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Chapter 4

Holomorphic and real analytic differential
geometry

In this chapter we develop the basic theory of holomorphic and real analytic man-
ifolds. We will be assuming that the reader has a solid background in basic smooth
differential geometry such as one would get from an introductory graduate course on
the subject, or from texts such as [Abraham, Marsden, and Ratiu 1988, Boothby 1986,
Lee 2002, Warner 1983]. While a reader could, in principle, cover the basic of smooth
differential geometry by replacing “holomorphic or real analytic” in our treatment
with “smooth,” we do not recommend doing so. Very often holomorphic differential
geometry is included in texts on several complex variables. Such texts, and ones we
will refer to, include [Fritzsche and Grauert 2002, Gunning and Rossi 1965, Hörmander
1973, Taylor 2002]. There is a decided paucity of literature on real analytic differential
geometry. A good book on basic real analyticity is [Krantz and Parks 2002].

4.1 C-linear algebra

Many of the constructions we shall make in complex differential geometry are done
first on tangent spaces, and then made global by taking sections. In this section we
collect together the constructions from C-linear algebra that we shall use. Some of
what we say is standard and can be found in a text on linear algebra [e.g., Axler 1997].
A good presentation of the not completely standard ideas can be found in the book
of Huybrechts [2005]. In this section, since we will be dealing concurrently with R-
and C-vector spaces and bases for these, we shall use the expressions “R-basis” and
“C-basis” to discriminate which sort of basis we are talking about.

4.1.1 Linear complex structures

To study the structure of complex manifolds, it is convenient to first look at linear
algebra.

Let us first consider Cn as a R-vector space and see how the complex structure can
be represented in a real way. The general feature we are after is the following.

4.1.1 Definition (Linear complex structure) A linear complex structure on aR-vector space
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V is an endomorphism J ∈ EndR(V) such that J ◦ J = − idV. The conjugate linear complex
structure associated to a linear complex structure J is the linear complex structure−J. •

Sometimes, for emphasis, if V is a R-vector space with a linear complex structure
J, we shall denote by V the same vector space, but with the conjugate linear complex
structure −J.

Let us give a useful normal form for linear complex structures.

4.1.2 Proposition (Normal form for linear complex structures) If J is a linear complex
structure on the n-dimensional R-vector space V then n is even, say n = 2m, and there exists
a R-basis (e1, . . . , em, em+1, . . . , e2m) such that the matrix representative of J in this basis is[

0m×m −Im

Im 0m×m

]
.

Proof Suppose that λ is an eigenvalue for the complex structure J with eigenvector v.
Then

J(v) = λv =⇒ −v = J ◦ J(v) = λ2v

and so −λ2 = −1 and thus the eigenvalues of J are ±i. Moreover, since J2 + idV = 0, the
minimal polynomial of J is λ2 + 1 and so J is diagonalisable over C. An application of
the real Jordan normal form theorem [Shilov 1977, §6.6] gives the existence of a R-basis
( f1, . . . , fm, fm+1, . . . , f2m) such that the matrix representative of J in this basis is

J2 · · · 02×2
...

. . .
...

02×2 · · · J2

 ,
where

J2 =

[
0 −1
1 0

]
.

If we take e j = f2 j−1 and e j+m = f2 j, j ∈ {1, . . . ,m}, the result follows. �

Note that if (β1, . . . , βm, βm+1, . . . , β2m) is theR-basis dual to a basis as in the preceding
proposition, we have

J =

m∑
j=1

em+ j ⊗ β
j
−

m∑
j=1

e j ⊗ β
m+ j.

We shall call a R-basis for V with this property a J-adapted basis.

4.1.3 Examples (Linear complex structures and C-vector spaces)
1. If we take the R-vector space V = Cm, then the linear complex structure is defined

by J(v) = iv. A R-basis for the R-vector space Cn in which the matrix representative
J takes the normal form of Proposition 4.1.2 is given by

e1 = (1, . . . , 0), . . . , em = (0, . . . , 1), em+1 = (i, . . . , 0), . . . , e2m = (0, . . . , i).
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Thus the linear complex structure in this case is given by

J(x1 + iy1, . . . , xm + iym) = (−y1 + ix1, . . . ,−ym + ixm),

which is, of course, just multiplication by i.
We can expand on this further.

2. On a finite-dimensional R-vector space with a linear complex structure we can
define a C-linear structure as follows. If a + ib ∈ C for a, b ∈ R and if v ∈ V, we take

(a + ib)v = av + bJ(v).

One readily verifies that this does indeed define the structure of a C-vector space
on V.
Conversely, if V is a C-vector space, we can certainly think of it as a R-vector space.
We can then define J ∈ EndR(V) by J(v) = iv, and this certainly define a linear
complex structure on V. Now one has two C-vector space structures on V, the
prescribed one and the one coming from J as in the preceding paragraph. This are
very easily seen to agree. (But be careful, we shall shortly see cases of vector spaces
with two C-vector space structures that do not agree.)
The preceding discussion shows that there is, in fact, a natural correspondence
between R-vector spaces with linear complex structures and C-vector spaces. This
is a sometimes confusing fact. To overcome some of this confusion, we shall
generally deal with real vector spaces and consider the C-vector space structure as
arising from a linear complex structure. •

Now we consider the complexification VC = C ⊗R V of V with JC ∈ EndC(V) the
resulting endomorphism of VC defined by requiring that JC(a ⊗ v) = a ⊗ J(v) for a ∈ C
and v ∈ V. Note that if v ∈ VC we can write v = 1 ⊗ v1 + iv2 for some v1, v2 ∈ V. We can
define complex conjugation in VC by

a ⊗ v = ā ⊗ v, a ∈ C, v ∈ V.

We make the following definition.

4.1.4 Definition (Holomorphic and antiholomorphic subspace) Let J be a linear complex
structure on a finite-dimensional R-vector space V.

(i) The holomorphic subspace for J is the C-subspace V1,0 of VC given by

V1,0 = ker(JC − i idVC).

(ii) The antiholomorphic subspace for J is the C-subspace V0,1 of VC given by

V0,1 = ker(JC + i idVC). •

The “holomorphic” language here is a little unmotivated in the linear case, but will
hopefully become clearer as we move on.

We then have the following properties of VC, V1,0, and V0,1.
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4.1.5 Proposition (Complexification of linear complex structures) Let J be a linear complex
structure on a finite-dimensional R-vector space V. The following statements hold:

(i) VC = V1,0
⊕ V0,1 (direct sum of C-vector spaces);

(ii) {1 ⊗ v | v ∈ V} = {u ∈ VC | ū = u};
(iii) V1,0 = {v̄ ∈ VC | v ∈ V0,1

};
(iv) the map σ+ : V→ V1,0 defined by

σ+(v) =
1
2

(1 ⊗ v − i ⊗ J(v))

is a isomorphism of C-vector spaces, meaning that

σ+(J(v)) = iσ+(v);

(v) the map σ− : V→ V0,1 defined by

σ−(v) =
1
2

(1 ⊗ v + i ⊗ J(v))

is an isomorphism of C-vector spaces, meaning that

σ−(−J(v)) = iσ−(v);

Proof (i) Note that JC is diagonalisable since its minimal polynomial has no repeated
factors. Because V1,0 and V0,1 are the eigenspaces for the eigenvalues i and −i, respectively,
we have

VC = V1,0
⊕ V0,1.

(ii) For v ∈ VC we can write v = 1 ⊗ v1 + i ⊗ v2 for v1, v2 ∈ V. Then v̄ = v if and only if
v2 = 0, and from this the result follows.

(iii) We compute

V1,0 = {v ∈ VC | JC(v) = iv}
= {1 ⊗ v1 + i ⊗ v2 ∈ VC | 1 ⊗ J(v1) + i ⊗ J(v2) = i ⊗ v1 − 1 ⊗ v2}

= {1 ⊗ v1 + i ⊗ v2 ∈ VC | 1 ⊗ J(v1) − i ⊗ J(v2) = −i ⊗ v1 − 1 ⊗ v2}

= {1 ⊗ v1 − i ⊗ v2 ∈ VC | 1 ⊗ J(v1) + i ⊗ J(v2) = −i ⊗ v1 + 1 ⊗ v2}

= {v̄ ∈ VC | JC(v) = −iv} = {v̄ ∈ VC | v ∈ V0,1
},

as desired.
(iv) First of all, note that u ∈ image(σ+) if and only if JC(u) = iu, i.e., if and only if

u ∈ V1,0. Thus σ+ is well-defined and surjective. That it is an isomorphism follows from
a dimension count. That σ+ is a C-isomorphism in the sense stated follows via direct
verification.

(v) The proof here goes much like that for the preceding part of the proof. �
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As we warned in Example 4.1.3–2, we have in VC a case of a R-vector space
with two C-vector space structures. The first comes from the fact that VC is the
complexification of a R-vector space, and is defined by i(a ⊗ v) = (ia) ⊗ v for a ∈ C and
v ∈ V. The other comes from the fact that the real endomorphism JC is a linear almost
complex structure on VC and so defines a C-vector space structure by i(a⊗ v) = a⊗ J(v)
for a ∈ C and v ∈ V. From Proposition 4.1.5 we see that these two C-vector space
structures agree on V1,0 but are conjugate on V0,1. Unless we say otherwise, the C-
vector space structure we use on VC will be that coming from the fact that VC is the
complexification of the R-vector space V.

We can use linear complex structures to characterise C-linear maps between vector
spaces with such structures.

4.1.6 Proposition (C-linear maps between vector spaces with linear complex struc-
tures) Let V1 and V2 be finite-dimensional R-vector spaces with linear almost complex
structures J1 and J2, respectively. If A ∈ HomR(V1,V2) with AC ∈ HomC(V1,C; V2,C) the
complexification of A defined by AC(a ⊗ v) = a ⊗ A(v) for a ∈ C and v ∈ V1. Then the
following statements are equivalent:

(i) A ∈ HomC(V1,V2) (using the C-vector space structure on V1 and V2 defined by J1 and
J2);

(ii) the diagram

V1
J1 //

A
��

V1

A
��

V2 J2

// V2

commutes;
(iii) AC(V1,0

1 ) ⊆ V1,0
2 ;

(iv) AC(V0,1
1 ) ⊆ V0,1

2 .
Proof (i)⇐⇒ (ii) This follows since, by definition, multiplication by i in V1 and V2 is given
by ivk = Jk(vk) for all vk ∈ Vk, k ∈ {1, 2}.

(iii)⇐⇒ (iv) We have

AC(v) ∈ V1,0
2 for all v ∈ V1,0

1

⇐⇒ AC(v) ∈ V0,1
2 for all v ∈ V1,0

1

⇐⇒ AC(v̄) ∈ V0,1
2 for all v ∈ V1,0

1

⇐⇒ AC(v) ∈ V0,1
2 for all v ∈ V0,1

1 ,

using Proposition 4.1.5(iii) and the fact that AC is the complexification of a R-linear map.
(ii) =⇒ (iii) Let v ∈ V1,0 so that J1,C(v) = iv. Then

J2,C ◦AC(v) = AC ◦ J1,C(v) = iAC(v),

and so AC(v) ∈ V1,0
2 .
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(iii,iv) =⇒ (ii) Let v ∈ V1,0
1 so that J1,C(v) = iv. Then

AC ◦ J1,C(v) = iAC(v) = J2,C ◦AC(v).

Similarly, AC ◦ J1,C(v) = J2,C ◦AC(v) for every v ∈ V1,0
1 . Since V1,C = V1,0

1 ⊕V0,1
2 it follows that

the diagram

V1,C
J1,C //

AC
��

V1,C

AC
��

V2,C J2,C
// V2,C

commutes. Since AC, J1,C, and J2,C are complexifications of R-linear maps, this part of the
proof is concluded. �

Let us close this section by giving basis representations for the various constructions
in this section.

4.1.7 Proposition (Basis representations for linear complex structures) Let V be a finite-
dimensional R-vector space with a linear complex structure J. Let (e1, . . . , em, em+1, . . . , e2m)
be a J-adapted R-basis for V with dual basis (β1, . . . , βm, βm+1, . . . , β2m). Then the following
statements hold:

(i) the vectors 1 ⊗ ej + i ⊗ 0, j ∈ {1, . . . , 2m}, form a R-basis for V ⊆ VC;
(ii) the vectors 1

2 (1 ⊗ ej − i ⊗ em+j), j ∈ {1, . . . ,m}, form a C-basis for V1,0;
(iii) the vectors 1

2 (1 ⊗ ej + i ⊗ em+j), j ∈ {1, . . . ,m}, form a C-basis for V0,1.
Proof (i) This is clear since V is the subspace of VC given by the image of the map v 7→ 1⊗v.

(ii) We compute

JC(1 ⊗ e j − i ⊗ em+ j) − i(1 ⊗ e j − i ⊗ em+ j) = 1 ⊗ J(e j) − i ⊗ J(em+ j) − i ⊗ e j − 1 ⊗ em+ j

= 1 ⊗ em+ j + i ⊗ e j − i ⊗ e j − 1 ⊗ em+ j = 0,

and so 1
2 (1⊗ e j − i⊗ em+ j) ∈ ker(JC − i idVC) = V1,0. That the stated vector form a C-basis for

V1,0 follows from a dimension count.
(iii) This is a similar computation to the preceding. �

Note that if (e1, . . . , em, em+1, . . . , e2m) is a J-adaptedR-basis for the vector space V with
linear complex structure J, then (σ+(e1), . . . , σ+(em)) and (σ−(e1), . . . , σ−(em)) are C-bases
for V1,0 and V0,1, respectively.

4.1.2 Determinants of C-linear maps

In the preceding section we saw that C-vector spaces are realised as R-vector
spaces with a certain R-endomorphism. We also saw in Proposition 4.1.6 that this
real structure allows us to characterise C-linear maps. Since a C-linear map is also
R-linear, a C-linear endomorphism has a real and complex determinant. In this section
we establish the relationship between these two determinants. This will be useful to us
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in Section 4.1.6 when we look at orientations on R-vector spaces with linear complex
structures.

We first establish an interesting result of Silvester [2000]. To do so, let us set us the
appropriate framework. We let F be a field and Fr×s be the set of r × s matrices with
values in F. Let m,n ∈ Z>0. An (m, n) block matrix is an element of Fmn×mn for which
we recognise the following block structure:

A =


a1 · · · a1n
...

. . .
...

an1 · · · ann

 , (4.1)

where a jk ∈ Fm×m, j, k ∈ {1, . . . ,n}. Now let R ⊆ Fm×m be a subring of Fm×m and
denote by R(n) the subset of (m,n) block matrices of the form (4.1) for which a jk ∈ R,
j, k ∈ {1, . . . ,n}. Note that elements of R(n) can be regarded naturally as elements of
the set Rn×n, the set of n × n matrices with elements in R. Thus we have a bijection
ιk : R(n) → Rn×n. We also have a few determinant functions floating around, and let
us give distinct notation for these. For k ∈ Z>0 we denote by det k

F : Fk×k
→ F and

det k
R : Rk×k

→ R the usual determinant functions. With this notation, we have the
following result.

4.1.8 Lemma (Determinants for block matrices) Let F be a field, let m,n ∈ Z>0, and let
R ⊆ Fm×m be a commutative subring of matrices. We then have

det mn
F (A) = det m

F (det n
R(ιn(A)))

for every A ∈ R(n).
Proof The proof is by induction on n. For n = 1 the result is clear. Now let A ∈ R(n) for
n ≥ 2. Let us write

A =

[
a11 a12
a21 a22

]
for a11 ∈ R(n−1)×(n−1), a12 ∈ R(n−1)×1, a21 ∈ R1×(n−1), and a22 ∈ R. A direct computation,
using the fact that R is commutative, gives

A
[
a22In−1 0(n−1)×1
−a21 1R

]
=

[
a22a11 − a12a21 a12

01×(n−1) a22

]
.

We then have
(det n

RA)an−1
22 = (det n−1

R (a22a11 − a12a21))a22

which gives

det m
F (det n

RA) det m
F (a22)n−1 = det m

F (det n−1
R (a22a11 − a12a21)) det m

F (a22). (4.2)

We also have

(det mn
F A)(det m

F (a22))n−1 = (det m(n−1)
F (a22a11 − a12a21)) det m

F (a22). (4.3)
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By the induction hypothesis,

det m(n−1)
F (a22a11 − a12a21) = det m

F (det n−1
R (a22a11 − a12a21)). (4.4)

Combining equations (4.2)–(4.4) gives

(det mn
F A − det m

F (det n
RA))(det m

F (a22))n−1 = 0F.

If det m
F (a22) , 0F then the lemma follows. Otherwise, we make a small modification to the

computations above by defining

Aξ =

[
a11 a12
a21 ξIm + a22

]
for ξ ∈ F. We think of this as being a matrix with entries in the polynomial ring F[ξ] or as
a block matrix with blocks in the polynomial ring R[ξ]. Upon doing so, the computations
above may be carried out in the same way to give

(det mn
F[ξ]Aξ − det m

F[ξ](det n
R[ξ]Aξ))(det m

F[ξ](ξIm + a22))n−1 = 0F[ξ].

Note that (det m
F[ξ](ξIm + a22))n−1 is a monic polynomial and so we conclude that

det mn
F[ξ]Aξ − det m

F[ξ](det n
R[ξ]Aξ) = 0F[ξ].

Evaluating this polynomial at ξ = 0 gives the result. �

With this result we have the following.

4.1.9 Proposition (Real and complex determinants) If V is a R-vector space with a linear
complex structure J and if A ∈ EndC(V; V), then det RA = |det CA|2.

Proof Let (e1, . . . , em, em+1, . . . , e2m) is a J-adapted (real) basis for V, then (e1, . . . , em) is a
C-basis. We let AR be the real matrix representative of A with respect to the R-basis
(e1, em+1, . . . , em, e2m). We also denote by AC the complex matrix representative of A with
respect to the C-basis (e1, . . . , em). We let R ⊆ R2m×2m denote the subring of matrices having
the block form 

a11 . . . a1m
...

