =

‖x − π(x)‖, x ∈ U ∩ V,

−‖x − π(x)‖, x ∈ V − cl(V).

If x < bd(U), for a suitable α ∈ {−1, 1}we directly compute

−grad dU(x) =
α

‖x − π(x)‖
(x − π(x) −Dπ(x) · (x − π(x))).

Since r ◦π(x) = 0 and since x − π(x) is by definition a multiple of grad r(π(x)), the Chain
Rule gives

Dπ(x) · (x − π(x)) = 0.

Thus we have
−grad dU(x) = α

x − π(x)
‖x − π(x)‖

for x < bd(U). Thus, in the limit as x approaches bd(U) the gradient will not vanish, and
so does not vanish on V. �

Now we turn to the case of Cn
' R2n. Of course, our notion of an open set with

regular boundary of class Ck and of a local defining function of class Ck still apply.
What is new is that the tangent space to bd(U) is a C-vector space, and so we can
wonder about its complex subspaces.

3.3.15 Definition (Complex tangent space to a boundary) Let U ⊆ Cn be an open set with
regular boundary of class Ck for some k ∈ Z>0 ∪ {∞}. The complex tangent space to
bd(U) at ẑ ∈ bd(U), denoted by TC

ẑ bd(U), is the largest C-subspace of Cn contained in
the (real) tangent space to bd(U) at ẑ. •

We have the following concrete description of the complex tangent space to a
boundary.
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3.3.16 Lemma (A characterisation of the complex tangent space to a boundary) Let
k ∈ Z>0 ∪ {∞}, let U ⊆ Cn be an open set with regular boundary of class Ck, let ẑ ∈ bd(U),
and let r be a local defining function of class Ck defined on a neighbourhood V of ẑ. Then

TC
ẑ bd(U) =

{
w ∈ Cn

∣∣∣∣ n∑
j=1

∂r
∂zj

(ẑ)wj = 0
}
.

Proof For brevity denote

ker(∂r)(ẑ) =
{
w ∈ Cn

∣∣∣∣ n∑
j=1

∂r
∂z j

(ẑ)w j = 0
}
.

The real tangent space to bd(U) at ẑ is

Tẑ bd(U) =
{
w = u + iv ∈ Cn

∣∣∣∣ n∑
j=1

∂r
∂x j

(ẑ)u j +

n∑
j=1

∂r
∂y j

(ẑ)v j = 0
}
, (3.10)

cf. [Abraham, Marsden, and Ratiu 1988, Theorem 3.5.4]. Since

2
n∑

j=1

∂r
∂z j

(ẑ)w j =

n∑
j=1

( ∂r
∂x j

(ẑ)u j +
∂r
∂y j

(ẑ)v j

)
+ i

n∑
j=1

( ∂r
∂x j

(ẑ)v j −
∂r
∂y j

(ẑ)u j

)
,

it follows that
ker(∂r)(ẑ) ⊆ Tẑ bd(U).

One also directly verifies that

w ∈ ker(∂r)(ẑ) =⇒ iw ∈ ker(∂r)(ẑ),

showing is a C-subspace. Moreover, if W ⊆ Tẑ bd(U) is a C-subspace, it must be closed
under multiplication by i, and this along with (3.10) implies that, if u + iv ∈W, then

n∑
j=1

( ∂r
∂x j

(ẑ)v j −
∂r
∂y j

(ẑ)u j

)
= 0,

implying that W ⊆ ker(∂r)(ẑ). Thus ker(∂r)(ẑ) is indeed the largest C-subspace in Tẑ bd(U).
�

3.3.4 Levi pseudoconvexity

Now we use the constructions of the preceding section to give what is an alternative
characterisation of weakly pseudoconvex sets. To motivate the constructions, we recall
the following characterisation of a convex set.
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3.3.17 Proposition (Convex sets with regular boundary) For a domain Ω ⊆ Rn with regular
boundary of class C2, the following are equivalent:

(i) Ω is convex;
(ii) for any x̂ ∈ bd(Ω) and any local defining function r defined on a neighbourhood V of x̂,

D2r(x̂) · (v,v) ≥ 0 for every v ∈ Tx̂ bd(Ω).
Proof First of all, we comment that a straightforward computation, using Lemma 3.3.13
and the fact that Tx̂ bd(Ω) is given by the kernel of the derivative of any local defining
function (as we saw in the proof of Lemma 3.3.16), one easily shows that if the condition
D2r(x̂) · (v,v) ≥ 0 holds for one local defining function defined near x̂, it holds for any local
defining function defined near x̂. We shall, therefore, use a specific local defining function
to whose construction we now turn.