. . .
...

am1 · · · amm

 ,
where each of the 2 × 2 matrices a jk, j, k ∈ {1, . . . ,m}, has the form

az =

[
x y
−y x

]
for x, y ∈ R; associated to each such matrix is the complex number z = x + iy. Obviously,

det Raz = |z|2. (4.5)

One directly verifies that the map z 7→ az is a ring isomorphism. Since complex multipli-
cation is commutative, it follows that R is a commutative subring of Rn×n. Also note that
AR ∈ R. Since z 7→ az is a ring isomorphism, det RAR = adet AC . By Lemma 4.1.8 and (4.5)
we have

det AR = det R det RAR = |det AC|
2,

which is the result. �
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4.1.3 Duality and linear complex structures

Next we study dual spaces of R-vector spaces with linear complex structures. Since
we will consider both R- and C-vector space structures, we need to be careful with
notation. Indeed, there are many ways to represent the dual of a complexification. . . or
is it the complexification of a dual. . . By (V∗)C we denote the complexification of the
R-vector space V∗, i.e.,

(V∗)C = C ⊗R V∗.

By (VC)∗ we denote the complex dual of VC, i.e.,

(VC)∗ = HomC(VC;C).

We also note that the set HomR(V;C) has a natural C-vector space structure with scalar
multiplication given by

(aα)(v) = a(α(v)), a ∈ C, α ∈ HomR(V;C), v ∈ V.

With this structure in mind, we have the following result.

4.1.10 Lemma (Complexification and duality) For a R-vector space V we have natural R-vector
space isomorphisms

(V∗)C ' (VC)∗ ' HomR(V;C).
Proof We can write α ∈ (V∗)C as α = 1 ⊗ α1 + i ⊗ α2 for α1, α2 ∈ V∗. We then have the
isomorphism

(V∗)C 3 α1 + iα2 7→ α1 + iα2 ∈ HomR(V;C).

The isomorphism from HomR(V;C) to (VC)∗ is given by assigning to α ∈ HomR(V;C) the
element ᾱ ∈ (VC)∗ defined by

ᾱ(a ⊗ v) = aα(v).

We leave to the reader the mundane chore of checking that these are well-defined isomor-
phisms of R-vector spaces. �

Because of the lemma we will simply write V∗C in place of either (VC)∗, (V∗)C, or
HomR(V;C). We shall most frequently think of V∗C as either C ⊗R V∗ or HomR(V;C).
In the former situation, an element of V∗C is written as α = 1 ⊗ α1 + i ⊗ α2 and, in
the latter, an element of V∗C is written as α = α1 + iα2. These two representations are
unambiguously related of course. But the reader should be warned that we shall use
both, on occasion.

With respect to this notation, we have the following result.

4.1.11 Proposition (Linear complex structures and duality) Let V be a finite-dimensional
R-vector space with a linear complex structure J. Then

(i) J∗ is a linear complex structure on V∗ and,
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(ii) with respect to the linear complex structure J∗, we have isomorphisms

(V∗)1,0 = {α ∈ V∗C | α(v) = 0 for every v ∈ V0,1
} ' (V1,0)∗

and
(V∗)0,1 = {α ∈ V∗C | α(v) = 0 for every v ∈ V1,0

} ' (V0,1)∗;

(iii) thinking of V∗C ' HomR(V;C),

(V∗)1,0 = HomC(V;C);

(iv) thinking of V∗C ' HomR(V;C),

(V∗)0,1 = HomC(V;C).

Proof (i) We have, for α ∈ V∗ and v ∈ V,

〈J∗ ◦ J∗(α); v〉 = 〈J∗(α); J(v)〉 = 〈α; J ◦ J(v)〉 = 〈−α; v〉,

and so J∗ ◦ J∗(α) = −α, as desired.
(ii) We have

(V∗)1,0 = {α ∈ V∗C | J∗(α) = iα}
= {α ∈ V∗C | 〈J

∗(α); v〉 = 〈iα; v〉 for all v ∈ V}
= {α ∈ V∗C | 〈α; (J − i idVC)(v)〉 = 0 for all v ∈ V}

= {α ∈ V∗C | 〈α; v〉 = 0 for all v ∈ V0,1
},

using the fact that image(J − i idVC) = V0,1. One similarly proves that

(V∗)0,1 = {α ∈ V∗C | 〈α; v〉 = 0 for all v ∈ V1,0
}.

The fact that (V∗)1,0
' (V0,1)∗ and (V∗)0,1

' (V1,0)∗ follows from the following fact whose
easy proof we leave to the reader: If U = V ⊕W, then

U∗ = ann(W) ⊕ ann(V) ' V∗ ⊕W∗.

(iii) We need to show that α ∈ (V∗)1,0
⊆ HomR(V;C) if and only if α(iv) = iα(v) for every

v ∈ V. Suppose first that α ∈ (V∗)1,0. Then

〈α; iv〉 = 〈α; J(v)〉 = 〈J∗(α); v〉 = 〈iα; v〉,

or, in different notation α(iv) = iα(v), this holding for every v ∈ V. Reversing the argument
gives α ∈ (V∗)1,0 if α(iv) = iα(v) for every v ∈ V.

(iv) As in the preceding part of the proof, we must show that α ∈ (V∗)0,1
⊆ HomR(V;C)

if and only if α(−iv) = iα(v) for every v ∈ V. And, still along the lines of the preceding part
of the proof, this follows from the computation

〈α;−iv〉 = 〈α;−J(v)〉 = 〈−J∗(α); v〉 = 〈iα; v〉,

this holding if and only if α ∈ (V∗)0,1. �

Let us look at basis representations for duals.
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4.1.12 Proposition (Dual basis representations for linear complex structures) Let V be a
finite-dimensional R-vector space with a linear complex structure J. Let (e1, . . . , em, em+1, e2m)
be a J-adapted R-basis for V with dual basis (β1, . . . , βm, βm+1, . . . , β2m). Then the following
statements hold:

(i) the vectors 1 ⊗ βj + i ⊗ βm+j, j ∈ {1, . . . ,m}, form a C-basis for (V∗)1,0;
(ii) the vectors 1 ⊗ βj

− i ⊗ βm+j, j ∈ {1, . . . ,m}, form a C-basis for (V∗)0,1.
Proof (i) Here we note that

〈1 ⊗ β j + i ⊗ βm+ j; 1 ⊗ ek + i ⊗ em+k〉 = 0

for every j, k ∈ {1, . . . ,m}. Thus the vectors 1⊗ β j + i⊗ βm+ j are a C-basis for the annihilator
of V0,1, and the result follows from Proposition 4.1.11(ii).

(ii) This follows similarly to the preceding part of the proof. �

4.1.4 Exterior algebra on vector spaces with linear complex structures

In Section F.3 we define the algebras
∧

(V) and T
∧

(V) for a vector space V over an
arbitrary field. These algebras are, in fact, isomorphic and the natural products on each
space are in correspondence with one another by Corollary F.3.15. For this reason,
we shall use the notation

∧
(V), even if we think of the elements as being alternating

tensors. We shall also denote the product by “∧.”
Now let V be a finite-dimensional R-vector space with linear complex structure J.

Motivated by our constructions with duals from the preceding section, we denote∧m(V∗C) = C ⊗R
∧m(V∗).

Thus an element ω ∈
∧m(V∗C) can be written as ω = ω1 + iω2 for ω1, ω2 ∈

∧m(V∗).
More or less exactly as with duals in the preceding section, cf. Lemma 4.1.10, we have
alternative characterisations of

∧m(V∗C) as (1) the set of R-multilinear alternating maps
from V to C and (2) the C-multilinear maps on the C-vector space VC. For concreteness
and future reference, let us indicate how ω = 1⊗ω1 + i⊗ω2 ∈

∧2(V∗C) is to be regarded
as a C-multlinear map on VC. To do so, let 1 ⊗ u1 + i ⊗ u2, 1 ⊗ v1 + i ⊗ v2 ∈ VC and note
that

(1 ⊗ ω1 + i ⊗ ω2)(1 ⊗ u1 + i ⊗ u2, 1 ⊗ v1 + i ⊗ v2) = (ω1(u1, v1) − ω1(u2, v2))
− (ω2(u1, v2) + ω2(u2, v1)) + i((ω2(u1, v1) − ω2(u2, v2)) + (ω1(u1, v2) + ω1(u2, v1))), (4.6)

using R-multilinearity and the definition of tensor product.
If ω ∈

∧m(V∗C) we define ω̄ ∈
∧m(V∗C) by

ω̄(v1, . . . , vm) = ω(v̄1, . . . , v̄m),

where we think of ω as a C-multilinear map on VC. An element ω ∈
∧m(V∗C) is real if

ω̄ = ω. We have the following characterisation of real forms.
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4.1.13 Lemma (Characterisation of real exterior forms) An exterior form ω ∈
∧m(V∗C) is real

if and only if ω = 1 ⊗ ω′ for some ω′ ∈
∧m(V∗).

Proof Suppose that ω = 1 ⊗ ω1 + i ⊗ ω2 is real. Then, for any v1, . . . , vm ∈ V, we have

ω̄ = ω,

=⇒ ω̄(1 ⊗ v1, . . . , 1 ⊗ vm) = ω(1 ⊗ v1, . . . , 1 ⊗ vm),
=⇒ ω1(v1, . . . , vm) − iω2(v1, . . . , vm) = ω1(v1, . . . , vm) + iω2(v1, . . . , vm).

As this must hold for all v1, . . . , vm ∈ V, we have ω2 = 0.
For the converse, suppose that ω = 1⊗ω′ for ω ∈

∧m(V∗). By C-multilinearity of ωwe
have

ω(a1 ⊗ v1, . . . , am ⊗ vm) = a1 · · · amω
′(v1, . . . , vm)

from which we immediately deduce that

ω̄(a1 ⊗ v1, . . . , am ⊗ vm) = ā1 · · · āmω
′(v1, . . . , vm) = ω(a1 ⊗ v1, . . . , am ⊗ vm).

Universality of the tensor product gives the result. �

We are interested in distinguished spaces of alternating tensors that are adapted to
the linear complex structure.

4.1.14 Definition (Alternating tensors of bidegree (k, l)) Let V be a R-vector space with
linear complex structure J and let k, l,m ∈ Z≥0 satisfy m = k + l. An alternating tensor
ω ∈

∧m(V∗C) has bidegree (k, l) if

ω(av1, . . . , avm) = akālω(v1, . . . , vm)

for all a ∈ C and v1, . . . , vm ∈ V. The set of alternating tensors with bidegree (k, l) is
denoted by

∧k,l(V∗C). By convention,
∧0,0(V∗C) = C. •

Let us state a few basic properties of such forms.

4.1.15 Proposition (Properties of alternating forms with bidegree) Let V be a R-vector space
with linear complex structure J and let k, l,k′, l′,m,m′ ∈ Z≥0 satisfy m = k+l and m′ = k′+l′.
Then the following statements hold:

(i)
∧k,l(V∗C) ∩

∧k′,l′(V∗C) = {0} unless k = k′ and l = l′;

(ii)
∧k,l(V∗C) is a C-subspace of

∧m(V∗C);

(iii) if ω ∈
∧k,l(V∗C) then ω ∈

∧l,k(V∗C);

(iv) if ω ∈
∧k,l(V∗C) and ω′ ∈

∧k′,l′(V∗C), then ω ∧ ω′ ∈
∧k+k′,l+l′(V∗C);

(v)
∧m(V∗C) =

⊕
k,l

k+l=m

∧k,l(V∗C).



28/02/2014 4.1 C-linear algebra 13

Proof (i) We can obviously suppose that k+l = k′+l′. Suppose thatω ∈
∧k,l(V∗C)∩

∧k′,l′(V∗C)
is nonzero and let v1, . . . , vm ∈ V be such that ω(v1, . . . , vm) , 0. We then have

akālω(v1, . . . , vm) = ak′ āl′ω(v1, . . . , vm)

for every a ∈ C. Taking a = eiθ for θ ∈ R, we must have eiθ(k−l) = eiθ(k′−l′). This implies that
k − l − (k′ − l′) is an integer multiple of 2π, and so must be zero.

Proofs of parts (ii), (iii), and (iv) consist of simple verifications.
(v) By part (i) it suffices to show that if ω ∈

∧m(V∗C) then we can write

ω =
∑
k,l

k+l=m

ωk,l

for some ωk,l
∈

∧k,l(V∗C). This we show using a basis for V. Thus we let
(e1, . . . , en, en+1, . . . , e2n) be a J-adaptedR-basis for V with dual basis (β1, . . . , βn, βn+1, . . . , β2n).
By Propositions 4.1.12 and F.3.5, the alternating forms

(1 ⊗ βa1 + i ⊗ βn+a1) ∧ · · · ∧ (1 ⊗ βak + i ⊗ βn+ak)

∧ (1 ⊗ βb1 − i ⊗ βn+b1) ∧ · · · ∧ (1 ⊗ βbl − i ⊗ βn+bl),
1 ≤ a1 < · · · < ak ≤ n, 1 ≤ b1 < · · · < bl ≤ n, k + l = m,

form a R-basis for
∧m(V∗C). Since the alternating forms in the preceding expression with k

and l fixed have bidegree (k, l), the result follows. �

An alternative and equivalent way to understand the subspaces
∧k,l(V∗C) is by the

formula ∧m(V∗C) =
∧m((V∗)1,0

⊕ (V∗)0,1) =
⊕

k,l
k+l=m

∧k((V∗)1,0) ⊗
∧l((V∗)0,1),

which is Lemma 1 from the proof of Proposition F.3.5. With this as backdrop, we can
define ∧k,l(V∗C) =

∧k((V∗)1,0) ⊗
∧l((V∗)0,1),

and this description is easily shown to be equivalent to the one we gave above; indeed,
this is contained in the proof of the preceding proposition.

4.1.5 Hermitian forms and inner products

In this section we consider the structure of an inner product on a C-vector space,
or equivalently a R-vector space with a linear complex structure. We shall adopt the
usual terminology of referring to a symmetric real bilinear map as a bilinear form. In
the complex case, the usual terminology is the following.
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4.1.16 Definition (Hermitian form and Hermitian inner product) Let V be a finite-
dimensional C-vector space. A Hermitian form on V is a map h : V × V → C with
the following properties:

(i) h(v2, v1) = h(v1, v2) for all v1, v2 ∈ V;
(ii) h(v1 + v2,u) = h(v1,u) + h(v2,u) for all u, v1, v2 ∈ V;
(iii) h(av1, v2) = a h(v1, v2) for all v1, v2 ∈ V and a ∈ C.

A map h : V×V→ C satisfying the above properties but with property (iii) replaced by

h(v1, av2) = a h(v1, v2), v1, v2 ∈ V, a ∈ C,

then h is a conjugate Hermitian form.
If we have

(iv) h(v, v) ≥ 0 for all v ∈ V
then h is positive-semidefinite and if, additionally,

(v) h(v, v) = 0 then v = 0,
then h is a Hermitian inner product. •

If h is a Hermitian form on a C-vector space V, then we can define an associated
conjugate Hermitian form h̄ in the obvious way: h̄(u, v) = h(u, v).

The following elementary result characterises Hermitian forms in a basis.

4.1.17 Lemma (Basis representations of Hermitian forms) If (e1, . . . , en) is a C-basis for a
C-vector space V, then the following statements hold:

(i) if h is a Hermitian form on V, then the matrix ĥ ∈ Cn×n defined by hjk = h(ej, ek),

j,k ∈ {1, . . . ,n}, satisfies h
T

= h;

(ii) conversely, if ĥ ∈ Cn×n satisfies h
T

= h then the map h: V × V→ C defined by

h
( n∑

j=1

ujej,
n∑

k=1

vjej

)
=

n∑
j,k=1

hjkujv̄k

is a Hermitian form.

As a consequence of the lemma, let us introduce some notation. We let (e1, . . . , en)
be a C-basis for the C-vector space V with dual basis (β1, . . . , βn). For j ∈ {1, . . . ,n}
define β̄ j

∈ HomR(V;C) by β̄ j(v) = β j(v). Note that β̄ j is antilinear and so is not an
element of HomC(V;C), but an element of HomC(V;C). In any case, we can write

h =

n∑
j,k=1

h jkβ
j
⊗ β̄k,
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understanding that this means that

h(u, v) =

n∑
j,k=1

h jkβ
j(u)β̄k(v) =

n∑
j,k=1

h jku jv̄k,

as desired.
The standard Gram–Schmidt procedure [Axler 1997, Theorem 6.20] shows that,

given a Hermitian inner product h, there exists a C-basis (e1, . . . , en) for a C-vector
space V for which

h(e j, ek) =

1, j = k,
0, j , k.

Such a basis is called orthonormal.
As we saw in Section 4.1.1, there is a natural correspondence between C-vector

spaces and R-vector spaces with linear complex structures. We shall study Hermitian
forms in the context of a finite-dimensional R-vector space V with linear complex
structure J. In this case, a Hermitian form h, being C-valued, can be written as

h(v1, v2) = g(v1, v2) − iω(v1, v2),

where g andω are R-valued R-bilinear maps on the R-vector space V. (The minus sign
is a convenient convention, as we shall see.) Let us examine the properties of g and
ω.

4.1.18 Proposition (The real and imaginary parts of a Hermitian form) Let V be a finite-
dimensional R-vector space with a linear almost complex structure J, and let h = g − iω be a
Hermitian form on V. Then the following statements hold:

(i) g is symmetric;
(ii) ω is skew-symmetric;
(iii) g(J(v1), J(v2)) = g(v1,v2) for all v1,v2 ∈ V;
(iv) ω(J(v1), J(v2)) = ω(v1,v2) for all v1,v2 ∈ V;
(v) ω(v1,v2) = g(J(v1),v2) for all v1,v2 ∈ V.
(vi) g(v1,v2) = ω(v1, J(v2)) for all v1,v2 ∈ V.

Moreover, if R-bilinear maps g and ω are given satisfying conditions (i)–(v), then the map
h: V × V→ C defined by

h(v1,v2) = g(v1,v2) − iω(v1,v2)

is a Hermitian form and is a Hermitian inner product if g is an inner product.
Proof (i) and (ii) For v1, v2 ∈ V we have

g(v2, v1) − iω(v2, v1) = h(v2, v1) = h(v1, v2) = g(v1, v2) + iω(v1, v2),



16 4 Holomorphic and real analytic differential geometry 28/02/2014

and the symmetry of g and skew-symmetry of ω follow by taking real and imaginary
parts.

(iii) For v ∈ V we have

g(J(v), J(v)) = g(J(v), J(v)) − iω(J(v), J(v)) = h(J(v), J(v))
= h(iv, iv) = h(v, v) = g(v, v) − iω(v, v) = g(v, v).

Now, for v1, v2 ∈ V we have

g(J(v1), J(v2)) = 1
2 g(J(v1) + J(v2), J(v1) + J(v2)) − 1

2 g(J(v1), J(v1)) − 1
2 g(J(v2), J(v2))

= 1
2 g(v1 + v2, v1 + v2) − 1

2 g(v1, v2) −
1
2

g(v2, v2) = g(v1, v2).

(iv) We use part (v) proved below. Using this, we compute

ω(J(v1), J(v2)) = g(J2(v1), J(v2) = −g(v1, J(v2))
= − g(J(v2), v1) = −ω(v2, v1) = ω(v1, v2).

(v) and (vi) Here we have

h(iu, v) = h(J(u), v) = g(J(u), v) − iω(J(u), v)

Since h is Hermitian we have h(iu, v) = ih(u, v) which gives

g(J(u), v) − iω(J(u), v) = ig(u, v) + ω(u, v).

Matching real and imaginary parts gives ω(u, v) = g(J(u), v) and g(u, v) = ω(v1, J(v2)), as
desired.

For the final assertion, if is clear that h as defined is R-bilinear, satisfies h(v,u) = h(u, v),
and is positive-definite if g is positive-definite. To complete the proof it suffices to prove
linearity with respect to scalar multiplication by i in the first entry. To this end we compute

h(iu, v) = h(J(u), v) = g(J(u), v) − iω(J(u), v)
= g(J ◦ J(u), J(v)) + ig(u, v)
= i(ig(u, J(v)) + g(u, v))
= i(g(u, v) + ig(J(u), J ◦ J(v)))
= i(g(u, v) − iω(u, v) = ih(u, v),

as desired. �

Motivated by the preceding result, we have the following definitions.

4.1.19 Definition (Compatible bilinear form, fundamental form) A real bilinear form g on a
R-vector space V with linear complex structure J is compatible with J if g(J(v1), J(v2)) =
g(v1, v2) for all v1, v2 ∈ V. For a compatible bilinear form, the alternating two-form ω
defined by ω(v1, v2) = g(J(v1), v2) is the fundamental form associated to g. •

Let us illustrate the preceding notions with a simple example.
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4.1.20 Example (Cn as a Hermitian vector space) We consider the C-vector space Cm with
its standard linear complex structure as in Example 4.1.3–1. Denoting by H the
standard Hermitian metric, we have

H((x1 + iy1, . . . , xm + iym), (u1 + iv1, . . . ,um + ivm)) =

m∑
j=1

(x ju j + y jv j) − i
m∑

j=1

(x jv j
− y ju j).

Thus, if we write H = G − iΩ for a bilinear form G and an exterior two-form Ω, then

G =

m∑
j=1

(dx j
⊗ dx j + dy j

⊗ dy j), Ω =

m∑
j=1

dx j
∧ dy j. •

Note that the final assertion of the preceding result gives rise to a Hermitian form
on V with respect to the C-vector space structure associated to J. We also have the
C-vector space VC, and we recall that we use by default the C-vector space structure
coming from the usual complexification, rather than from JC. With respect to this
C-vector space structure and a (real) bilinear form A on V, we can define a form AC on
VC by

AC(a ⊗ u, b ⊗ v) = ab̄A(u, v). (4.7)

Note that if A is symmetric, AC is Hermitian.
The following result relates this complexified Hermitian form to the Hermitian

form h constructed from g in Proposition 4.1.18.

4.1.21 Proposition (Properties of complexified forms) Let V be a finite-dimensional R-vector
space with a linear complex structure J, compatible bilinear form g, and fundamental form ω.
Then the following statements hold:

(i) gC(u,v) = 0 for u ∈ V1,0 and v ∈ V0,1;
(ii) σ∗+(gC|V1,0) = 1

2h, where σ+ is the isomorphism from Proposition 4.1.5(iv);

(iii) σ∗
−
(gC|V0,1) = 1

2h, where σ− is the isomorphism from Proposition 4.1.5(v);
(iv) σ∗+(ωC|V1,0) = i

2h, where σ+ is the isomorphism from Proposition 4.1.5(iv);

(v) σ∗
−
(ωC|V0,1) = i

2h, where σ− is the isomorphism from Proposition 4.1.5(v);

(vi) 1 ⊗ ω ∈
∧2(V∗C) is real and of bidegree (1, 1).

Proof (i) By Proposition 4.1.5 we write elements of V1,0 and V0,1 as

1 ⊗ u − i ⊗ J(u), 1 ⊗ v + i ⊗ J(v).

respectively, for u, v ∈ V. A calculation, using compatibility of J and g, gives

gC(1 ⊗ u−i ⊗ J(u), 1 ⊗ v + i ⊗ J(v))
= gC(1 ⊗ u, 1 ⊗ v) + gC(1 ⊗ u, i ⊗ J(v)) − gC(i ⊗ J(u), 1 ⊗ v) − gC(i ⊗ J(u), i ⊗ J(v))
= g(u, v) − ig(u, J(v)) − ig(J(u), v) − g(J(u), J(v)) = 0.
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(ii) As in the preceding part of the proof, this is a direct computation:

gC(1 ⊗ u−i ⊗ J(u), 1 ⊗ v − i ⊗ J(v))
= gC(1 ⊗ u, 1 ⊗ v) − gC(1 ⊗ u, i ⊗ J(v)) − gC(i ⊗ J(u), 1 ⊗ v) + gC(i ⊗ J(u), i ⊗ J(v))
= g(u, v) + ig(u, J(v)) − ig(J(u), v) + g(J(u), J(v)) = 2h(u, v),

for u, v ∈ V.
(iii) Here we compute

gC(1 ⊗ u+i ⊗ J(u), 1 ⊗ v + i ⊗ J(v))
= gC(1 ⊗ u, 1 ⊗ v) + gC(1 ⊗ u, i ⊗ J(v)) + gC(i ⊗ J(u), 1 ⊗ v) + gC(i ⊗ J(u), i ⊗ J(v))

= g(u, v) − ig(u, J(v)) + ig(J(u), v) + g(J(u), J(v)) = 2h(u, v),

for u, v ∈ V.
(iv) Here we compute

ωC(1 ⊗ u−i ⊗ J(u), 1 ⊗ v − i ⊗ J(v))
= ωC(1 ⊗ u, 1 ⊗ v) − ωC(1 ⊗ u, i ⊗ J(v)) − ωC(i ⊗ J(u), 1 ⊗ v) + ωC(i ⊗ J(u), i ⊗ J(v))
= ω(u, v) + iω(u, J(v)) − iω(J(u), v) + ω(J(u), J(v)) = 2ih(u, v),

for u, v ∈ V.
(v) Here we compute

ωC(1 ⊗ u+i ⊗ J(u), 1 ⊗ v + i ⊗ J(v))
= ωC(1 ⊗ u, 1 ⊗ v) + ωC(1 ⊗ u, i ⊗ J(v)) + ωC(i ⊗ J(u), 1 ⊗ v) + ωC(i ⊗ J(u), i ⊗ J(v))

= ω(u, v) − iω(u, J(v)) + iω(J(u), v) + ω(J(u), J(v)) = 2ih(u, v),

for u, v ∈ V.
(vi) That 1 ⊗ ω is real follows from Lemma 4.1.13. Let a = a1 + ia2 ∈ C and calculate

ω((a1 + ia2)v1, (a1 + ia2)v2) = ω(a1v1, a1v2) + ω(a1v1, a2J(v2))
+ ω(a2J(v1), a1v2) + ω(a2J(v1), a2J(v2))

= a2
1ω(v1, v2) + a1a2g(J(v1), J(v2))

+ a1a2g(J ◦ J(v1), v2) + a2
2g(J ◦ J(v1), J(v2))

= (a2
1 + a2

2)ω(v1, v2) = aāω(v1, v2),

giving the result. �

The following result establishes an important correspondence between Hermitian
forms and their imaginary parts.

4.1.22 Proposition (Hermitian forms and real alternating forms of bidegree (1, 1)) Let V
be a finite-dimensional R-vector space with a linear complex structure J. For a Hermitian form
h on V let g and ω be the real and imaginary parts of h, as above. Then the map h 7→ ω is an
isomorphism between the R-vector spaces of Hermitian forms and the real alternating forms of
bidegree (1, 1).
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Proof The map φ : h 7→ ω is clearly R-linear. To see that this map is injective, suppose
that φ(h) = 0. By Proposition 4.1.18(iv) it follows that the real part of h is also zero and so
h is zero.

To prove surjectivity of φ, let ω be a real form of bidegree (1, 1). Define a map
g : V × V→ R by g(v1, v2) = ω(v1, J(v2)). We claim that g is symmetric. Indeed,

g(v2, v1) = ω(v2, J(v1)) = −ω(J(v1), v2) = i2ω(J(v1), v2) = −iīω(J(v1), v2)

= − ω(J2(v1), J(v2)) = ω(v1, J(v2)) = g(v1, v2),

using the fact that ω has bidegree (1, 1). Now define h : V × V→ C by

h(v1, v2) = g(v1, v2) − iω(v1, v2).

We claim that h is Hermitian. Indeed, h is obviously R-bilinear and satisfies h(v2, v1) =

h(v1, v2). Moreover, we have

h(iv1, v2) = g(J(v1), v2) − iω(J(v1), v2) = ω(J(v1), J(v2)) − iω(J(v1), v2)

= − i2ω(v1, v2) + iω(v2, J(v1)) = i(g(v1, v2) − iω(v1, v2)) = ih(v1, v2),

as desired. �

The correspondence between a Hermitian form and its imaginary part is often
written as

h = −2iω. (4.8)

By Proposition 4.1.21(iv) this formula makes sense if ω is replaced with ωC. By Propo-
sition 4.1.23 below, particularly parts (i) and (iii), this formula makes sense for the
components of h and ω with respect to appropriate bases. An heuristic verification
of (4.8) can be given as follows:

h(u, v) = g(u, v) − iω(u, v) = ω(u, J(v)) − iω(u, v) = ω(u, iv) − iω(u, v) = −2iω(u, v).

This computation stops short of making sense because the relation ω(u, iv) = −iω(u, v)
does not make sense, unless ω is replaced with ωC. In any case, the formula (4.8) is
often used, but only makes sense upon interpretation.

Let us now give the basis representations for the various objects described above.

4.1.23 Proposition (Basis representations associated to Hermitian forms) Let V be a finite-
dimensional R-vector space with a linear complex structure J. Let g be a real bilinear form
compatible with J, let ω be the fundamental form associated with g, and let h = g − iω be the
associated Hermitian form. Let (e1, . . . , em, em+1, . . . , e2m) be a J-adapted R-basis for V with
dual basis (β1, . . . , βm, βm+1, . . . , β2m), and define

fj = 1
2 (1 ⊗ ej − i ⊗ em+j), f̄j = 1

2 (1 ⊗ ej + i ⊗ em+j), j ∈ {1, . . . ,m},

and
γj = 1 ⊗ βj + i ⊗ βm+j, γ̄j = 1 ⊗ βj

− i ⊗ βm+j, j ∈ {1, . . . ,m},

Define hjk ∈ C by hjk = h(ej, ek), j,k ∈ {1, . . . ,m}. Then we have the following formulae:
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(i) h =

m∑
j,k=1

hjk(βj
⊗ βk + βm+j

⊗ βm+k) − i
m∑

j,k=1

(hjkβ
j
⊗ βm+k

− h̄jkβ
m+k
⊗ βj)

=

m∑
j,k=1

hjkγ
j
⊗ γ̄k;

(ii) g =

m∑
j,k=1

Re(hjk)(βj
⊗ βk + βm+j

⊗ βm+k) +

m∑
j,k=1

Im(hjk)(βj
⊗ βm+k + βm+k

⊗ βj)

=
1
2

m∑
j,k=1

hjk(γj
⊗ γ̄k + γ̄k

⊗ γj);

(iii) ω = −

′∑
(j,k)={1,...,m}2

Im(hjk)(βj
∧ βk + βm+j

∧ βm+k) +

m∑
j,k=1

Re(hjk)βj
∧ βm+k

= −
i
2

m∑
j,k=1

hjkγ
j
∧ γ̄k.

Proof (i) We have h(e j, ek) = h jk, j, k ∈ {1, . . . ,m}, by definition. Since h is a Hermitian form
on the C-vector space V,

h(em+ j, em+k) = h(ie j, iek) = h(e j, ek) = h jk,

h(e j, em+k) = h(e j, iek) = −ih(e j, ek) = −ih jk,

h(em+k, e j) = h(iek, e j) = ihkj = ih̄ jk.

From these observations, the first formula in this part of the result follows. For the second,
write u, v ∈ V as

u =

m∑
j=1

u je j, v =

m∑
j=1

v je j,

for u j, v j
∈ C, j ∈ {1, . . . ,m}. We then have

h(u, v) =

m∑
j,k=1

h jku jv̄k.

Next we note that

γ j(u) = γ j
( m∑

j=1

u je j

)
= 1 ⊗ β j

( m∑
j=1

u je j

)
+ i ⊗ βm+ j

( m∑
j=1

u je j

)
= 1 ⊗ β j

( m∑
j=1

(Re(u j)e j + Im(u j)em+ j)
)

+ i ⊗ βm+ j
( m∑

j=1

(Re(u j)e j + Im(u j)em+ j)
)

= Re(u j) + i Im(u j) = u j
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and similarly γ̄ j(v) = v̄ j. We, therefore, have
m∑

j,k=1

h jkγ
j
⊗ γ̄k(u, v) =

m∑
j,k=1

h jku jv̄k.

This gives the second formula in this part of the result.
(ii) We have

g(e j, ek) = Re(h(e j, ek)),
g(em+ j, em+k) = g(J(e j), J(ek)) = g(e j, ek) = Re(h(e j, ek)),

g(e j, em+k) = g(e j, J(ek)) = −ω(e j, ek) = Im(h(e j, ek)),
g(em+k, e j) = g(e j, em+k) = Im(h(e j, ek)),

giving the first formula. For the second, we first write u, v ∈ V as

u =

m∑
j=1

u je j, v =

m∑
j=1

v je j,

for u j, v j
∈ C, j ∈ {1, . . . ,m}. Then

g(u, v) = Re(h(u, v)) =
1
2

(h(u, v) + h(u, v)) =
1
2

( m∑
j,k=1

h jku jv̄k + h̄ jkū jvk
)
.

From this we conclude that

g =
1
2

m∑
j,k=1

(h jkγ
j
⊗ γ̄k + h̄ jkγ̄

j
⊗ γk)

=
1
2

m∑
j,k=1

h jk(γ j
⊗ γ̄k + γ̄k

⊗ γ j),

as desired.
(iii) Here we compute

ω(e j, ek) = − Im(h(e j, ek)) = − Im(h jk),

ω(em+ j, em+k) = g(J(em+ j), em+k) = −g(e j, J(em+k)) = g(J(e j), ek) = ω(e j, ek) = − Im(h jk),

ω(e j, em+k) = g(J(e j), em+k) = g(em+ j, em+ j) = Re(h jk),

which is the first formula. For the second formula, as in part (ii) of the proof we compute

ω(u, v) = Im(h(u, v)) = −
i
2

(h(u, v) − h(u, v)) = −
i
2

( m∑
j,k=1

h jku jv̄k
− h̄ jkū jvk

)
.

Thus

ω = −
i
2

m∑
j,k=1

(h jkγ
j
⊗ γ̄k

− h̄ jkγ̄
j
⊗ γk) = −

i
2

m∑
j,k=1

(h jkγ
j
⊗ γ̄k

− hkjγ̄
j
⊗ γk)

= −
i
2

m∑
j,k=1

h jk(γ j
⊗ γ̄k

− γ̄k
⊗ γ j) = −

i
2

∑
j,k

h jkγ
j
∧ γ̄k,
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as claimed. �

4.1.6 Volume forms on vector spaces with linear complex structures

Volume forms arise on vector spaces with linear complex structures in a natural
manner. First of all, we let (e1, . . . , em, em+1, e2m) be a J-adapted basis for a R-vector
space V with a linear complex structure J, and let (β1, . . . , βm, βm+1, . . . , β2m) be the
corresponding dual basis. We also denote, as usual,

γ j = 1 ⊗ β j + i ⊗ βm+ j, γ̄ j = 1 ⊗ β j
− i ⊗ βm+ j, j ∈ {1, . . . ,m}.

Then we have a volume form

β1
∧ βm+1

∧ · · · ∧ βm
∧ β2m

that satisfies ( i
2

)m
γ1
∧ γ̄1

∧ · · · ∧ γm
∧ γ̄m = 1 ⊗ β1

∧ βm+1
∧ · · · ∧ βm

∧ β2m.

Now let ( f1, . . . , fm, fm+1, . . . , f2m) be another J-adapted basis with dual basis
(α1, . . . , αm, αm+1, . . . , α2m). Let A ∈ R2m×2m be defined by

f j =

2m∑
k=1

Ak
jek, j ∈ {1, . . . , 2m}.

By the change of basis formula we have AJ2 = J1A where J1 and J2 are the matrix repre-
sentatives of J in the bases (e1, . . . , em, em+1, e2m) and ( f1, . . . , fm, fm+1, . . . , fm), respectively.
We also have

J1 = J2 =

[
0m×m −Im

Im 0m×m

]
,

from which we deduce from Proposition 4.1.6 that A : R2m
→ R2m is C-linear with

respect to the standard linear complex structure on R2m. Thus

A =

[
B C
−C B

]
,

where B,C ∈ Rm×m. Since A is invertible, B is also invertible.
The above computations contribute to the following result.

4.1.24 Proposition (Volume forms on vector spaces with linear complex structures) Let
V be a R-vector space with linear complex structure J, and let (e1, . . . , em, em+1, . . . , e2m) be a
J-adapted with dual basis (β1, . . . , βm, βm+1, . . . , β2m). Let

γj = 1 ⊗ βj + i ⊗ βm+j, γ̄j = 1 ⊗ βj
− i ⊗ βm+j, j ∈ {1, . . . ,m}.

Then V possesses a canonical orientation for which the following statements regarding ν ∈∧2m(V∗) are equivalent:
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(i) ν is positively oriented;
(ii) ν is a positive multiple of

β1
∧ βm+1

∧ · · · ∧ βm
∧ β2m;

(iii) ν is of bidegree (m,m) and 1 ⊗ ν is a positive multiple of( i
2

)m
γ1
∧ γ̄1

∧ · · · ∧ γm
∧ γ̄m.