By the Implicit Function Theorem, bd(Ω) is the graph of a function defined on Tx̂ bd(Ω).
More specifically and precisely, there exists ε ∈ R>0, a convex neighbourhood V of x̂, and
a function f : Tx̂ bd(Ω)→ R such that

bd(Ω) ∩ V = {x̂ + u + f (u)n | u ∈ Tx̂ bd(Ω) ∩ Bn(ε, 0)},

where n ∈ Rn is the unit outward normal to bd(Ω) at x̂. (The reader may wish to draw the
picture associated with this.) By the Implicit Function Theorem, f is of class C2. For x ∈ V
we write

x = x̂ + u(x) + α(x)n

for some uniquely defined u(x) ∈ Tx̂ bd(Ω) and α(x) ∈ R. Explicitly, α(x) = 〈n, x − x̂〉. We
then define

r(x) = 〈n, x − x̂〉 − f (u(x)),

and note that r is a local defining function on V.
Now suppose that Ω is convex. This implies that

Ω ∩ V ⊆ {x ∈ V | 〈n, x − x̂〉 ≤ 0}.

This, in turn, implies that 0 is a local maximum for the function f defined above. Thus
D2 f (0)·(v,v) ≤ 0 for every v ∈ Tx̂ bd(Ω). Using the definition of r we see that D2r(x̂)·(v,v) ≥
0 for every v ∈ Tx̂ bd(Ω).

Now we prove the converse. This means that, with our construction of r at the
beginning of the proof, D2r(x) · (v,v) ≥ 0 for every x ∈ bd(Ω) ∩ V and every v ∈ Tx bd(Ω).
Using the definition of r this implies that D2 f (u) · (v,v) ≤ 0 for every u ∈ Bn(ε, 0) and
every v ∈ Tx bd(Ω). But this implies that the function f is convex by [Webster 1994,
Theorem 5.5.5] and, by [Webster 1994, Theorem 5.4.1], the epigraph of f (i.e., the region
“above” the graph of f ) is convex as a subset of Tx̂ bd(Ω) × R and lies above the tangent
space to the graph at every point. At x̂ the tangent space to the graph of f is Tx̂ bd(Ω)× {0}
which implies that 0 is a local minimum for f . This, however, implies that

Ω ∩ V ⊆ {x ∈ V | 〈n, x − x̂〉 ≤ 0}.

Since this holds for every x̂ ∈ bd(Ω), we conclude that Ω is convex by the Krein–Milman
Theorem [Webster 1994, Theorem 2.6.16]. �

Now, returning to our notion of pseudoconvexity, we begin with the following
result, which reinforces the fact that it is really the boundary of a set that determines
whether it is weakly pseudoconvex.
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3.3.18 Theorem (Pseudoconvexity is a local property of the boundary) If Ω ⊆ Cn is a
domain, the following statements are equivalent:

(i) Ω is weakly pseudoconvex;
(ii) for any z ∈ bd(Ω) there exists a neighbourhood V of z such that Ω ∩ V is weakly

pseudoconvex.
Proof (i) =⇒ (ii) Let z ∈ bd(Ω) and let V be a convex neighbourhood of z. By
Example 3.3.11–(3), V is weakly pseudoconvex and then, by Proposition 3.3.10(iii), the
connected component of Ω ∩ V containing z is weakly pseudoconvex.

(ii) =⇒ (i) First we consider the case where Ω is bounded. In this case, let z ∈ bd(Ω)) and
let V be a neighbourhood of z for which Ω∩V is weakly pseudoconvex. By Theorem 3.3.9,
− log δΩ∩V is continuous and plurisubharmonic. Note that δΩ∩V(w) = δΩ(w) for w close
enough to z. That is to say, there exists a neighbourhood Wz of z such that − log δΩ is
continuous and plurisubharmonic on Ω ∩Wz. Since bd(Ω) is compact, finitely many of
the sets Wz, z ∈ bd(Ω) (say Wz1 , . . . ,Wzk) will cover bd(Ω), and − log δΩ will be continuous
and plurisubharmonic on Ω ∩W = ∪k

j=1Ω ∩Wz j . Let M = ‖− log δΩ‖Ω−W, noting that
M < ∞ since Ω is bounded and bd(Ω) ⊆W. Now note that

z 7→ max{− log δΩ(z), ‖z‖2 + M + 1}

is continuous (obvious) and plurisubharmonic (by Proposition 3.2.6(ii) and since z 7→
‖z‖2 + M + 1 is plurisubharmonic by Example 3.3.41).

Now, if Ω is unbounded, define Ω j = Ω ∩ Bn( j, 0) for j ∈ Z>0. Note that, for each z ∈
bd(Ω j) there exists a neighbourhood V of z such that Ω j∩V is weakly pseudoconvex, since
we are assuming this property of Ω and since Bn( j, 0) is weakly pseudoconvex, according
to Example 3.3.11–(3). By the paragraph preceding, Ω j is then weakly pseudoconvex.
Since Ω = ∪ j∈Z>0Ω j, weak pseudoconvexity of Ω follows from Proposition 3.3.10. �

Next we consider the case where bd(Ω) has some regularity as described in Sec-
tion 3.3.3. The following definition introduces the key notion in this case.

3.3.19 Definition (Levi pseudoconvex) An open set Ω ⊆ Cn with regular boundary of class
C2 is Levi pseudoconvex if, for any ẑ ∈ bd(Ω) and any local defining function r of class
C2 defined on a neighbourhoodV of ẑ, it holds that Lev(r)(z; w) ≥ 0 for all w ∈ TC

z bd(Ω)
for all z ∈ bd(Ω) ∩ V. •

With this notion at hand, the main result is the following.

3.3.20 Theorem (Weak pseudoconvexity and Levi pseudoconvexity are equivalent) If
Ω ⊆ Cn is a domain with a regular boundary of class C2, then it is weakly pseudoconvex if and
only if it is Levi pseudoconvex.

Proof First suppose that Ω is weakly pseudoconvex. As we saw in Lemma 3.3.14,
dΩ is a local defining function in some neighbourhood of any point in bd(Ω). From
Theorem 3.3.9 we know that − log δΩ is plurisubharmonic, and using Proposition 3.2.12
we directly compute

Lev(− log δΩ)(z; w) =

n∑
j,k=1

(
−

1
δΩ(z)

∂2δΩ

∂z j∂z̄k
(z) +

1
δΩ(z)2

∂δΩ

∂z j
(z)
∂δΩ

∂z̄k
(z)

)
w jw̄k ≥ 0
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for every z ∈ Ω sufficiently close to bd(Ω) and every w ∈ Cn. For all such z and for w ∈ Cn

satisfying
n∑

j=1

∂dΩ

∂z j
(z)w j = 0, (3.11)

this implies that
n∑

j,k=1

∂2dΩ

∂z j∂z̄k
(z)w jw̄k ≥ 0,

and taking the limit as z approaches the boundary shows that this same inequality holds
for z ∈ bd(Ω) for vectors w satisfying (3.11).

This shows that the condition on the Levi form for Levi pseudoconvexity holds for the
defining function dΩ. Let r be some other defining function defined on a neighbourhood
of a point ẑ ∈ bd(Ω). By Lemma 3.3.13 it follows that r = ψdΩ for some positive function
ψ of class C2. A straightforward computation using Lemma 3.3.16 shows that

Lev(r)(ẑ; w) = ψ(ẑ)Lev(dΩ)(ẑ; w)

for every w ∈ TC
ẑ Ω. From this we conclude that the condition on the Levi form for Levi

pseudoconvexity holds for any defining function if it holds for dΩ, and so this proves that
Ω is Levi pseudoconvex.

Next suppose that Ω is not weakly pseudoconvex. By Theorem 3.3.18 this means that
there is a point in bd(Ω) for which every neighbourhood is not weakly pseudoconvex. By
Theorem 3.3.9 and Lemma 3.3.14 this means that there exists an open set V intersecting
bd(Ω) and z ∈ V such that − log δΩ is not plurisubharmonic at z. By Proposition 3.2.12
this means that the derivative

∂2

∂ζ∂ζ̄
log δΩ(z + ζw) > 0

when evaluated at ζ = 0 and for some w ∈ Cn. By Lemma 3.2.10 we have

log δΩ(z + ζw) = log δΩ(z) + Re(αζ + βζ2) + λ|ζ|2 + o(|ζ|2), (3.12)

for some α, β ∈ C and where λ is the derivative

∂2

∂ζ∂ζ̄
log δΩ(z + ζw)

evaluated at ζ = 0. By Proposition B.1.3 let u ∈ Cn be such that ‖u‖ = δΩ(z) and z + u ∈
bd(Ω). For s ∈ (0, 1] denote

γs(ζ) = z + ζw + s exp(αζ + βζ2)u.