Proof Let us carry on using the notation preceding the statement of the proposition. Note
that

α1
∧ αm+1

∧ · · · ∧ αm
∧ α2m = λβ1

∧ βm+1
∧ · · · ∧ βm

∧ β2m

for some λ ∈ R \ {0}. The result will follow from the computations preceding its statement
provided we can show that, in fact, λ ∈ R>0. This will follow if we can show that the matrix
A above has a positive determinant. This, however, follows from Proposition 4.1.9. �

4.1.7 Totally real subspaces

The canonical finite-dimensional C-vector space Cn features a natural R-subspace
of dimension n that we call the “real part” of Cn, namely the subspace

{x + i0 | x ∈ Rn
}.

However, this subspace is not as natural as it seems. To wit, given a general finite-
dimensional R-vector space V with linear complex structure J, there is no natural
choice for the “real part.” Nonetheless, one can characterise the subspaces having the
properties of Rn

⊆ Cn.

4.1.25 Definition (Totally real subspace) Let V be a finite-dimensional R-vector space with
linear complex structure J. A subspace U ⊆ V (subspace as a R-vector space) is totally
real if J(U) ∩ U = {0}. •

Let us characterise totally real subspaces in the case that we have an inner product
compatible with the linear complex structure.

4.1.26 Proposition (Characterisation of totally real subspaces) Let V be a finite-dimensional
R-vector space, let J be a linear complex structure on V, and let g be a (real) inner product on V
compatible with J. Then, for a (real) subspace U of V, the following statements are equivalent:

(i) U is totally real;
(ii) U and J(U) are g-orthogonal.

Proof Since the second assertion clearly implies the first, we only prove the other impli-
cation. Since g is compatible with J,

g(J(v1), J(v2)) = g(v1, v2), v1, v2 ∈ V.
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Thus J is g-orthogonal. Since J is diagonalisable over C and has only eigenvalues ±i, there
exists a g-orthogonal decomposition

V = V1 ⊕ · · · ⊕ Vn

of V into J-invariant two-dimensional subspaces. If U is totally real it follows that U∩V j is
either one- or zero-dimensional for each j ∈ {1, . . . ,n}. By relabelling if necessary, suppose
that there exists v1, . . . , vk ∈ V such that U ∩ V j = spanR(v j), j ∈ {1, . . . , k} and U ∩ V j = {0}
for j ∈ {k + 1, . . . ,n}. To prove that J(U) and U are g-orthogonal, it then suffices to show
that g(J(v j), v j) = 0 for each j ∈ {1, . . . , k}. This, however, follows easily. Indeed, for any
v ∈ V we have

g(J(v), v) = g(J2(v), J(v)) = −g(v, J(v)) = −g(J(v), v),

giving g(J(v), v) = 0, as desired. �

This allows us to prove the following result, showing that bases for totally real
subspaces can be extended to J-adapted bases.

4.1.27 Lemma (Extending bases for totally real subspaces) Let V be a finite-dimensional
R-vector space with linear complex structure J, and let U ⊆ V be a totally real subspace. If
(e1, . . . , ek) is a basis for U, then there exist linear independent vectors ek+1, . . . , en ∈ V such

(e1, . . . , en, J(e1), . . . , J(en))

is a J-adapted basis for V.
Proof We choose a J-compatible inner product g on V, e.g., the real part of a Hermitian
inner product on V. As we saw in the proof of Proposition 4.1.26, there then exists a
g-orthogonal decomposition

V = V1 ⊕ · · · ⊕ Vn

such that e j ∈ V j, j ∈ {1, . . . , k}. Then choose e j ∈ V j for j ∈ {k + 1, . . . ,n}. It is then
immediate that (e1, . . . , en, J(e1), . . . , J(en)) is linearly independent, and so a basis. The fact
that J ◦ J = − idV easily shows that this basis is also J-adapted. �

4.2 Holomorphic and real analytic manifolds, submanifolds, and
mappings

In this section we simultaneously consider the basic ingredients of holomorphic
and real analytic geometry. Only in a few places do we focus on specific properties of
holomorphic manifolds.

4.2.1 Holomorphic and real analytic manifolds

We shall very quickly go through the motions of defining the basic objects of
holomorphic and real analytic differential geometry, the holomorphic and real analytic
manifolds. Almost all of these basic definitions go as in the smooth case.
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4.2.1 Definition (Holomorphic or real analytic charts, atlases, and differentiable struc-
tures) Let S be a set, let F ∈ {R,C}, and let r ∈ {∞, ω} if F = R and r = hol if F = C. An
F-chart for S is a pair (U, φ) with

(i) U a subset of S, and
(ii) φ : U→ Fn an injection for which φ(U) is an open subset of Fn.

A Cr-atlas for S is a family A = ((Ua, φa))a∈A of F-charts for S with the properties that
S = ∪a∈AUa, and that, whenever Ua ∩ Ub , ∅, we have

(iii) φa(Ua ∩ Ub) and φb(Ua ∩ Ub) are open subsets of Fn, and
(iv) the overlap mapφab , φb ◦φ−1

a |φa(Ua∩Ub) is a Cr-diffeomorphism fromφa(Ua∩Ub)
to φb(Ua ∩ Ub).

Two Cr-atlases A1 and A2 are equivalent if A1∪A2 is also a Cr-atlas. A Cr-differentiable
structure, or a holomorphic differentiable structure, on S is an equivalence class of at-
lases under this equivalence relation. A Cr-differentiable manifold, or a Cr-manifold,
or a holomorphic manifold, M is a set S with a Cr-differentiable structure. An admis-
sible F-chart for a manifold M is a pair (U, φ) that is an F-chart for some atlas defining
the differentiable structure. If all F-charts take values in Fn for some fixed n, then n
is the dimension of M, denoted by dimF(M). The manifold topology on a set S with
a differentiable structure is the topology generated by the domains of the admissible
F-charts. •

In Figure 4.1 we illustrate how one should think about the overlap condition.

M

Ua

Ub

φa

Fn

φb

Fn

φab

Figure 4.1 An interpretation of the overlap condition

Note that a holomorphic or real analytic manifold is immediately a smooth man-
ifold, the latter assertion being trivial and the former since holomorphic maps from
open subsets of Cn into Cm are infinitely differentiable as maps from open subsets of
Cn
' R2n into Cm

' R2m.



26 4 Holomorphic and real analytic differential geometry 28/02/2014

We shall very often consider manifolds whose topology has additional assump-
tions placed upon it. One we very often make is that of the manifold topology being
Hausdorff. Manifolds whose topology is not Hausdorff exist, but are not regarded as
being interesting.1 Another set of common assumptions are those of second count-
ability and paracompactness. These are not unrelated. For example, second countable
Hausdorff manifolds are paracompact [Abraham, Marsden, and Ratiu 1988, Proposi-
tion 5.5.5]. Also, connected paracompact manifolds are second countable [Abraham,
Marsden, and Ratiu 1988, Proposition 5.5.11].

Let us consider some elementary examples of holomorphic and real analytic man-
ifolds.

4.2.2 Examples (Holomorphic and real analytic manifolds)
1. If U ⊆ Fn is open then it is a holomorphic or real analytic manifold with the

holomorphic or real analytic differentiable structure defined by the single chart
(U, idU).

2. If U ⊆ M is an open subset of a holomorphic or real analytic manifold, then it is
itself a holomorphic or real analytic manifold. The holomorphic or real analytic
differentiable structure is provided by the restriction to U of the admissible F-charts
for M.

3. Take Sn
⊆ Rn+1 to be the unit n-sphere. We claim that Sn is an n-dimensional real

analytic manifold. To see this, we shall provide an atlas for Sn consisting of two
charts. The chart domains are

U+ = Sn
\ {(0, . . . , 0, 1)}, U− = Sn

\ {(0, . . . , 0,−1)}.

Define
φ+ : U+ → Rn

(x1, . . . , xn+1) 7→
( x1

1 − xn+1
, . . . ,

xn

1 − xn+1

)
and

φ− : U− → Rn

(x1, . . . , xn+1) 7→
( x1

1 + xn+1
, . . . ,

xn

1 + xn+1

)
.

(See Figure 4.2 for n = 1.) One may verify that φ+(U+) = φ−(U−) = Rn
\ {0} and that

the inverse of φ+ is given by

φ−1
+ (y) =

( 2y1

‖y‖2 + 1
, . . . ,

2yn

‖y‖2 + 1
,
‖y‖2 − 1
‖y‖2 + 1

)
,

1Here is an example of a non-Hausdorff real analytic manifold. On the set S = (R × {0}) ∪ (R × {1})
consider the equivalence relation (x, 0) ∼ (y, 1) if x = y and x, y , 0. Let M = S/ ∼be the set of equivalence
classes and let π : S → M be the canonical projection. Consider the charts (U0, φ0) and (U1, φ1) defined
by U0 = π(R × {0}) and U1 = π(R × {1}), with chart maps φ0([(x, 0)]) = x and φ1([x, 1]) = x. We leave it
to the reader to show that these charts define a Cω-differentiable structure on M for which the manifold
topology is not Hausdorff. This manifold is called the line with two origins.
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North Pole

South Pole

φ1(x1, x2)

(x1, x2)

φ2(y1, y2)
(y1, y2)

x1

x2

Figure 4.2 Stereographic coordinates for S1

and from this we determine that the overlap map is given by

(φ− ◦φ−1
+ )(y) =

y
‖y‖2

for y ∈ Rn
\ {0}. This map is easily seen to be real analytic and, as Sn = U+∪U−, this

makes Sn into a Cω-differentiable manifold.
We claim that this real analytic structure can be made into a holomorphic structure
when n = 2. Indeed, in this case, denoting a point (y1, y2) in R2

' C as z = y1 + iy2

we have that the overlap map is

(φ− ◦φ−1
+ )(z) =

1
z̄
.

Therefore, if we use the map

φ̄−(x1, x2, x3) =
( x1

1 + x3
,−

x2

1 + x3

)
in place of φ−, we see that the overlap map satisfies

(φ̄− ◦φ−1
+ )(z) =

1
z
.

and this is readily verified to be a holomorphic diffeomorphism from C \ {0} to
itself, e.g., by verifying the Cauchy–Riemann equations.

4. A line in Fn is a subspace of Fn of F-dimension 1. By FPn we denote the set of lines
in Fn+1, which we call F-projective space. If (x0, x1, . . . , xn) ∈ Fn+1

\ {0} let us denote
the line through this point by [x0 : x1 : · · · : xn]. There are n + 1 natural F-charts for
FPn that we denote by (U j, φ j), j ∈ {0, 1, . . . ,n}. These are defined as follows:

U j = {[x0 : x1 : · · · : xn] ∈ FPn
| x j , 0},

φ j([x0 : x1, · · · : xn]) =
(x0

x j
, . . . ,

x j−1

x j
,

x j+1

x j
, . . . ,

xn

x j

)
.
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The overlap map φ j ◦φ−1
k , j < k, is

φ j ◦φ
−1
k (a1, . . . , an) =

( a1

a j+1
, . . . ,

a j

a j+1
,

a j+2

a j+1
, . . . ,

ak

a j+1
,

1
a j+1

,
ak+1

a j+1
, . . . ,

an

a j+1

)
,

which is real analytic or holomorphic, as appropriate. In the case of n = 1 the
overlap condition is

φ0 ◦φ
−1
1 (a) = a−1,

and we conclude by referring to the preceding example that RP1
' S1 and CP1

' S2.
5. In the setFn define an equivalence relation by z ∼ w if z−w ∈ Λn, where Λ = Zn

⊆ Rn

in the case of F = R and

Λ = {z = x + iy | x, y ∈ Zn
}

in the case of F = C. The set Tn
F = Fn/ ∼ is the F-torus of dimension n. Note that

Tn
C ' T2n

R . In particular, T1
C is identified with the standard 2-torus as depicted in

Figure 4.3. •

Figure 4.3 A depiction of T1
C ' T2

R

4.2.2 Holomorphic and real analytic mappings

Now we turn to maps between manifolds.

4.2.3 Definition (Local representative of a map, holomorphic or real analytic map) Let
F ∈ {R,C}, and let r ∈ {∞, ω} if F = R and r = hol if F = C. Let M and N be Cr-manifolds
and let Φ : M → N be a map. Let x ∈ M, let (U, φ) be an F-chart for which U is a
neighbourhood of x, and let (V, ψ) be an F-chart for which V is a neighbourhood of
Φ(x), assuming that Φ(U) ⊆ V (if Φ is continuous, U can always be made sufficiently
small so that this holds). The local representative of Φ with respect to the F-charts
(U, φ) and (V, ψ) is the map Φφψ : φ(U)→ ψ(V) given by

Φφψ(x) = ψ ◦Φ ◦φ−1(x).

With this notation we make the following definitions.
(i) We say that Φ : M → N is of class Cr or is holomorphic or real analytic, if, for

every point x ∈ M and every F-chart (V, ψ) for N for which Φ(x) ∈ V, there exists
a C-chart (U, φ) for M such that Φ(U) ⊆ V and for which the local representative
Φφψ is of class Cr.

(ii) The set of class Cr maps from M to N is denoted by Cr(M; N).
(iii) We denote by Cr(M) = Cr(M;F) the set of holomorphic functions on M.
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M N

U V

φ

Fn

ψ

Fm

Φ

Φφψ

Figure 4.4 The local representative of a map

(iv) If Φ is a bijection of class Cr, and if Φ−1 is also of class Cr, then Φ is a Cr-
diffeomorphism or a holomorphic diffeomorphism. •

In Figure 4.4 we depict how one should think about the local representative.
Analogous to the situation for functions defined on subset of Fn, if M is a holomor-

phic or real analytic manifold, if A ⊆ M, and if f : A → Fm is continuous, we denote

‖ f‖A = sup{‖ f (x)‖ | x ∈ A}. (4.9)

As with smooth manifolds, we can define the pull-back of functions by mappings,
and holomorphicity or real analyticity is preserved by Proposition 1.2.2.

4.2.4 Definition (Pull-back of a function) Let F ∈ {R,C}, and let r ∈ {∞, ω} if F = R and
r = hol if F = C. Let M and N be Cr-manifolds and let Φ : M → N be a Cr-map. For
g ∈ Cr(N), the pull-back of g is the function Φ∗g ∈ Cr(M) given by Φ∗g(z) = g ◦Φ(z). •

4.2.3 Holomorphic and real analytic functions and germs

We shall be much concerned with algebraic structure arising from holomorphic and
real analytic functions. This will not be addressed systematically until Chapter GA2.1.
For the moment, however, we shall need a small part of this development, and we
give it here. The discussion of germs here resembles that given in Section 2.3.1, of
course. We start by considering functions.

Let F ∈ {R,C}, and let r ∈ {∞, ω} if F = R and r = hol if F = C. We let M be a
Cr-manifold and note that Cr(M) is a ring with the operations of pointwise addition
and multiplication:

( f + g)(x) = f (x) + g(x), ( f g)(x) = f (x)g(x),

for f , g ∈ Cr(M) and x ∈ M. As we saw in Section 1.2.1, these operations preserve the
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Cr-structure. Moreover, Cr(M) additionally has the F-vector space structure defined
by (a f )(x) = a( f (x)) for a ∈ F, f ∈ Cr(M), and x ∈ M. Thus Cr(M) is a F-algebra.

Holomorphic or real analytic functions on a manifold have the same restrictions
on their global behaviour from local conditions as we saw with the Identity Theorem
in Fn, stated as Theorem 1.1.18.

4.2.5 Theorem (Identity Theorem on manifolds) Let F ∈ {R,C}, and let r = ω if F = R and
r = hol if F = C. If M is a connected manifold of class Cr, if U ⊆ M is a nonempty open set
and if f,g ∈ Cr(M) satisfy f|U = g|U, then f = g.

Proof It suffices to show that if f (x) = 0 for every x ∈ U then f is the zero function. Let

C = {x ∈ M | f (x) = 0},

and note that C is closed with int(C) , ∅ since it contains U. We claim that bd(int(C)) = ∅.
Indeed, suppose that x ∈ bd(C). Let (V, ψ) be a chart with x ∈ V. By continuity of f
and its derivatives, the Taylor series of f ◦ψ−1 at ψ(x) is zero. Since f is holomorphic
or real analytic, this implies that f ◦ψ−1 vanishes in a neighbourhood of ψ(x), and so f
vanishes in a neighbourhood of x, which is a contradiction. We now claim that M \ int(C)
is open. Indeed, let x ∈ M \ int(C) be a point not in the interior of M \ int(C). Then every
neighbourhood of x must intersect C and so x ∈ bd(int(C)) = ∅, and so M \ int(C) is open.
Since M is now the union of the disjoint open sets int(C) and M\ int(C) and since the former
is nonempty, we must have M \ int(C) = ∅, giving int(C) = M and so C = M. �

The Identity Theorem, then, indicates that it may generally be difficult to extend
locally defined holomorphic or real analytic functions to globally defined functions.
To deal with this and for other reasons, we introduce germs.

Let x0 ∈ M. We define as follows an equivalence relation on the set of ordered
pairs ( f ,U), where U ⊆ M is a neighbourhood of x0 and f ∈ Cr(U). We say that ( f1,U1)
and ( f2,U2) are equivalent if there exists a neighbourhood U ⊆ U1 ∩ U2 of x0 such
that f1|U1 = f2|U. This notion of equivalence is readily verified to be an equivalence
relation. We denote a typical equivalence class by [( f ,U)]x0 , or simply by [ f ]x0 if the
domain of f is understood or immaterial. The set of equivalence classes we denote by
C r

x0,M
, which we call the set of germs of holomorphic or real analytic functions at x0,

respectively. We make the set of germs into a ring by defining the following operations
of addition and multiplication:

[( f1,U1)]x0 + [( f2,U2)]x0 = [ f1|U1 ∩ U2 + f2|U1 ∩ U2,U1 ∩ U2]x0

[( f1,U1)]x0 · [( f2,U2)]x0 = [( f1|U1 ∩ U2)( f2|U1 ∩ U2),U1 ∩ U2]x0 .

It is elementary to verify that these operations are well-defined, and indeed make the
set of germs of holomorphic or real analytic functions into a ring. As with functions,
germs of functions also have a F-vector space structure: a[( f ,U)]x0 = [(a f ,U)]x0 . Thus
C r

x0,M
is a F-algebra.