Let ẑ ∈ bd(Ω) and compute

‖γs(ζ) − ẑ‖ = ‖z + ζw − ẑ − (−s exp(αζ + βζ)u)‖
≥ | ‖z + ζw − ẑ‖ − |s exp(αζ + βζ)|‖u‖ |
≥ ‖z + ζw − ẑ‖ − |s exp(αζ + βζ)|‖u‖
≥ δΩ(z + ζw) − |s exp(αζ + βζ)|‖u‖.
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From this we conclude that

dist(γs(ζ), bd(Ω)) ≥ δΩ(z + ζw) − |s exp(αζ + βζ)|‖u‖.

From (3.12) we have

δΩ(z + ζw) = δΩ(z)|s exp(αζ + βζ)| exp( 1
2λ|ζ|

2) exp( 1
2λ|ζ|

2 + o(|ζ|2)).

Choosing ε ∈ R>0 such that 1
2λ|ζ|

2 + o(|ζ|2) ≥ 0 for |ζ| ≤ ε we have that

δΩ(z + ζw) ≥ δΩ(z)|s exp(αζ + βζ)| exp( 1
2λ|ζ|

2)

for s ∈ (0, 1] and |ζ| ≤ ε. This then gives

dist(γs(ζ), bd(Ω)) ≥ δΩ(z)(exp( 1
2λ|ζ|

2) − s)|s exp(αζ + βζ)|

for s ∈ (0, 1] and |ζ| ≤ ε. This in particular implies that dist(γs(ζ), bd(Ω)) > 0 for s ∈ (0, 1)
and |ζ| ≤ ε. Since γs(0) = z + su we have γs(0) ∈ Ω for any s ∈ (0, 1) by definition of u.
From this we conclude that γs(ζ) ∈ Ω for every s ∈ (0, 1) and |ζ| ≤ ε (were this not the
case, we would have to have dist(γs(ζ), bd(Ω)) = 0 for some s ∈ (0, 1) and some ζ such that
|ζ| ≤ ε). Thus γ1(ζ) ∈ cl(Ω) for every |ζ| ≤ ε. Moreover, possible after shrinking ε, we have
γ1(ζ) ∈ cl(Ω) ∩ V for every |ζ| ≤ ε. It therefore follows that dΩ(γ1(ζ)) = −δΩ(γ1(ζ)), and so
we have

−dΩ(γ1(ζ)) ≥ δΩ(z)(exp( 1
2λ|ζ|

2) − 1)|exp(αζ + βζ)| (3.13)

The function
ζ 7→ δΩ(z)(exp( 1

2λ|ζ|
2) − 1)|exp(αζ + βζ)|

is easily seen to be strictly convex in a neighbourhood of 0 ∈ C, and is zero at ζ = 0. Since
the function is positive, ζ = 0 is a strict local minimum. Now note that dΩ ◦γ1(0) = 0
since γ1(0) ∈ bd(Ω). The inequality (3.13) then implies that 0 is a strict local maximum for
dΩ ◦γ1. This implies, in particular, that

∂2

∂ζ∂ζ̄

∣∣∣∣
ζ=0
δΩ ◦γ1(ζ) > 0,

∂
∂ζ

∣∣∣∣
ζ=0

dΩ ◦γ1(ζ) = 0.

Using the fact that ∂γ1
∂ζ̄

= 0 since γ1 is holomorphic, we deduce that

n∑
j,k=1

∂2dΩ

∂z j∂z̄k
(z + u)w jw̄k < 0,

n∑
j=1

∂dΩ

∂z j
(z + u)w j = 0,

which implies that Ω is not Levi pseudoconvex since z + u ∈ bd(Ω). �

Let us consider a few examples of Levi pseudoconvex sets.
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3.3.21 Examples (Levi pseudoconvex domains)
1. As with all of the properties for open sets we have introduced in this chapter, the

situation in one-dimension is straightforward as concerns Levi pseudoconvexity.
Indeed, if Ω ⊆ C is open with regular boundary of class C2, we have TC

ẑ bd(Ω) = {0}
for every ẑ ∈ bd(Ω). Thus, in this case the Levi form vanishes on the complex
tangent space to the boundary, and so is necessarily positive-semidefinite. Thus Ω
is Levi pseudoconvex.

2. Also as we have seen with the other concepts in this chapter, there is a connec-
tion between ordinary convexity and Levi pseudoconvexity. Indeed, by Proposi-
tion 3.3.17 we see that if Ω ⊆ Cn is convex, it is immediately Levi pseudoconvex.