Let us prove some results about this algebraic structure. The first more or less
trivial observation is the following.
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4.2.6 Proposition (Characterisation of holomorphic and real analytic function germs)
Let F ∈ {R,C}, and let r = ω if F = R and r = hol if F = C. For M a manifold of class Cr and
for x0 ∈ M, the ring C r

x0,M
is isomorphic to the ring F̂[[ξ1, . . . , ξn]] of convergent power series

in n indeterminates, where n is the dimension of the connected component of M containing x0.
Proof Let (U, φ) be a F-chart about x0 such that φ(x0) = 0. We identify U with φ(U) ⊆ Fn

and a function on U with its local representative. A function of class Cr, by definition, is
one whose Taylor series converges in some neighbourhood of every point in its domain
of definition, and which is equal to its Taylor series on that neighbourhood. Thus, if
[( f ,V)]0 ∈ C r

0,U, in some neighbourhood V′ of 0 in U we have

f (x1, . . . , xn) =
∑

I∈Zn
≥0

∂|I| f
∂xI (0).

Thus [( f ,V)]0 is determined by its Taylor series, which gives a surjective map from C r
0,U to

F̂[[ξ]]. That this map is also injective follows since two analytic functions having the same
Taylor series at a point are obviously equal on some neighbourhood of that point. �

Note that the isomorphism of C r
x0,M

with F̂[[ξ]] in the preceding result is not natural,
but depends on a choice of coordinate chart. However, the key point is that if one
chooses any coordinate chart, the isomorphism is induced. We shall often use this fact
to reduce ourselves to the case where the manifold is Fn. This simplifies things greatly.
However, it is also interesting to have a coordinate independent way of thinking of
the isomorphism of the preceding result, and this leads naturally to the construction
of jet bundles as in Chapter 5.

For the moment, however, let us use the isomorphism from the preceding result to
state some useful facts about the ring C r

x0,M
.

4.2.7 Theorem (Algebraic properties of the ring of germs of holomorphic or real ana-
lytic functions) Let F ∈ {R,C}, and let r = ω if F = R and r = hol if F = C. For M a
manifold of class Cr and for x0 ∈ M, the following statements hold:

(i) C r
x0,M

is a local ring;
(ii) C r

x0,M
is a unique factorisation domain;

(iii) C r
x0,M

is a Noetherian ring.

Proof By Proposition 4.2.6 the ring C r
x0,M

is isomorphic to the ring C r
0,Fn considered in

Section 2.3. Thus C r
x0,M

will possess any isomorphism invariant properties possessed by
the ring C r

0,Fn . Since the properties of being a local ring, being a unique factorisation
domain, and being a Noetherian ring are isomorphism invariant, the theorem follows
from Theorems 2.3.1, 2.3.3, and 2.3.4. �

Of course, the previous constructions apply equally well in the smooth case, and
we shall occasionally access the notation C∞x,M for the ring of germs of smooth func-
tions at x0. Note, however, that while C∞x,M is a local ring by Proposition 2.3.5, it is
neither a unique factorisation domain (by Proposition 2.3.6) nor a Noetherian ring
(by Proposition 2.3.7). Another point of distinction with the smooth case and the
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holomorphic or real analytic cases has to do with global representatives for germs. In
the smooth case the smooth Tietze Extension Theorem gives the following result (see
also Proposition 5.6.4 below).

4.2.8 Proposition (Global representative of smooth germs) If M is a smooth manifold, if
x0 ∈ M, and if [(f,U)]x0 ∈ C∞x0,M

, then there exists g ∈ C∞(M) such that [(g,M)]x0 = [(f,U)]x0 .

Such a result as the preceding does not hold in the holomorphic or real analytic
case, and we illustrate what can happen with two examples.

4.2.9 Example (A germ that has no globally defined representative) We take M = N = F.
We let ε ∈ R>0, let Uε = Dε(0, 1), and consider the function f : Uε → F defined by f (x) =
ε2

ε2−x2 . Note that f is holomorphic or real analytic on Uε. However, there is no function
g ∈ Cr(F;F) for which [(g,F)]0 = [( f ,Uε)]0. Indeed, by Theorem 1.1.18 it follows that
any holomorphic or real analytic function agreeing with f on a neighbourhood of 0
must agree with f on any connected open set containing 0 on which it is defined. In
particular, if [(g,F)]0 = [( f ,Uε)]0 then g|Uε = f . Since there is no holomorphic or real
analytic mapping on F agreeing with f on Uε, our claim follows.

The example shows, in fact, that there can be no neighbourhood of a point on a
holomorphic or real analytic manifold to which every germ can be extended. •

4.2.4 Some particular properties of holomorphic functions

Just as was the case in Section 1.1.7 with holomorphic functions defined on open
subsets of Cn, holomorphic functions on holomorphic manifolds have properties not
shared by their real analytic brethren. Here we consider the most basic of these arising
from the following result.

4.2.10 Theorem (Maximum Modulus Principle on holomorphic manifolds) If M is a con-
nected holomorphic manifold, if f ∈ Chol(M), and if there exists z0 ∈ M such that |f(z)| ≤ |f(z0)|
for every z ∈ M, then f is constant on M.

Proof Let g ∈ Chol(M) be defined by g(z) = f (z0). Let (U, φ) be an C-chart with x0 ∈ U.
Note that | f ◦φ−1(z)| ≤ | f ◦φ−1(φ(z0))| for every z ∈ φ(U). By Theorem 1.1.26 we have that
f ◦φ−1(z) = g ◦φ−1(z) for every z ∈ φ(U) and so f and g agree on U. The result follows
from the Identity Theorem in the form of Theorem 4.2.5. �

There are a few immediate consequences of this.

4.2.11 Corollary (Holomorphic functions on compact holomorphic manifolds are lo-
cally constant) If M is a compact holomorphic manifold and if f ∈ Chol(M), then f is locally
constant.

Proof The function z 7→ | f (z)| is continuous, and so achieves its maximum on M. The
result follows immediately from the Maximum Modulus Principle. �

4.2.5 Holomorphic and real analytic submanifolds

Next we consider submanifolds.
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4.2.12 Definition (Holomorphic or real analytic submanifold) Let F ∈ {R,C}, and let r ∈
{∞, ω} if F = R and r = hol if F = C. A subset S of a Cr-manifold M is a Cr-submanifold
or a holomorphic or real analytic submanifold if, for each point x ∈ S, there is an
admissible F-chart (U, φ) for M with x ∈ U, and such that

(i) φ takes its values in a product Fk
× Fn−k, and

(ii) φ(U ∩ S) = φ(U) ∩ (Fk
× {0}).

A F-chart with these properties is a F-submanifold chart for S. •

In Figure 4.5 we illustrate how one should think about submanifolds.

M

S

U

Fk

Fn−k

φ

Figure 4.5 A submanifold chart

Let us look at some examples.

4.2.13 Examples (Holomorphic and real analytic submanifolds)
1. Any open subset of a holomorphic or real analytic manifold is a holomorphic or

real analytic submanifold.
2. Note that Sn is a real analytic submanifold of Rn+1. This follows from the real

analytic Inverse Function Theorem since Sn = f −1(0) for the real analytic function
f (x) = ‖x‖2 − 1 whose derivative does not vanish on Sn.

3. If M is a compact holomorphic submanifold of Cn then dimC(M) = 0. Indeed, by
Corollary 4.2.11, the coordinate functions on Cn restricted to M are holomorphic
functions on M, and so must be constant.
As a consequence, the holomorphic manifold S2 is not a submanifold of Cn for
any n. •

4.3 Holomorphic and real analytic vector bundles

Vector bundles arise naturally in differential geometry in terms of tangent bundles
and cotangent bundles. The more general notion of a vector bundle also comes up in
a natural way in various contexts, e.g., with respect to jet bundles and with respect
to various sorts of sheaves. In this section we shall give the very basic constructions
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involving vector bundles, noting that in subsequent chapters, especially Chapters 5
and GA2.1, we shall cover other aspects of the theory in a more comprehensive manner.

4.3.1 Local vector bundles, vector bundle structures

There are various ways to construct vector bundles, and the approach we take here
is a direct one, more or less mirroring the way we construct manifolds. That is, we
start locally, and then ask that local object obey appropriate transformation rules. The
local models for vector bundles are as follows. Our initial definition allows for both
R- and C-vector bundles with smooth or real analytic structures. After doing this, we
can specialise to the holomorphic case.

4.3.1 Definition (Local F-vector bundle) Let F ∈ {R,C} and let r ∈ {∞, ω}.
(i) A local F-vector bundle over F is a product U × Fk, where U ⊆ Fn is an open

subset.
(ii) If U × Fk and V × Fl are local F-vector bundles, then a map g : U × Fk

→ V × Fl is
a Cr-local F-vector bundle map if it has the form g(x,v) = (g1(x), g2(z) · v), where
g1 : U→ V and g2 : U→ HomF(Fk;Fl) are of class Cr.

(iii) If, in part (ii), g1 is a Cr-diffeomorphism and g2(x) is an isomorphism for each
x ∈ U, then we say that g is a Cr-local F-vector bundle isomorphism. •

A vector bundle is constructed, just as was a manifold, by patching together local
objects.

4.3.2 Definition (F-vector bundle) Let F ∈ {R,C} and let r ∈ {∞, ω}. A Cr-vector bundle over
F is a set S that has an atlas A = {(Ua, φa)}a∈A where image(φa) is a localF-vector bundle,
a ∈ A, and for which the overlap maps are Cr-local F-vector bundle isomorphisms.
Such an atlas is a Cr-vector bundle atlas over F. Two Cr-vector bundle atlases, A1 and
A2, are equivalent if A1 ∪A2 is a Cr-vector bundle atlas. A Cr-vector bundle structure
over F is an equivalence class of such atlases. A chart in one of these atlases is called
an admissible F-vector bundle chart. A typical vector bundle will be denoted by E. •

The base space M of a vector bundle E is given by all points e ∈ E having the property
that there exists an admissible F-vector bundle chart (V, ψ) such that ψ(v) = (x, 0) ∈
U×Fk. This definition may easily be shown to make sense, since the overlap maps are
local vector bundle isomorphisms that map the zero vector in one local vector bundle
to the zero vector in another. To any point e ∈ E we associate a point x ∈ M as follows.
Let (U, φ) be a F-vector bundle chart for E around e. Thus ψ(e) = (x,v) ∈ U′ × Fk.
Define x = ψ−1(x, 0). Once again, since the overlap maps are local vector bundle
isomorphisms, this definition makes sense. We denote the resulting map from E to
M by π and we call this the vector bundle projection. Sometimes we will write a
vector bundle as π : E → M. The set Ex , π−1(x) is the fibre of E over x. This has
the structure of a F-vector space induced from that for the local vector bundles, and
the vector space operations are well-defined since the overlap maps are local vector
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bundle isomorphisms. The zero vector in Ex corresponds to the point x in the base
space, and will sometimes be denoted by 0x.

Suppose we have a vector bundle chart (U, φ) for a vector bundle π : E → M
mapping U bijectively onto the local vector bundle U′×Fk. We define an induced chart
(U0, φ0) for M by asking that U0 = π(U) and that φ(0x) = (φ0(x), 0).

4.3.3 Remark (On typical fibres being Fk) In our construction of a vector bundle from
local models, we supposed the fibres to be isomorphic to Fk for some k ∈ Z>0. As
we shall see, situations can naturally arise where the typical fibre is not Fk but rather
some other finite-dimensional F-vector space. However, since all such vector spaces
are isomorphic, even if not necessarily naturally so, to Fk for some k ∈ Z>0, we lose no
generality by assuming the typical model for the fibre to be Fk. That being said, there
is something to be said for modelling fibres for vector bundles on finite-dimensional
vector spaces rather than Fk. But we trust the reader can navigate this on their own. •

Note that a C-vector bundle is not just a R-vector bundle with fibres being C-vector
spaces. This is because the linear part of the overlap maps are required to be C-linear
mappings, not R-linear mappings. In the complex case, one can then further impose
the structure of holomorphicity.

4.3.4 Definition (Holomorphic vector bundle) Let M be a holomorphic manifold. A holo-
morphic vector bundle, or a Chol-vector bundle, over M is a smooth C-vector bundle
over manM possessing a vector bundle atlas for which the maps g1 and g2 from Defi-
nition 4.3.1 associated with the overlap maps are holomorphic. •

The reader should understand carefully the hypotheses when reading some of our
definitions and results on vector bundles. If we are working in the smooth or real
analytic category, we will consider both R- and C-vector bundles. In the holomorphic
category, vector bundles are, of course, always complex. One should be sure to
distinguish between smooth C-vector bundles and holomorphic vector bundles.

Let us give some examples of vector bundles.

4.3.5 Examples (Vector bundles)
1. An F-vector bundle whose fibres are one-dimensional is called a line bundle.
2. Let F ∈ {R,C} and let r ∈ {∞, ω} if F = R and r ∈ {∞, ω,hol} if F = C. Let M be

a manifold of class Cr and let k ∈ Z>0. By Fk
M we denote the trivial vector bundle

M × Fk which we regard as a vector bundle using the projection pr1 : Fk
M → M onto

the first factor.
3. Not all vector bundles are trivial. Let us make two comments about this.

(a) A vector bundle π : E → M is trivialisable if there exists a vector bundle
isomorphism (see Definition 4.3.9) Φ : E → Fk

M. One can relatively easily
show that if M is contractible,—i.e., if there exists x0 ∈ M and a continuous map
h : M × [0, 1] → M for which p(x, 0) = x for p(x, 1) = x0 for every x ∈ M—then
every vector bundle over M is trivialisable [Abraham, Marsden, and Ratiu
1988, Theorem 3.4.35].
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(b) There exist vector bundles that are not trivialisable. The classic examples are
the tangent bundles of even-dimensional spheres which are not trivialisable
as smooth or real analytic vector bundles (see [Milnor 1978] for an elementary
proof). This implies that T1,0CP1 is a nontrivialisable holomorphic vector
bundle.

4. Holomorphic vector bundles are in some sense more difficult to come by, so let us
give a collection of examples of these, namely the line bundles over CP1. To do this,
we recall from Example 4.2.2–4 that CP1

' S2 and we consider the charts (U+, φ+)
and (U−, φ−) given by

U+ = S2
\ {(0, 0, 1)}, U− = S2

\ {(0, 0,−1)}

and
φ+(x1, x2, x3) =

x1

1 − x3
+ i

x2

1 − x3
, φ−(x1, x2, x3) =

x1

1 + x3
− i

x2

1 + x3
.

We alter slightly the notation of Example 4.2.2–3 to our purposes. We denote
coordinates in these charts by z+ and z−, respectively. The overlap map, as we have
seen, is φ− ◦φ−1

+ (z+) = z−1
+ . We will construct holomorphic line bundles over S2 by

considering defining them on the chart domains U+ and U−, and asking that on the
intersection U+∩U− the local vector bundle structures be related by a holomorphic
vector bundle isomorphism. The vector bundles we construct we will denote by
OCP1(k), and these will be indexed by k ∈ Z. First of all, note that since U+ and U−
are both contractible (they are holomorphically diffeomorphic to C) every vector
bundle over these open sets is trivialisable, so we can without loss of generality
suppose them to be trivial. That is, we let k ∈ Z and we consider the two local
vector bundles

E+(k) = U+ × C, E−(k) = U− × C.
We then have holomorphic diffeomorphisms

U+ × C 3 (x,w+) 7→ (z+ = φ+(x),w+) ∈ C × C

and
U− × C 3 (x,w−) 7→ (z− = φ−(x),w−) ∈ C × C,

i.e., we denote local vector bundle coordinates by (z+,w+) and (z−,w−), respectively.
To define the vector bundle OCP1(k) we patch these local vector bundle charts
together by the local vector bundle isomorphism

ψ± : C × C→ C × C
(z+,w+) 7→ (z−1

+ , z
−k
+ w+)

.

The resulting vector bundle we denote by OCP1(k), which is the line bundle of degree
k over CP1. Note that OCP1(0) is the trivial bundle CP1

× C since the overlap map
is the identity map in this case.
As we shall see as we go along, various of these line bundle OCP1(k) are of particular
interest. In particular,
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(a) OCP1(−1) is called the tautological line bundle (see the construction of OP(V)(−1)
in Section 4.4).

(b) OCP1(1) is called the hyperplane line bundle (again, see the more general con-
struction in Section 4.4),

(c) OCP1(−k) is the dual of OCP1(k) (see Example 4.3.11),
(d) OCP1(2) is isomorphic to the holomorphic tangent bundle of CP1 (see Exam-

ple 4.5.14), and
(e) OCP1(−2) is isomorphic to the bundle of holomorphic one-forms on CP1 (see

Example 4.6.9).

We shall study line bundles over general projective spaces in Section 4.4.
Those who study such things prove that the line bundles OCP1(k) are the only line
bundles over CP1 up to isomorphism. It is also shown that any vector bundle over
CP1 is isomorphic to a direct sum of these line bundles, a fact that is no longer true
for vector bundles over higher-dimensional complex projective spaces [Griffiths
and Harris 1978, Section 1.1]. •

One may verify the following properties of vector bundles.

4.3.6 Proposition Let F ∈ {R,C} and let r ∈ {∞, ω} if F = R and r ∈ {∞, ω,hol} if F = C. Let
π : E→ M be a vector bundle of class Cr. Then

(i) M is a Cr-submanifold of E, and
(ii) π is a surjective submersion of class Cr.

When we wish to think of the base space M as a submanifold of E, we shall call it
the zero section and denote it by Z(E). For z ∈ M, the set π−1(z) is the fibre over z, and
is often written Ez. One may verify that the operations of vector addition and C-scalar
multiplication defined on Ez in a fixed vector bundle chart are actually independent
of the choice made for this chart. Thus Ez is indeed a vector space. We will sometimes
denote the zero vector in Ez as 0z. If N ⊆ M is a holomorphic submanifold, we denote
by E|N the restriction of the vector bundle to N, and we note that this is a vector bundle
with base space N.

4.3.2 Holomorphic and real analytic vector bundle mappings

Let us now consider mappings between vector bundles.

4.3.7 Definition (Holomorphic and real analytic vector bundle mapping) Let F ∈ {R,C},
and let r ∈ {∞, ω} if F = R and r ∈ {∞, ω,hol} if F = C. Let πE : E→ M and πF : F→ N
be Cr-vector bundles and let Φ : E→ F be a map.

(i) The map Φ is fibre-preserving if there exists a map Φ0 : M → N such that the
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diagram

E Φ //

πE
��

F
πF
��

M
Φ0

// N

commutes.
(ii) The map Φ is a vector bundle mapping of class Cr if

(a) it is fibre-preserving,
(b) it is of class Cr,
(c) the induced map Φ0 : M→ N is of class Cr, and
(d) the map Φx , Φ|Ex : Ex → FΦ(x) is F-linear. •

We will often encode the induced mapping Φ0 associated to a vector bundle map-
ping Φ by saying that “Φ is a vector bundle mapping over Φ0.” Let us look at the
local form of a vector bundle mapping. Thus we let Φ : E → F be a vector bundle
mapping over Φ0 : M → N, let x ∈ M, and let (U, φ) be an F-vector bundle chart for E
such that Ex ⊆ U, and let (V, ψ) be an F-vector bundle chart for F such that FΦ0(x) ⊆ V

and Φ(U) ⊆ V. Let us denote

φ(U) = U0 × Fk, ψ(V) = V0 × Fl

for open sets U0 ⊆ Fn and V0 ⊆ Fm. Then one directly verifies that the local represen-
tative of Φ is given by

ψ ◦Φ ◦φ−1(x,v) = (F0(x),F1(x) · v),

where F0 : U0 → V0 and F1 : U0 → HomF(Fk;Fl) are of class Cr.
Associated with any vector bundle mapping are standard algebraic constructions.

4.3.8 Definition (Kernel and image of vector bundle mapping) Let F ∈ {R,C}, and let
r ∈ {∞, ω} if F = R and r ∈ {∞, ω,hol} if F = C. Let πE : E → M and πF : F → M be
Cr-vector bundles and let Φ : E→ F be a Cr-vector bundle mapping over idM.

(i) The kernel of Φ is the subset ker(Φ) of E given by ker(Φ) = ∪x∈M ker(Φx).
(ii) The image of Φ is the subset image(Φ) of F given by image(Φ) = ∪x∈M image(Φx).

•

There are then some naturally induced constructions one can introduce associated
with sequences of vector bundle mappings.
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4.3.9 Definition (Exact sequences of vector bundles) Let F ∈ {R,C}, and let r ∈ {∞, ω} if
F = R and r ∈ {∞, ω,hol} if F = C. Let πE : E → M, πF : F → M, and πG : G → M be
Cr-vector bundles, and let Φ : E → F and Ψ : F → G be Cr-vector bundle mappings
over idM.

(i) The sequence

E Φ // F Ψ // G

is exact if ker(Ψ) = image(Φ).
(ii) The vector bundle mapping Ψ is injective if the sequence

0 // F Ψ // G

is exact.
(iii) The vector bundle mapping Φ is surjective if the sequence

E Φ // F // 0

is exact.
(iv) The vector bundle mapping Φ is an isomorphism if the sequence

0 // E Φ // F // 0

is exact, i.e., if it is surjective and injective;
(v) A short exact sequence of vector bundles is a sequence

0 // E Φ // F Ψ // G // 0

for which each subsequence is exact. •

Let us show that vector bundle mappings themselves comprise the basis for a new
vector bundle formed from existing vector bundles. Let F ∈ {R,C}, let r ∈ {∞, ω} if
F = R and r ∈ {∞, ω,hol} if F = C. To keep things simple, we consider Cr-vector
bundles πE : E→ M and πF : F→ M over the same base and vector bundle mappings
Φ : E→ F over idM. Let us denote HomF(E; F)x = HomF(Ex,Fx) and

HomF(E; F) =
◦

∪
x∈M

HomF(E; F)x.

Suppose that we have F-vector bundle charts (U, φ) and (V, ψ) for E and F, respectively.
We can suppose, without loss of generality, that the induced charts (U0, φ0) and (U0, ψ0)
for M are the same. Thus

φ(ex) = (φ0(x), φ1(x) · ex) ∈ φ0(U0) × Fk, ψ( fx) = (φ0(x), ψ1(x) · fx) ∈ φ0(U0) × Fl
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for ex ∈ U and fx ∈ V, and where φ1(x) ∈ HomF(Ex,Fk) and ψ1(x) ∈ HomF(Fx;Fl). We
then define

HomF(U;V) =
◦

∪
x∈U0

HomF(E; F)x

and
HomF(φ;ψ) : HomF(U;V)→ φ0(U0) ×HomF(Fk;Fl)

Ax 7→ ψ1(x) ◦Ax ◦φ1(x)−1.
(4.10)

One readily verifies that (HomF(U;V),HomF(φ,ψ)) is a vector bundle chart and that
two overlapping vector bundle charts satisfy the required overlap condition. Thus we
endow HomF(E; F) with the structure of a vector bundle.

Of special interest is the following.

4.3.10 Definition (Dual bundle) Let F ∈ {R,C}, let r ∈ {∞, ω} if F = R and r ∈ {∞, ω,hol} if
F = C, and let π : E → M be a Cr-vector bundle. The dual bundle to E is the bundle
E∗ = HomF(E;FM). •

Let us consider some examples of holomorphic dual bundles.

4.3.11 Example (Dual bundles for line bundles over CP1) We consider the line bundles
OCP1(k), k ∈ Z, introduced in Example 4.3.5–4. We claim that the dual of OCP1(k)
is isomorphic to OCP1(−k) for every k ∈ Z. To prove this we work with the local
trivialisations

E+ = U+ × C, E− = U− × C

for OCP1(k) with the overlap map

(z+,w+) 7→ (z−1
+ , z

−k
+ w+).

The corresponding overlap map for O∗CP1(k) is then

(z+, α+) 7→ (z−1
+ , z

k
+α+)

cf. (4.10), and this establishes our claim. •

4.3.3 Sections and germs of sections of holomorphic and real analytic vector
bundles

Just as with holomorphic and real analytic functions, one of the areas of departure
holomorphic and real analytic geometry from smooth geometry concerns sections of
vector bundles. In this section we merely give the basic definitions, reserving for later
the difficult questions of existence of nontrivial objects we define.
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4.3.12 Definition (Holomorphic and real analytic section) Let F ∈ {R,C}, let r ∈ {∞, ω}
if F = R and r ∈ {∞, ω,hol} if F = C, and let π : E → M be a Cr-vector bundle. A
Cr-section of E is a Cr-map ξ : M → E such that ξ(x) ∈ Ex. The set of Cr-sections of E
is denoted by Γr(E). •

Of course, in both the real and complex cases, we can also consider smooth sections.
These are denoted by Γ∞(E) in the usual way.

Let us consider some simple examples of sections of vector bundles.

4.3.13 Examples (Sections of vector bundles)
1. A Cr-section of the trivial vector bundle Fk

M = M×Fk takes the form x 7→ (x, ξ(x)) for
a Cr-map ξ : M → Fk. Thus we identify sections of the trivial vector bundle with
Fk-valued functions. In case k = 1 this means that we identify sections of FM with
functions in the usual sense.

2. A section Φ of HomF(E; F) is simply a vector bundle map Φ : E→ F over idM. •

Let π : E → M be a F-vector bundle. Let r ∈ {∞, ω} if F = R and r ∈ {∞, ω,hol} if
F = C. We note that Γr(E) is a module over the ring Cr(M) with the module structure
defined in the obvious way:

(ξ + η)(x) = ξ(x) + η(x), ( fξ)(x) = f (x)ξ(x),

where ξ, η ∈ Γr(E) and f ∈ Cr(M). It is also the case that Γr(E) has the structure of an
F-vector space if we defined scalar multiplication by (aξ)(x) = a(ξ(x)).

Note that one can find many sections of smooth vector bundles, because locally
defined section can be extended to globally defined sections using constructions in-
volving the Tietze Extension Theorem [Abraham, Marsden, and Ratiu 1988, §5.5].
However, for holomorphic and real analytic vector bundles, there is no a priori reason
that there are sections other than the zero section. As a concrete instance of this phe-
nomenon, note that holomorphic or real analytic sections of the trivial vector bundle
M × F are merely holomorphic or real analytic functions. Thus, for example, if M is
a compact holomorphic manifold, the only holomorphic sections of the trivial vector
bundle M × C are constant sections.

Let us flesh out the preceding discussion by considering spaces of sections of line
bundles over CP1.

4.3.14 Example (Sections of line bundles over CP1) We shall consider the line bundles
OCP1(k), k ∈ Z, introduced in Example 4.3.5–4. We shall characterise the space of
sections of these bundles. In doing so, we recall the following fact:

If f : C→ C is holomorphic, it admits a global power series expansion

f (z) =

∞∑
j=0

a jz j

that converges absolutely and uniformly on compact sets [Conway 1978,
Proposition IV.3.3].
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Now suppose that we have a holomorphic section ξ of OCP1(k), and let

z+ 7→ (z+, ξ+(z+)), z− 7→ (z−, ξ−(z−))

denote the local representatives of this section in the trivialisations E+ and
E−, cf. Example 4.3.5–4. Let us write

ξ+(z+) =

∞∑
j=0

a+, jz
j
+,

so that, applying the overlap map to the section ξ+, we have

ψ±(z+, ξ+(z+)) =
(
z−1

+ ,
∞∑
j=0

a+, jz
j−k
+

)
=

(
z−,

∞∑
j=0

a+, jz
k− j
−

)
.

Since

z− 7→
∞∑
j=0

a+, jz
k− j
−

must be a holomorphic function if ξ is a holomorphic section. It must be the case,
therefore, that a+, j = 0 if j > k. From this we conclude that

dimC(Γhol(OCP1(k))) =

k + 1, k ∈ Z≥0,

0, k ∈ Z<0.

A few comments here are worth making.
1. In all cases, the dimension of the vector space of sections of these vector bundles

is finite. This is not like what we are used to for smooth sections, where the vector
space of smooth sections of a vector bundle over a manifold with a component
of positive dimension is always infinite-dimensional. This immediately begs a
few related questions.

(a) Are there holomorphic vector bundles whoseC-vector space of holomorphic
sections is infinite-dimensional?

(b) Is the R-vector space of real analytic sections of a real analytic vector bundle
finite or infinite-dimensional?

The answers to these questions are, “Yes, vector bundles over Stein manifolds,”
and, “It is infinite-dimensional if the base space has a component of positive
dimension.” To obtain these answers requires substantial effort, particularly the
use of sheaf cohomology. This will all be revealed in time.

2. Keeping Example 4.3.11 in mind, we see that the dimension of Γhol(OCP1(k)) and
Γhol(OCP1(k)∗) agree only when k = 0. This again is contrary to the smooth case
where the existence of a vector bundle metric provides an isomorphism between
the space of sections of a vector bundle and its dual bundle. •

The Identity Theorem applies to sections.
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4.3.15 Theorem (Identity Theorem for sections) Let F ∈ {R,C}, and let r = ω if F = R and
r = hol if F = C. If π : E→ M is a Cr-vector bundle with M a connected manifold, if U ⊆ M
is a nonempty open set and if ξ, η ∈ Γr(E) satisfy ξ|U = η|U, then ξ = η.

Proof It suffices to show that if ξ(x) = 0 for every x ∈ U then ξ is the zero function. Let

C = {x ∈ M | ξ(x) = 0},

and note that C is closed with int(C) , ∅ since it contains U. We claim that bd(int(C)) = ∅.
Indeed, suppose that x ∈ bd(C). Let (V, ψ) be an F-vector bundle chart with x ∈ V. Let
V0 ⊆ M be such that V = π−1(V0). Also let ψ0 : V0 → Fn be the chart map for M with
domain V0. Thus ψ0 is defined by asking that ψ0(x) = ψ(e) for every e ∈ Ex. The local
representative of ξ is then of the form

ψ ◦ξ ◦ψ−1
0 (x) = (x, ξ(x))

for holomorphic or real analytic ξ : ψ0(V0) → Fk. By continuity of ξ and its derivatives,
the Taylor series of ξ at ψ0(x) is zero. Since ξ is holomorphic or real analytic, this implies
that ξ vanishes in a neighbourhood of ψ0(x), and so ξ vanishes in a neighbourhood of x,
which is a contradiction. We now claim that M \ int(C) is open. Indeed, let x ∈ M \ int(C)
be a point not in the interior of M \ int(C). Then every neighbourhood of x must intersect
C and so x ∈ bd(int(C)) = ∅, and so M \ int(C) is open. Since M is now the union of the
disjoint open sets int(C) and M \ int(C) and since the former is nonempty, we must have
M \ int(C) = ∅, giving int(C) = M and so C = M. �

Next we consider germs of sections as this will allow us to systematically discuss
local constructions. This is done more or less exactly as was done for functions. Let
x0 ∈ M. We define as follows an equivalence relation on the set of ordered pairs (ξ,U),
where U ⊆ M is a neighbourhood of x0 and ξ ∈ Γr(U). We say that (ξ1,U1) and (ξ2,U2)
are equivalent if there exists a neighbourhood U ⊆ U1 ∩U2 of x0 such that ξ1U1 = ξ2|U.
We denote a typical equivalence class by [(ξ,U)]x0 , or simply by [ξ]x0 if the domain of ξ
is understood or immaterial. The set of equivalence classes we denote by G r

x0,E
, which

we call the set of germs of holomorphic or real analytic sections at x0, respectively. We
make the set of germs into a module over C r

x0,M
by defining the following operations

of addition and multiplication:

[(ξ1,U1)]x0 + [(ξ2,U2)]x0 = [ξ1|U1 ∩ U2 + ξ2|U1 ∩ U2,U1 ∩ U2]x0

[( f ,U1)]x0 · [(ξ,U2)]x0 = [( f |U1 ∩ U2)(ξ|U1 ∩ U2),U1 ∩ U2]x0 .

It is elementary to verify that these operations are well-defined, and indeed make the
set of germs of holomorphic or real analytic sections into a module as asserted. As with
sections, germs of sections also have anF-vector space structure: a[( f ,U)]x0 = [(a f ,U)]x0 .

Let us examine some of the algebraic properties of C r
x0,M

. As we did when talking
about the algebraic structure of germs of functions, we state a result which turns the
problem into one about convergent formal power series.
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4.3.16 Proposition (Characterisation of holomorphic and real analytic section germs)
Let F ∈ {R,C}, and let r = ω if F = R and r = hol if F = C. For π : E→ M a vector bundle
of class Cr and for x0 ∈ M, the module C r

x0,E
is isomorphic to the ring F̂[[ξ1, . . . , ξn]] ⊗ Fm

of Fm-valued convergent power series in n indeterminates, where n is the dimension of the
connected component of M containing x0 and m = dimF(Ex0).

Proof Let (V, ψ) be an F-vector bundle chart for E with (U, φ) be the associated F-chart
about x0 such that φ(x0) = 0. We identify U with φ(U) ⊆ Fn and a section of class Cr on
U with its local representative. A section of class Cr, by definition, is one whose Taylor
series converges in some neighbourhood of every point in its domain of definition, and
which is equal to its Taylor series on that neighbourhood. Thus, if [(ξ,V)]0 ∈ G r

0,U, in some
neighbourhood V′ of 0 in U we have

ξ(x1, . . . , xn) =
∑

I∈Zn
≥0

∂|I|ξa

∂xI (0)ea,

where ξ(x) = (x, ξ(x)) and where (e1, . . . , em) is the standard basis for Fm. Thus [(ξ,V)]0
is determined by its Taylor series, which gives a surjective map from C r

0,U to F̂[[ξ]] ⊗ Fm.
That this map is also injective follows since two analytic functions having the same Taylor
series at a point are obviously equal on some neighbourhood of that point. �

With this result we have the following structure of the module of holomorphic or
real analytic section.

4.3.17 Theorem (The module of holomorphic or real analytic section germs is Noethe-
rian) Let F ∈ {R,C}, and let r = ω if F = R and r = hol if F = C. For π : E → M a vector
bundle of class Cr and for x0 ∈ M, the module C r

x0,E
is Noetherian.

Proof As in the proof of Theorem 4.2.7, this follows from Proposition 4.3.16, along with
Theorem 4.2.7 and Proposition 2.2.15. �

Of course, the previous constructions apply equally well in the smooth case, and
we shall occasionally access the notation G∞x,E for the module of germs of smooth
sections at x0. However, this module is not Noetherian as in the holomorphic and real
analytic cases. As with germs of functions (see the end of Section 4.2.3), there is also
an important distinction between germs of smooth sections and germs of holomorphic
or real analytic sections in terms of the existence of global generators. In the smooth
case, any germ of a smooth section has a globally defined representative. We state this
as Proposition 5.6.5 below, also cf. Propositions 5.6.4 and 4.2.8.

4.3.4 Holomorphic and real analytic subbundles and quotients

Subbundles arise naturally in various ways when working with vector bundles. In
this section we provide the necessary definitions.

4.3.18 Definition (Holomorphic and real analytic subbundle) Let F ∈ {R,C}, let r ∈ {∞, ω}
if F = R and r ∈ {∞, ω,hol} if F = C, and let π : E→ M be a Cr-vector bundle. A subset
F ⊆ E is a Cr-subbundle of E if, for each x ∈ M, there exists an F-vector bundle chart
(U, φ) such that
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(i) Ex ⊆ U,
(ii) image(φ) = U0 × (Fk

× Fl), and
(iii) φ(F ∩ U) = U0 × (Fk

× {0}).
A vector bundle chart for E as above is called adapted to the subbundle F. •

It is evident that a subbundle of a vector bundle is itself a vector bundle.
One of the places where subbundles can naturally arise is as in the following

result.

4.3.19 Proposition (Kernel and image of a vector bundle mapping as subbundles) Let
F ∈ {R,C}, and let r ∈ {∞, ω} if F = R and r ∈ {∞, ω,hol} if F = C. Let πE : E → M and
πF : F→ M be Cr-vector bundles, and let Φ : E→ F be a Cr-vector bundle mapping over idM.
The following statements are equivalent:

(i) ker(Φ) is a subbundle of E;
(ii) image(Φ) is a subbundle of F;
(iii) the map x 7→ rank(Φx) is locally constant.

Proof Let us first make some computations with the local representative of Φ about x0 ∈ M.
Thus we let (U, φ) be a vector bundle chart for E about x0 and let (V, ψ) be a vector bundle
chart for F about x0. Let (U0, φ0) and (V0, ψ0) be the induced charts for M. Without loss of
generality (by composing one of these charts with the overlap map) we can suppose that
these charts agree. Denote x0 = φ0(x0). Let us write

φ(U) = φ0(U0) × Fk, ψ(V) = φ0(U0) × Fl.