3. There are, of course, domains that are weakly pseudoconvex but not Levi pseudo-
convex, since there are no restrictions on the regularity of the boundary of a general
weakly pseudoconvex set. For example, the domain

Ω = {z ∈ C | Re(z) > 0, Im(z) > 0}

is weakly pseudoconvex, but not Levi pseudoconvex. •

The precise relationship between convexity and pseudoconvexity is quite rich. To
start, by the Riemann Mapping Theorem, note simply connected domains of holo-
morphy in C that are strict subsets of C are holomorphically diffeomorphic to the
convex open unit disk. To flesh out the situation when n ≥ 2, we make the following
definition.

3.3.22 Definition (Strictly pseudoconvex) A bounded domain Ω ⊆ Cn is strictly pseudo-
convex if there exists a neighbourhood V of bd(Ω) and a function r ∈ C2(V) with the
following properties:

(i) Ω ∩ V = {z ∈ V | r(z) < 0};
(ii) dr(z) , 0 for every z ∈ V;
(iii) Lev(r)(ẑ; w) > 0 for every ẑ ∈ bd(Ω) and every nonzero w ∈ TC

ẑ bd(Ω). •

Thus strict pseudoconvexity places two restrictions on Levi pseudoconvexity. First,
it considers only bounded domains, and second it requires that the Levi form of
the defining function is strictly positive-definite on the complex tangent space to the
boundary. For a strictly pseudoconvex domain Ω, it can be shown that for every ẑ ∈
bd(Ω) there is a neighbourhoodV of ẑ such that Ω∩V is the image of an open convex set
under a holomorphic diffeomorphism [Laurent-Thiébaut 2011, Corollary 3.24]. Thus
strictly pseudoconvex sets are, up to holomorphic diffeomorphism, locally convex.
This is not true if one removes the condition of strictness, and Kohn and Nirenberg
[1973] give a counterexample.
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3.4 The Levi problem

We have discussed various notions relating to domains of holomorphy and ex-
plored connections between these. Indeed, let us list the following properties of a
domain Ω:

1. Ω is a domain of holomorphy;

2. Ω is holomorphically convex;

3. Ω possesses a singular function;

4. Ω is weakly pseudoconvex;

5. Ω is strongly pseudoconvex;

6. − log δΩ is plurisubharmonic;

7. for each z ∈ bd(Ω), there exists a neighbourhood V of z such that Ω∩V is weakly
pseudoconvex;

8. Ω is Levi pseudoconvex (when it has a regular boundary of class C2).

A review of our work so far in this chapter reveals that we have proved the implications
shown in Figure 3.3. One easily sees that the loop is not closed, and that to close the
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Figure 3.3 Implications proved in this chapter so far

loop we need to show that a weakly pseudoconvex domain is a domain of holomorphy.
This is known as the Levi problem. In this section we summarise the history of this
problem (following Lieb [2008]) and some of the techniques that have been used to
prove the desired implication.

3.4.1 The history of the Levi problem

The Levi problem played a central rôle in the development of complex analysis
during the first half of the twentieth century. The fact that there are domains in Cn,
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n ≥ 2, such that every holomorphic function can be extended to some larger domain
was recognised by Hartogs [1906], and marked the beginning of the modern theory
of several complex variables. The finding of domains for which no holomorphic
function can be extended to a larger domain was then understood as a fundamental
one. The problem was first recognised by Levi [1910] who recognised that domains of
holomorphy could be characterised by a sort of convexity condition on the boundary.
Levi then conjectures that his boundary condition is sufficient for a domain to be a
domain of holomorphy. There was not attention paid to this problem for some years.
The recognition of the Levi problem was renewed by the activity in complex analysis
of Heinrich Behnke and Henri Cartan in the late 1920’s. The notion of holomorphic
convexity was introduced by Cartan [1931], and the equivalence of holomorphically
convex domains with domains of holomorphy was proved by Cartan and Thullen
[1932]. Moreover, the Levi problem was solved by Behnke and Thullen [1934] in special
cases. In this work, Behnke and Thullen also enumerated a number of important
problems in complex analysis, among them the Levi problem.

The young Japanese mathematician Kiyoshi Oka became familiar with the work
being done in France and Germany on complex analysis while visiting Paris in 1929.
Upon his return to Japan, Oka became familiar with the problems outlined by Behnke
and Thullen, and devoted approximately the next twenty years (with the expected
hiatus during the war) to solving these problems. The work of Oka forever altered
the state of complex analysis, systematically in nine fundamental papers published
from 1936–1953. In the sixth of these papers, Oka [1942b] solves the Levi problem in
two dimensions, and in the last of these papers [Oka 1953] solves the Levi problem
in generality. Around the same time, the Levi problem was solved independently by
Bremermann [1953] and Norguet [1954]. The collected works of [Oka 1984] gather
together his contributions.