The local representative of Φ we denote by

(x,v) 7→ (x,Φ(x) · v).

Let K = ker(Φ(x0)) and let L ⊆ Fk be a complement to K. Let R = image(Φ(x0)) and let
S ⊆ Fl be a complement to R. Then we represent Φ(x) relative to the decompositions
Fk = K ⊕ L and Fl = R ⊕ S by [

Φ11(x) Φ12(x)
Φ21(x) Φ22(x)

]
.

Note that Φ21(x0) and Φ22(x0) are both zero since S is complementary to image(Φ(x0)).
Since K = ker(Φ(x0)), Φ11(x0) is also zero. One then directly checks that Φ12(x0) is an
isomorphism. By shrinking U0 if necessary, we can ensure that Φ(x) is an isomorphism
for x ∈ φ0(U0). Let us define an isomorphism A from K ⊕ L to K ⊕ L by[

idK 0
−Φ−1

12 (x)Φ11(x) idL

]
.

We then compute

ΦA =

[
0 Φ12(x)

Φ21(x) −Φ22Φ
−1
12 (x)Φ11(x) Φ22(x)

]
. (4.11)
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Note that (U, (idφ0(U0) ×A−1) ◦φ) is a vector bundle chart for E about x0 and the local
representative of Φ relative to this chart and the vector bundle chart (V, ψ) is (4.11).

With these computations we proceed with the proof.
(i) =⇒ (ii) Since ker(Φ) is a subbundle, dim(ker(Φx)) is constant in a sufficiently small

neighbourhood of x0. Thus, by the Rank–Nullity formula, rank(Φx) is also constant in a
sufficiently small neighbourhood of x0. Using our local representative above, the map

v1 ⊕ v2 7→Φ11(x) · v1 ⊕Φ12(x) · v2

is onto R. Since rank(Φx) can be taken to be constant on φ0(U0) it follows thatΦ21(x) and
Φ22(x) are zero for x ∈ φ0(U0). Thus

ψ(image(Φ) ∩ V) = U0 × (R ⊕ 0).

This shows that image(Φ) is a subbundle.
(ii) =⇒ (iii) This follows directly.
(iii) =⇒ (i) As we saw in the proof that (i) =⇒ (ii), local constancy of x 7→ rank(Φx)

implies thatΦ21(x) andΦ22(x) are zero for x ∈ φ0(U0). Thus

φ(ker(Φ) ∩ U) = U0 × (K ⊕ 0).

This shows that ker(Φ) is a subbundle. �

Let us briefly consider quotients of vector bundles by subbundles. Thus we let
π : E→ M be a holomorphic or real analytic vector bundle and let F ⊆ E be a holomor-
phic or real analytic subbundle. Let

E/F =
◦

∪
x∈M

Ex/Fx.

Suppose that (U, φ) is a vector bundle chart for E adapted to F and let (U0, φ0) be the
corresponding chart for M. Thusφ takes values inFk

×Fl andφ(F∩U) = φ(U0)×(Fk
×{0}).

For x ∈ U0 and ex ∈ Ex we can write ex = pr1(ex) + pr2(ex), where

φ(pr1(ex)) = (φ0(x), {v1} × {0}), φ(pr2(ex)) = (φ0(x), {0} × {v2})

for some appropriate v1 ∈ Fk and v2 ∈ Fl. Let us define a vector bundle chart (Û, φ̂) for
E/F by asking that

Û =
◦

∪
x∈U0

Ex/Fx

and that
φ̂(ex + Fx) = φ(pr2(ex)) ∈ φ0(U0) × {0} × Rl

' φ0(U0) × Rl.

One readily verifies that if ((Ua, φa))a∈A is an atlas of vector bundle charts for E adapted
to F, then ((Ûa, φ̂a))a∈A is a vector bundle atlas for E/F, and so the latter is a vector
bundle, called the quotient of E by F. We denote by πE/F : E → E/F the canonical
projection. We evidently have a short exact sequence

0 // F
ιF // E

πE/F // E/F // 0

with ιF being the inclusion.
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4.3.5 Sums and tensor products of vector bundles

Most of the standard algebraic operations one performs with vector spaces can be
performed fibre-wise for vector bundles to produce new vector bundles. We have
already seen one such instance with quotients in the last section. In this section
we consider two algebraic constructions, direct sums and tensor products. We shall
simply provide the definitions for the vector bundle structure in these cases, leaving
the verifications that the overlap maps are local vector bundle isomorphisms to the
reader.

First let us consider direct sums. We consider the direct sum of two vector bundles,
the extension to more than two factors being mere notation. Thus we let πE : E → M
and πF : F → M be holomorphic or real analytic vector bundles over the same base.
We denote

E ⊕ F =
◦

∪
x∈M

Ex ⊕ Fx.

We let (U, φ) and (V, ψ) be F-vector bundle charts for E and F, respectively. We can
suppose, without loss of generality, that the induced charts (U0, φ0) and (U0, ψ0) for M
are the same. Thus

φ(ex) = (φ0(x), φ1(x) · ex) ∈ φ0(U0) × Fk, ψ( fx) = (φ0(x), ψ1(x) · fx) ∈ φ0(U0) × Fl

for ex ∈ U and fx ∈ V, and where φ1(x) ∈ HomF(Ex,Fk) and ψ1(x) ∈ HomF(Fx;Fl). In
this case, we define a chart (U ⊕ V, φ ⊕ ψ) for E ⊕ F by

U ⊕ V =
◦

∪
x∈U0

Ex ⊕ Fx

and
φ ⊕ ψ(ex ⊕ fx) = (φ0(x), (φ1(x) · ex) ⊕ (ψ1(x) · fx)) ∈ U × (Fk

⊕ Fl).

The vector bundle E ⊕ F is sometimes called the Whitney sum of E and F. Sometimes
it is convenient to use the fibred product representation of E ⊕ F:

E ⊕ F ' {(e, f ) ∈ E × F | πE(e) = πF( f )}.

Now let us consider tensor products. As above, we let πE : E→ M and πF : F→ M
be holomorphic or real analytic vector bundles over the same base. We denote

E ⊗ F =
◦

∪
x∈M

Ex ⊗ Fx.

We use the same sort of vector bundle charts as above, i.e., charts (U, φ) and (U, ψ) with
the same domain and inducing the same chart (U0, φ0) for M. Using notation adopted
from our direct sums above, we define a chart (U ⊗ V, φ ⊗ ψ) for E ⊗ F by

U ⊗ V =
◦

∪
x∈U0

Ex ⊗ Fx
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and
φ ⊗ ψ(ex ⊗ fx) = (φ0(x), (φ1(x) · ex) ⊗ (ψ1(x) · fx)) ∈ U × (Fk

⊗ Fl).

Again, we leave to the reader the task of verifying that these charts obey vector
bundle overlap conditions.

We have at our disposal some nice examples of tensor products of vector bundles.

4.3.20 Example (Tensor products of line bundles over CP1) We consider the line bundles
OCP1(k) over CP1 introduced in Example 4.3.5–4. It is easy to see that, because the
overlap map for OCP1(k1 + k2) is the product of the overlap map maps for OCP1(k1) and
OCP1(k2), and since the tensor product in C ⊗C C is multiplication, we have

OCP1(k1 + k2) ' OCP1(k1) ⊗OCP1(k2).

This implies, for example, that

OCP1(k) ' ⊗k
j=1OCP1(1), OCP1(−k) ' ⊗k

j=1OCP1(−1),

if k ∈ Z>0. •

4.3.6 Pull-back bundles

In this section we provide a standard construction that induces a vector bundle on
the domain of a mapping between manifolds, given a vector bundle on the codomain.
The definition is as follows.

4.3.21 Definition (Pull-back bundle) Let r ∈ {∞, ω,hol} and let F = R if r ∈ {∞, ω} and let
F = C if r = hol. Let M and N be Cr-manifolds, let Φ ∈ Cr(M; N), and let π : E→ N be a
F-vector bundle of class Cr. The pull-back of E to M is given by

Φ∗π : Φ∗E→ M,

where
Φ∗E = {(e, x) ∈ E ×M | π(e) = Φ(x)}

and Φ∗π(e, x) = x. •

The pull-back of a vector bundle has a natural vector bundle structure.

4.3.22 Proposition (The pull-back of a vector bundle is a vector bundle) Let r ∈ {∞, ω,hol}
and let F = R if r ∈ {∞, ω} and let F = C if r = hol. Let M and N be Cr-manifolds, let
Φ ∈ Cr(M; N), and let π : E→ N be a F-vector bundle of class Cr. Then Φ∗ : Φ∗E→ M has a
natural vector bundle structure.

Proof We shall construct vector bundle charts for Φ∗E. Let (U, φ) be a chart for M and let
(V, ψ) be a vector bundle chart for E so that Φ(U) ⊆ W , π(V). This defines a neighbour-
hood V×U in E×M. Let us suppose that U is diffeomorphic to an open subset of Fn, that W
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is diffeomorphic to an open subset of Fm, and that the fibres of E over W have dimension
k. Let ψ0 : W→ Fm be the induced chart map for N. We then have

ψ × φ : V × U→ (Fm
× Fk) × Fn

(e, x) 7→ (ψ(e), φ(x)).

Denote by Φ̄ : φ(U) → ψ0(W) the local representative of Φ. With this notation, locally the
subset Φ∗E of E ×M is given by

Φ̄∗E , {((y,v), x) ∈ ψ(V) × φ(U) | y = Φ̄(x)}.

Now define a map g from Φ̄∗E to φ(U) × Fk by

g((y,v), x) = (x,v)

We claim that

{((V × U)|Φ∗E, g ◦ (ψ × φ|Φ∗E)) |
(V, ψ) is a vector bundle chart for E and (U, φ) is a chart for M}

is a vector bundle atlas for Φ∗E. We must verify the overlap conditions. We make things
simpler by assuming another chart for M of the form (U, φ′) (i.e., the domain is the same
as the chart (U, φ)) and a vector bundle chart for E of the form (V, ψ′) (again the domain is
the same). These simplifications can always be made by restriction if necessary. Since the
charts (U, φ) and (U, φ′) satisfy the overlap conditions we have that

φ′ ◦φ−1 : φ(U)→ φ′(U)

is a Cr-diffeomorphism. Similarly, since (V, ψ) and (V, ψ′) are vector bundle charts,

ψ′ ◦ψ−1(y,v) = (σ(y),A(y) · v),

where σ : ψ0(W)→ ψ′0(W) is a Cr-diffeomorphism and A : ψ0(W)→ GL(k;F) is of class Cr.
Now we consider the two charts

((V × U)|Φ∗E, g ◦ (ψ × φ|Φ∗E)) and ((V × U)|Φ∗E, g ◦ (ψ′ × φ′|Φ∗E))

for Φ∗E and show that they satisfy the overlap conditions. Let (e, x) ∈ (V × U)|Φ∗E. We
write

ψ × φ(e, x) = ((Φ̄(x),v), x),

defining x ∈ φ(U) and v ∈ Fk. If Φ̄′ : φ′(U) → ψ′0(W) is the local representative of Φ in the
“primed” chart, we may write

ψ × φ(e, x) = ((Φ̄′(x′),v′), x′),

defining x′ ∈ φ′(U) and v′ ∈ Fk. Since (U, φ), (U, φ′), (V, ψ), and (V, ψ′) satisfy the overlap
conditions we must have

x′ = φ′ ◦φ−1(x), v′ = (A ◦σ(x)) · v.

This shows that the overlap condition is indeed satisfied. �
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One directly verifies that the map Φ̂ : Φ∗E → E defined by Φ̂(e, x) = e is a vector
bundle mapping over Φ. That is, the diagram

Φ∗E Φ̂ //

Φ∗π
��

E
π
��

M
Φ
// N

commutes and Φ̂ is F-linear on fibres.

4.4 Line bundles over general projective spaces

In this section, as an illustration of some of the topics of interest in algebraic geome-
try connected with holomorphic differential geometry, we generalise and beautify our
constructions presented in the course of Section 4.3 of line bundles over CP1 to general
projective spaces. The constructions we perform are most naturally performed using
general vector spaces over general fields, so we phrase things in this way so as to
isolate the essential algebraic and geometric character. Some of the topics we discuss
here are dealt with nicely in the book of Berger [1987].

4.4.1 Setup

We let F be a field and we let V be a finite-dimensional F-vector space. For k ∈ Z≥0,
by Sk(V) we denote the degree k symmetric tensor algebra of V. For k ∈ Z>0 and
v ∈ V we denote by v⊗k the image of v ⊗ · · · ⊗ v under the projection V⊗k , Tk(V) to
Sk(V) i.e., using the notation of Section F.2.2,

v⊗k = v ⊗ · · · ⊗ v + IS(V).

We begin our constructions by first defining the generalisation of our construction
of FPn to the general setting. This is easy. A line in V is a one-dimensional subspace,
typically denoted by L. By P(V) we denote the set of lines in V. Equivalently, P(V) is
the set of equivalence classes in V\ {0} under the equivalence relation v1 ∼ v2 if v2 = av1

for a ∈ F \ {0}. We call P(V) the projective space of V. If v ∈ V \ {0}we denote by [v] the
line generated by v. We can thus denote a point in P(V) in two ways: (1) by [v] when
we wish to emphasise that a line is a line through a point in V; (2) by L when we wish
to emphasise that a line is a vector space.

We will study a family OP(V)(d), d ∈ Z, of line bundles over P(V). We shall refer to
the index d as the degree of the line bundles. The simplest of these line bundles occurs
for d = 0, in which case we have the trivial bundle

OP(V)(0) = P(V) × F.
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We have the obvious projection

π(0)
P(V) : OP(V)(0)→ P(V)

([v], a) 7→ [v].

The study of the line bundles of nonzero degree in a comprehensive and elegant way
requires some development of projective geometry.

In this section we shall frequently use differential geometric language such as
“vector bundle” and “section,” even though we are not in the setting of differential
geometry. This should not cause confusion, as a quick mental translation into the case
of F ∈ {R,C} should make all such statements seem reasonable.

4.4.2 The affine structure of projective space minus a projective hyperplane

In Definition 5.1.1, in preparation for our discussion of jet bundles, we define the
notion of an affine space, and we will use this definition here. At a few points in
this section we shall make use of a particular affine structure, and in this section we
describe this. The discussion is initiated with the following lemma.

4.4.1 Lemma (The affine structure of P(V) with a projective hyperplane removed) If F
is a field, if V is an F-vector space, and if U ⊆ V is a subspace of codimension 1, then the set
P(V) \ P(U) is an affine space modelled on HomF(V/U; U).

Proof Let πU : V → V/U be the canonical projection. For v + U ∈ V/U, π−1
U (v + U) is an

affine subspace of the affine space V modelled on U, as is easily checked. Moreover, if L is
a complement to U, then πU|L is an isomorphism. Now, if v + U ∈ V/U and if L1 and L2 are
two complements to U, note that

(πU|L1)−1(v + U) − (πU|L2)−1(v + U) ∈ U

since
πU((πU|L1)−1(v + U) − (πU|L2)−1(v + U)) = (v + U) − (v + U) = 0.

Moreover, the map

V/U 3 v + U 7→ (πU|L1)−1(v + U) − (πU|L2)−1(v + U) ∈ U (4.12)

is in HomF(V/U; U). We, therefore, define the affine structure on P(V) \ P(U) by defining
subtraction of elements of P(V) \ P(U) as elements of the model vector space by taking
L1 − L2 to be the element of HomF(V/U; U) given in (4.12). It is now a simple exercise to
verify that this gives the desired affine structure. �

To make the lemma more concrete and to connect it to constructions we already have
seen concerning projective spaces, in the setting of the lemma, we let O ∈ P(V) \ P(U),
let eO ∈ O \ {0}, and, for v ∈ V, write v = vOeO + vU for vO ∈ F and vU ∈ U. With this
notation, we have the following result.
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4.4.2 Lemma (A concrete representation of P(V) \ P(U)) The map

φU,O : P(V) \ P(U)→ U

[v] 7→ v−1
O vU

is an affine space isomorphism mapping O to zero.
Proof Let [v] ∈ P(V) \ P(U) and write eO in its [v]- and U-components:

eO = α(vOeO + vU) + v′U,

for v′U ∈ U. Evidently, α = v−1
O and v′U = v−1

O vU. According to the proof of Lemma 4.4.1, if
w + U ∈ V/U, then

([v] −O)(w + U) = ([vOeO + vU] − [eO])(wOeO + U)
= (wOeO)[v] − wOeO

= wO(eO + v−1
O vU) − wOeO

= wOv−1
O vU,

where (wOeO)[v] denotes the [v]-component of wOeO.
We now verify thatφU,O is affine by using Proposition 5.1.7. Let [v1], [v2] ∈ P(V)\P(U).

Then, for w + U ∈ V/U,

(([v1] −O) + ([v2] −O))(w + U) = wO(v−1
1,Ov1,U − v−1

2,O(v2,U))

and so
O + (([v1] −O) + ([v2] −O)) = [eO + v−1

1,Ov1,U + v−1
2,Ov2,U].

Thus, using the vector space structure on P(V) \ P(U) determined by the origin O,

φU,O([v1] + [v2]) = φU,O(O + (([v1] −O) + ([v2] −O)))

= v−1
1,Ov1,U + v−1

2,Ov2,U

= φU,O([v1]) + φU,O([v2]).

Also,
a([v] −O) = wOav−1

O vU

which gives
O + a([v] −O) = [vOeO + avU].

Therefore,
φU,O(a[v]) = φU,O(O + a([v] −O)) = av−1

O vU = aφU,O([v]),

showing that φU,O is indeed a linear map from P(V) \ P(U) to U with origins O and 0,
respectively.