The Levi problem for holomorphic manifolds was solved by Grauert [1958]. Com-
ments on the Levi problem and matters arising from it can be found in [Siu 1978].

3.4.2 Comments on solutions of the Levi problem

There is no “easy” solution to the Levi problem. All known solutions involve
baggage of some sort. The solution of Grauert [1958] is a combination of sheaf theory
and functional analysis. Another popular solution of the Levi problem originates in
the work of Hörmander [1965] on the ∂̄-operator (see also the treatment in [Hörmander
1994]). We sketch the idea of this approach here for the Levi problem for domains in
Cn. In Section 6.3.2 we give a detailed proof of the existence theorem for the ∂̄-problem
on manifolds. Here we merely sketch the central ideas for open subsets of Cn, and
indicate how this gives rise to a solution of the Levi problem.

The problem Hörmander addresses is the existence of solutions to the generalised
Cauchy–Riemann equations. Let us provide some notation for this. Let Ω ⊆ Cn be
open and let f be a form of bidegree (0, r) with coefficients being functions (of some
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sort) defined on Ω. (We will discuss differential forms in Section 4.6.) If

f (z) =
∑

j1<···< jr

f j1··· jr(z)dz̄ j1 ∧ · · · ∧ dz̄ jr ,

we denote

∂̄ f (z) =

n∑
j=1

∑
j1<···< jr

∂ f j1··· jr

∂z̄ j
(z)dz̄ j ∧ dz̄ j1 ∧ · · · ∧ dz̄ jr ,

which we regard as a form of bidegree (0, r + 1). We wish to study solutions of the
equation ∂̄u = f , where f is given and we wish to determine u. We will consider the
case where the unknown is the form u of bidegree (0, r), and, therefore, f is a form of
bidegree (0, r + 1). Just like the exterior derivative for regular differential forms, the
operator ∂̄ satisfies ∂̄ ◦ ∂̄ = 0, using symmetry of partial derivatives as usual. If ∂̄u = f
this then imposes the necessary closedness condition ∂̄ f = 0 on the one-form f . The
problem can then be stated as follows.

3.4.1 Problem (The ∂̄-problem) For what open sets Ω is the condition ∂̄ f = 0 sufficient for
there to exist a solution to the equation ∂̄u = f ? •

It is this problem that Hörmander solves. He does this by first considering data
in L2

loc(Ω;C). In this case, one can use Hilbert space methods to prove the following
result.

3.4.2 Theorem (The solution to the ∂̄-problem in L2) If Ω ⊆ Cn is pseudoconvex and if f is
a form of bidegree (0, r + 1) with coefficients in L2

loc(Ω;C) and for which ∂̄f = 0, then there
exists a form u of bidegree (0, r) on Ω such that ∂̄u = f (with derivatives understood in the
distributional sense).

The key element in this theorem, as concerns its relationship to the Levi problem, is
that it uses pseudoconvexity of the domain as the essential condition on the domain Ω.
The rôle played by pseudoconvexity is not so easy to imagine, but it amounts to using
the plurisubharmonic exhaustion function on the pseudoconvex domain to establish
bounds on Hilbert space operators.

Next Hörmander shows that the existence of solutions to the ∂̄-problem in the
L2-case implies existence of solutions in certain Sobolev spaces. For s ∈ R≥0 ∪ {∞} we
denote by Hs(Ω;C) the C-valued distributions on Ω whose derivatives up to order s
are in L2(Ω;C). By Hs

loc(Ω;C) we denote the space of such distributions having this
property on compact subsets of Ω. Then Hörmander proves the following result.

3.4.3 Theorem (The solution to the ∂̄-problem in Hs) If s ∈ R≥0 ∪ {∞} and Ω ⊆ Cn is
pseudoconvex and if f is a form of bidegree (0, r + 1) with coefficients in Hs

loc(Ω;C) and for
which ∂̄f = 0, then there exists a form u of bidegree (0, r) on Ω such that ∂̄u = f (with
derivatives understood in the distributional sense).

One now uses the Sobolev embeddings Hs+2n
loc (Ω;C) ⊆ Cs(Ω;C) for Ω ⊆ Cn to arrive

at the following result.
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3.4.4 Corollary (The solution to the ∂̄-problem in C∞) If Ω ⊆ Cn is pseudoconvex and if f
is a form of bidegree (0, r + 1) with coefficients in C∞(Ω;C) and for which ∂̄f = 0, then there
exists a form u of bidegree (0, r) on Ω such that ∂̄u = f.

This last version of the solution to the ∂̄-problem can be used to solve the Levi
problem as follows.

3.4.5 Theorem (Solution to the Levi problem) Let Ω ⊆ Cn be a domain such that, for every
form f of bidegree (0, r + 1) with coefficients in C∞(Ω;C) and for which ∂̄f = 0, there exists a
form u of bidegree (0, r) on Ω such that ∂̄u = f. Then Ω is a domain of holomorphy.

In particular, if Ω is pseudoconvex, it is a domain of holomorphy.
Proof The statement holds with n = 1 since every open set is both a domain of holomorphy
and pseudoconvex. Suppose that the theorem holds for n ∈ {1, . . . , k − 1} and let Ω ⊆ Ck

satisfy the hypotheses of the theorem.
Let C ⊆ Ω be an open convex set such that bd(C) ∩ bd(Ω) , ∅. Let ẑ ∈ bd(C) ∩ bd(Ω)

and, by making an elementary change of coordinates, suppose that ẑ = 0 and that

C0 = {z ∈ C | zk = 0} , ∅.

Since C is convex, 0 ∈ bd(C0) and so 0 ∈ bd(Ω0), where

Ω0 = {z ∈ Ω | zk = 0} , ∅.

Let ι : Ω0 → Ω be the inclusion and let π : Ck
→ Ck−1 be the projection onto the first k − 1

components. We can thus naturally identify Ω0 with π(Ω0) ⊆ Ck−1. Denote

A = {z ∈ Ω | π(z) < Ω0},

and note that A is closed in Ω by continuity of π. Note that Ω0 and A are thus disjoint
closed subsets of Ω and, by the Tietze Extension Theorem, we can find φ ∈ C∞(Ω) such
that φ(z) = 1 for z in a neighbourhood of Ω0 and φ(z) = 0 for z in a neighbourhood of A.
For a form f0 of bidegree (0, r) on Ω0 we easily and directly verify that ι∗(φπ∗ f0) = f0 since
φ is equal to 1 on Ω0. Now suppose that f0 satisfies ∂̄ f0 = 0. Consider the form of bidegree
(0, r + 1) on Ω defined by

z 7→ z−1
k ∂̄φ(z) ∧ π∗ f0(z),

which is well-defined since ∂̄φ vanishes on Ω0 as φ is constant on Ω0. One immediately
verifies that applying ∂̄ to this form gives zero since ∂̄ f0 = 0 and since ∂̄ ◦ ∂̄ = 0. Therefore,
by the hypotheses of the theorem, there exists a form α of bidegree (0, r) on Ω such that

∂̄α(z) = z−1
k ∂̄φ(z) ∧ π∗ f0(z).

If we take
f (z) = φ(z)π∗ f0(z) − zkα(z),

we then see that ∂̄ f = 0. We also immediately have ι∗ f = f0.
We have proved that, given a form f0 of bidegree (0, r) on Ω0 satisfying ∂̄ f0 = 0, there

exists a form f of bidegree (0, r) on Ω such that ∂̄ f = 0 and ι∗ f = f0. By the hypotheses of
the theorem, let u be a form of bidegree (0, r−1) on Ω be such that ∂̄u = f . Then, if u0 = ι∗u,

∂̄u0 = ι∗∂̄u = ι∗ f = f0.
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By the induction hypothesis, Ω0 is a domain of holomorphy. Thus there exists g0 ∈ Chol(Ω0)
that cannot be extended to any neighbourhood of cl(C0). Note that ∂̄g0 = 0. By our
constructions above, there exists g ∈ Chol(Ω) be such that ι∗g = g0, and note that g
cannot be extended to any neighbourhood of C. This shows that Ω is indeed a domain of
holomorphy.

The final assertion of the theorem follows from Corollary 3.4.4. �

3.5 A summary of domains of holomorphy

In this section we pull together the previous results in this chapter and summarise
their interconnections and consequences.

3.5.1 Characterisations of domains of holomorphy

Thus far in this section we have presented many different properties of domains in
Cn, and we have explored some connections between them. In this section we show
that all of these properties are, in fact, equivalent. There are many other equivalent
statements, and indeed some of these are contained in the preceding sections, but we
do not clutter our statement here with all possible characterisations, but only the ones
that are somehow important. Krantz [1992] gives twenty-six properties of an open
subset of Cn equivalent to the set being a domain of holomorphy.

We state eight such equivalent conditions.

3.5.1 Theorem (Equivalent characterisations of domains of holomorphy) For a domain
Ω ⊆ Cn, the following statements are equivalent:

(i) Ω is a domain of holomorphy;
(ii) Ω is holomorphically convex (the Cartan–Thullen Theorem);
(iii) Ω possesses a singular function;
(iv) Ω is weakly pseudoconvex;
(v) Ω is strongly pseudoconvex;
(vi) − log δΩ is plurisubharmonic;
(vii) for each z ∈ bd(Ω), there exists a neighbourhood V of z such that Ω ∩ V is a domain of

holomorphy.
Moreover, if Ω has a regular boundary of class C2-boundary, then the preceding seven state-
ments are equivalent to the following one:
(viii) Ω is Levi pseudoconvex.

Proof (i) =⇒ (ii) This is Theorem 3.1.10.
(ii) =⇒ (iii) This is Theorem 3.1.13.
(iii) =⇒ (i) This follows from the definitions.
(i) =⇒ (iv) This is Theorem 3.3.8.
(iv) =⇒ (v) This follows from Lemma 3.3.7.
(v) =⇒ (i) This follows from the fact that the Levi problem has been solved.
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(i) =⇒ (vi) This is Theorem 3.2.18.
(vi) =⇒ (iv) This follows since, in the proof of Theorem 3.3.8, we showed that z 7→

max{‖z‖2,− log δΩ(z)}was a continuous plurisubharmonic exhaustion function if − log δΩ

was plurisubharmonic.
(vii) ⇐⇒ (iv) This is Theorem 3.3.18, given that being a domain of holomorphy is

equivalent to weak pseudoconvexity.
(iv)⇐⇒ (viii) This is Theorem 3.3.20. �

The equivalence of an open set being a domain of holomorphy and holomorphically
convex was proved first by Cartan and Thullen [1932]. As we have done, they proved
this by showing that a holomorphically convex set possesses a singular function. The
equivalence of an open set being a domain of holomorphy and being pseudoconvex
was first proved in full generality by Oka [1953], Bremermann [1953], and Norguet
[1954].

3.5.2 Properties of domains of holomorphy

In this section we merely collect properties for domains of holomorphy that follow
from our some of our various characterisations of domains of holomorphy, and facts
we proved that derive from these characterisations.

3.5.2 Proposition (Basic properties of domains of holomorphy) The following statements
hold:

(i) if Ω ⊆ Cn and ∆ ⊆ Cm are domains of holomorphy, then Ω ×∆ ⊆ Cn
×Cm is a domain

of holomorphy;
(ii) if Ω ⊆ Cn and ∆ ⊆ Cm are domains of holomorphy and if Φ : Ω→ Cm is holomorphic,

thenΦ−1(∆) is domain of holomorphy;
(iii) if (Ωa)a∈A is a family of domains of holomorphy in Cn for which int(∩a∈AΩa) , ∅, then

each connected component of int(∩a∈AΩa) , ∅ is a domain of holomorphy;
(iv) if (Ωj)j∈Z>0 is a sequence of domains of holomorphy in Cn for which Ωj ⊆ Ωj+1, j ∈ Z>0,

then ∪j∈ZΩj is a domain of holomorphy (the Behnke–Stein Theorem).
Proof (i) This follows from Proposition 3.3.10(i) along with Theorem 3.5.1.

(ii) This follows from Proposition 3.3.10(ii) along with Theorem 3.5.1.
(iii) This follows from Proposition 3.1.9(iii) along with Theorem 3.5.1.
(iv) This follows from Proposition 3.3.10(iv) along with Theorem 3.5.1. �

Part (iv) of the preceding result was proved by Behnke and Stein [1939].
The following result is one of the first instances we see of how domains of holomor-

phy are so important in practice. The main point is that, in domains of holomorphy,
one has a great deal of freedom in choosing holomorphic functions.

3.5.3 Theorem (Interpolation in domains of holomorphy) If Ω ⊆ Cn is a domain of holo-
morphy, if (zj)j∈Z>0 is a sequence with no accumulation points, and if (aj)j∈Z>0 is a sequence in
C, then there exists f ∈ Chol(Ω) such that f(zj) = aj for every j ∈ Z>0.

Proof This follows from Theorem 3.1.12, along with Theorem 3.5.1. �
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Levi, E. E. [1910] Studii sui puncti singolari essenziale delle funzioni analitiche di due o pi/a
variabili complesse, Annali di Matematica Pura ed Applicata. Serie III, 17, 61–87.
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