Finally, we show that φU,O is an isomorphism. Suppose that φU,O([v]) = 0, meaning
that v−1

O vU = 0. This implies that vU = 0 and so v ∈ O, showing that φU,O is injective. Since
the dimensions of the domain and codomain of φU,O agree, the result follows. �

Next let us see how, if we exclude two distinct hyperplanes, one can compare the
two affine structures.
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4.4.3 Lemma (Transition functions between affine subspaces) Let F be a field, let V be a
finite-dimensional F-vector space, and let U1,U2 ⊆ V be distinct codimension 1 subspaces, let
Oj ∈ P(V) \ P(Uj), j ∈ {1, 2}, let eOj ∈ Oj \ {0}, and let φUj,Oj : P(V) \ P(Uj)→ Uj, j ∈ {1, 2}, be
the isomorphisms of Lemma 4.4.2. Then

φU2,O2
◦φ−1

U1,O1
(u1) = (eO1 + u1)−1

O2
(eO1 + u1)U2 ,

where (eO1 + u1)O2 is the O2-component and (eO1 + u1)U2 is the U2-component, respectively, of
eO1 + u1.

If, furthermore, O1 ∈ P(U2) and O2 ∈ P(U1), then the formula simplifies to

φU2,O2
◦φ−1

U1,O1
(u1) = u−1

1,O2
(eO1 + u1,U2), u1 ∈ φU1,O1(P(V) \ P(U2)),

where u1,O2 is the O2-component and u1,U2 is the U2-component, respectively, of u1.
Proof This follows by direct computation using the definitions. �

Let us consider an important special case of the preceding developments to
make connections to the differentiable structure for projective space presented in
Example 4.2.2–4.

4.4.4 Example (The canonical projective space) We let V = Fn+1 and denote a point in V
by (a0, a1, . . . , an). We follow the convention adopted in Example 4.2.2–4 and denote
by [a0 : a1 : · · · : an] the line through (a0, a1, . . . , an). For j ∈ {0, 1, . . . ,n} we denote by U j

the subspace
U j = {(a0, a1, . . . , an) ∈ V | a j = 0}.

Note that U j is isomorphic to Fn in a natural way, and we make this identification
without explicit mention. Note that the affine spaces P(V) \ P(U j) correspond to the
chart domainsU j, j ∈ {0, 1, . . . ,n} from Example 4.2.2–4, and so we denote these exactly
by U j, for brevity. For each j ∈ {0, 1, . . . ,n} we denote O j = spanF(e j), j ∈ {0, 1, . . . ,n},
where e j is the jth (according to our numbering system starting with “0”) standard
basis vector for V. Note that O j ∈ Uk for j , k, as prescribed by the hypotheses of
Lemma 4.4.3.

With this as buildup, we then have

φU j,O j([a0 : a1 : · · · : an]) = a−1
j (a0, a1, . . . , a j−1, a j+1, . . . , an),

consistent with the chart maps from Example 4.2.2–4. We can also verify that, if
j, k ∈ {0, 1, . . . ,n} satisfy j < k, then we have

φU j,O j
◦φ−1

Uk,Ok
(a1, . . . , an) =

( a1

a j+1
, . . . ,

a j

a j+1
,

a j+2

a j+1
, . . . ,

ak

a j+1
,

1
a j+1

,
ak+1

a j+1
, . . . ,

an

a j+1

)
,

which agrees with the overlap maps from Example 4.2.2–4. •
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4.4.3 The affine structure of projective space with a point removed

In order to study below the line bundles OP(V)(d) for d ∈ Z>0, we need an enjoyable
linear algebra diversion. Our setup is the following. We let U be an F-vector space
and let W ⊆ U be a subspace. We then have a natural identification of P(W) with a
subset of P(U) by considering lines in W as being lines in U. Note that we also have
the canonical projection πW ∈ HomF(U; U/W) and so an induced map

P(πW) : P(U) \ P(W)→ P(U/W)
L 7→ (L + W)/W ⊆ U/W.

Note that we do require that this map not be evaluated on points in P(W) since these
will not project to a line in U/W. The same line of thinking allows one to conclude that
P(πW) is surjective. The following structure of this projection is of value.

4.4.5 Lemma (The affine bundle structure of the complement of a subspace in pro-
jective space) If F is a field, if U is an F-vector space, if W ⊆ U is a subspace, and if
L ∈ P(U/W) then P(πW)−1(L) is an affine space modelled on HomF(π−1

W (L)/W; W).
Proof If L ⊆ U/W is a line, then there exists u ∈ U \W such that

L = {au + W | a ∈ F} = {au + w + W | a ∈ F} = (M + W)/W,

where M = [u] and so M ∩W = {0}. Therefore, we can denote

AL = {M ∈ P(U) \ P(W) | (M + W)/W = L}.

We claim that
AL = {M ∈ P(U) \ P(W) | M + W = π−1

W (L)};

that is, AL is the set of complements to W in π−1
W (L). To see this, first note that any such

complement will necessarily have dimension 1 by the Rank–Nullity Theorem. Next let M
be such a complement. Then

L = πW(π−1
W (L)) = πW(M + W),

which is exactly the condition M ∈ AL. Next suppose that (M + W)/W = L. This means that

πW(M + W) = L.

By the Rank–Nullity Theorem, it follows that M is a complement to W in π−1
W (L). The result

now follows from Lemma 4.4.1. �

For us, the most important application of the preceding lemma is the following
corollary.
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4.4.6 Corollary (A vector bundle structure for P(F ⊕ V)) Let F be a field, let V be an F-vector
space, and consider the map

P(pr2) : P(F ⊕ V) \ P(F ⊕ 0)→ P(V).

For L ∈ P(V), P(pr2)−1(L) has a canonical identification with L∗.
Proof We apply the lemma in a particular setting. We take U = F ⊕ V and W = F ⊕ 0. We
have a natural isomorphism ιV : V→ U/F defined by ιV(v) = 0⊕v +F. If we let pr2 : U→ V
be projection onto the second factor, then we have the diagram

0 //W //

'

��

U
πW // U/W

ιV
��

// 0

0 // F // F ⊕ V pr2

// V // 0

(4.13)

which is commutative with exact rows. Note that pr−1
2 (L) = F ⊕ L ⊆ F ⊕ V. Therefore,

pr−1
2 (L)/F ' L. By the lemma and by the commutative diagram (4.13), P(pr2)−1(L) is an

affine space modelled on

HomF(pr−1
2 (L)/F; F) ' HomF(L; F) = L∗.

Since 0 ⊕ L ∈ P(pr2)−1(L) for every L ∈ P(V), the affine space P(pr2)−1(L) has a natural
distinguished origin, and so this establishes a natural identification of P(pr2)−1(L) with L∗,
as desired. Explicitly, this identification is given by assigning to [a⊕ v] ∈ P(F⊕V) \P(F⊕ 0)
the element α ∈ [v]∗ determined by α(v) = a. �

4.4.4 Functions and maps to and from projective spaces

In order to intelligently talk about objects defined on projective space, e.g., spaces
of sections of line bundles over projective space, we need to have at hand a notion of
regularity for such mappings. We shall discuss this only in the most elementary setting,
as this is all we need here. We refer to any basic algebraic geometry text, e.g., [Harris
1992], for a more general discussion.

Caveat We do not follow some of the usual conventions in algebraic geometry be-
cause we do not work exclusively with algebraically closed fields. Thus some of our
definitions are not standard. We do not care to be fussy about how we handle this. At
points where it is appropriate, we point out where algebraic closedness leads to the
usual definitions. •

Functions on vector spaces

First, let us talk about functions on a vector space V taking values in F. We wish to use
polynomial functions as our starting point. A polynomial function of homogeneous
degree d on V is a function of the form

v 7→ A(v, . . . , v),
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for A ∈ Td(V∗). By Sublemma 1 from the proof of Lemma F.2.15 we now have the
following result.

4.4.7 Proposition (Symmetric multilinear maps and homogeneous polynomial map-
pings) Let F be a field and let V be an F-vector space. Then, for a homogeneous polynomial
function f : V→ F of degree d, there exists a unique A ∈ Sd(V∗) such that

f(x) = A(x, . . . , x).

Moreover, for x1, . . . , xd ∈ V we have

A(x1, . . . , xd) =
1
d!

d∑
l=1

∑
{j1,...,jl}⊆{1,...,d}

(−1)d−lA(xj1 + · · · + xjl , . . . , xj1 + · · · + xjl).

A general (i.e., not necessarily homogeneous) polynomial function is then a sum
of its homogeneous components, and so identifiable with an element of S(V∗). Any
element of S(V∗) can be written as A0 + A1 + · · · + Ad where d ∈ Z≥0 and A j ∈ S j(V∗),
j ∈ {0, 1, . . . , d}. Justified by the proposition, we shall sometimes abuse notation slightly
and write “ f ∈ S(V∗)” if f is a polynomial function. When we wish to be explicit
about the relationship between the function and the tensor, we shall write fA, where
A = A0 + A1 + · · · + Ad. If we wish to consider general polynomial functions taking
values in an F-vector space U, these will then be identifiable with elements of S(V∗)⊗U.

We will need to go beyond polynomial functions, and this we do as follows.

4.4.8 Definition (Regular function on vector space) Let F be a field, let U and V be finite-
dimensional F-vector spaces, and let S ⊆ V. A map f : V → U is regular on S if there
exists N ∈ S(V∗) ⊗ U and D ∈ S(V∗) such that

(i) {v ∈ S | fD(v) = 0} = ∅ and

(ii) f (v) =
fN(v)
fD(v)

for all v ∈ V.

If f is regular on V, we shall often say f is simply regular. •

In some cases regular functions take a simpler form.

4.4.9 Proposition (Regular functions on vector spaces are sometimes polynomial) If
F is an algebraically closed field and if U and V are finite-dimensional F-vector spaces, then
f : V→ U is regular on V if and only if there exists A ∈ S(V∗) ⊗ U such that f = fA.

Proof The “if” assertion is clear. For the “only if” assertion, it is sufficient to show that,
in the definition of a regular function, D can be taken to have degree zero. To see this, we
suppose that D has (not necessarily homogeneous) degree d ∈ Z>0 and show that fD(v) = 0
for some nonzero v. Write D = D0 + D1 + · · ·+ Dd where Dk ∈ Sk(V∗) for k ∈ {0, 1, . . . , d}. Let
(e1, . . . , en) be a basis for V, fix a2, . . . , an ∈ F \ {0}, and consider the function

F 3 a 7→ fD(ae1 + a2e2 + · · · + anen) ∈ F. (4.14)
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Note that

fD(ae1 + a2e2 + · · · + anen) =

d∑
k=0

k∑
j=0

(
k
j

)
Dk(ae1, . . . , ae1︸      ︷︷      ︸

j times

, a2e2 + · · · + anen︸             ︷︷             ︸
k− j times

),

and so the function (4.14) is a polynomial function of (not necessarily homogeneous)
degree d. If

d∑
k=0

Dk(a2e2 + · · · + anen, . . . , a2e2 + · · · + anen) = 0

then fD is zero at the nonzero point a2e2 + · · · + anen and our claim follows. Otherwise, the
function (4.14) is a scalar polynomial function of positive degree with nonzero constant
term. Since F is algebraically closed, there is a nonzero root a1 of this function, and so fD
is zero at a1e1 + a2e2 + · · · + anen, giving our assertion. �

The following example shows that the assumption of algebraic closedness is essen-
tial in the lemma.

4.4.10 Example (A non-polynomial regular function) The function x 7→ 1
1+x2 from R to R is

a regular function that is not polynomial. •

Functions on projective space

Note that if f ∈ Sd(V∗), then f (λv) = λd f (v), and so f will not generally give rise to a
well-defined function on P(V) since its value on lines will not be constant. However,
this does suggest the following definition.

4.4.11 Definition (Regular function on projective space) Let F be a field and let V and U be
F-vector spaces. A map f : P(V)→ U is regular if there exists d ∈ Z≥0 and N ∈ Sd(V∗)⊗U
and D ∈ Sd(V∗) such that

(i) {v ∈ V | fD(v) = 0} = {0} and

(ii) f ([v]) =
fN(v)
fD(v)

for all [v] ∈ P(V). •

Let us characterise regular functions on projective space with a sort of general result
and an example showing that “sort of general” cannot be converted to “general.”

First the sort of general result.

4.4.12 Proposition (Regular functions on projective space are sometimes constant) If F
is an algebraically closed field, if V is a finite-dimensional F-vector spaces, and if f : P(V)→ F
is regular, then f̂ is a constant function on P(V).

Proof Suppose that f (v) =
fN(v)
fD(v) for N,D ∈ Sd(V∗) where fD does not vanish on V\{0}. Since

F is algebraically closed, the same argument as was used in the proof of Proposition 4.4.9
shows that fD is constant, i.e., of degree 0. Thus fD is a nonzero constant function. It
follows that fN is also a constant function since we have N ∈ S0(V∗), and so f is constant.�

The following example shows that algebraic closedness of F is essential.
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4.4.13 Example (A nonconstant regular function on RPn) We let F = R and V = Rn+1,
denoting a point in V by (a0, a1, . . . , an). Of course, P(V) = RPn. We define a regular
function f on RPn by

f ([a0 : a1 : · · · : an]) =
fN(a0, a1, . . . , an)

a2
0 + a2

1 + · · · + a2
n
,

where fN is a nonzero polynomial function of homogeneous degree 2, e.g.,

fN(a0, a1, . . . , an) = a0a1 + a1a2 + · · · + an−1an.

This gives a nonconstant regular function, as desired. •

Mappings between projective spaces

Next let us consider a natural class of maps between projective spaces.

4.4.14 Definition (Morphisms between projective spaces) Let F be a field and let U and V
be finite-dimensional F-vector spaces. A morphism of the projective spaces P(V) and
P(U) is a map Φ : P(V) → P(U) for which there exist dN, dD ∈ Z≥0, N ∈ SdN (V∗), and
D ∈ SdD(V∗) ⊗ U such that

(i) {v ∈ V | fN(v) = 0} = {0},
(ii) {v ∈ V | fD(v) = 0} = {0},

(iii) Φ([v]) =

[
fN(v)
fD(v)

]
for all [v] ∈ P(V). •

Let us give a couple of examples of morphisms of projective space.

4.4.15 Examples (Projective space morphisms)
1. If A ∈ HomF(V; U) is a homomorphism of vector spaces, then the induced map

P(A) : P(V)→ P(U) given by P(A)([v]) = [A(v)] is well-defined if and only ker(A) =
{0}. If ker(A) , {0}, then P(A)([v]) can only be defined for [v] < ker(A), i.e., we have
a map

P(A) : P(V) \ P(ker(A))→ P(U),

which puts us in a setting similar to that of Section 4.4.3.
2. Let V be an F-vector space. Let us consider the map

V 3 v 7→ v⊗d
∈ Sd(V).

This is a polynomial function of homogeneous degree d, i.e., an element of

Sd(V∗) ⊗ Sd(V) ' EndF(Sd(V));
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indeed, one sees that the mapping corresponds to the identity endomorphism. This
mapping vanishes only at v = 0, and, therefore, we have an induced mapping

ϑd : P(V)→ P(Sd(V))

[v] 7→ [v⊗d],

which is called the Veronese embedding.
3. Let U and V be F-vector spaces and consider the map σ̂U,V : U × V→ U ⊗ V defined

by σ̂U,V(u, v) = u ⊗ v. Note that

σ̂(λu, µv) = (λµ)σ̂(u, v),

and from this we deduce that the map

σU,V : P(U) × P(V)→ P(U ⊗ V)
([u], [v]) 7→ [u ⊗ v]

is well-defined. This is called the Segre embedding. •

4.4.5 The tautological line bundle

Now we get to defining our various line bundles. In the case of d = −1, denote

OP(V)(−1) = {([v],L) ∈ P(V) × P(V) | v ∈ L}

and
π(−1)
P(V) : OP(V)(−1)→ P(V)

([v],L) 7→ [v].

The way to think of π(−1)
P(V) : OP(V)(−1)→ P(V) is as a line bundle over P(V) for which the

fibre over [v] is the line generated by v. This is the tautological line bundle over P(V).
In the case that F = R, the result is the so-called Möbius vector bundle over RP1

' S1.
This is a vector bundle with a one-dimensional fibre, and a “twist” as depicted in
Figure 4.6.

Figure 4.6 A depiction of the Möbius vector bundle (imagine the
fibres extending to infinity in both directions)

For [v] ∈ P(V), let us denote QV,[v] = V/[v] and take

QV =
◦

∪
[v]∈P(V)

QV,[v].

We can think of QV as being a vector bundle formed by the quotient of the trivial vector
bundle P(V) × V by the tautological line bundle. Note that we have an exact sequence

0 // OP(V)(−1) // P(V) × V // QV
// 0

where all arrows are canonical, and where this is done for “fibres” over a fixed [v] ∈
P(V), i.e., this is a sequence of “vector bundles.” This is called the tautological sequence.



60 4 Holomorphic and real analytic differential geometry 28/02/2014

4.4.6 The degree −d line bundles, d ∈ Z>0

For d ∈ Z>0 we define

OP(V)(−d) = {([v], ([A],L)) ∈ P(V) ×OP(Sd(V))(−1) | ϑd([v]) = π(−1)
P(Sd(V))

([A],L)}

and
π(−d)
P(V) : OP(V)(−d)→ P(V)

([v], ([A],L)) 7→ [v].

The best way to think of π(−d)
P(V) : OP(V)(−d)→ P(V) is as the pull-back of the tautological

line bundle over P(Sd(V)) to P(V) by the Veronese embedding. (See Section 4.3.6 for
a discussion of pull-back bundles.) The condition ϑd([v]) = π(−1)

P(Sd(V))
([A],L) is phrased

to emphasise this pull-back bundle interpretation of OP(V)(−d), but is more succinctly
expressed by the requirement that [v⊗d] ∈ [A]. In any case, OP(V)(−d) is to be regarded
as a vector bundle over P(V) whose fibre over [v] is [v⊗d].

Let us give a useful interpretation of OP(V)(−d).

4.4.16 Proposition (Morphisms associated with OP(V)(−d)) For every d ∈ Z>0 we have a
canonical isomorphism

OP(V)(−d) ' OP(V)(−1)⊗d

and a canonical inclusion
OP(V)(−d) 7→ P(V) × Sd(V),

both being vector bundle mappings over idP(V).
Proof For the isomorphism, consider the map

OP(V)(−1)⊗d
3 ([v],u⊗d) 7→ ([v], ([v⊗d],u⊗d)) ∈ OP(V)(−d) ⊆ OP(Sd(V))(−1).

Since u ∈ [v], u⊗d
∈ [v⊗d] from which one readily verifies that this map is indeed an

isomorphism of vector bundles over P(V).
If we take the d-fold symmetric tensor product of the left half of the tautological

sequence, we get the sequence

0 // OP(V)(−1)⊗d // P(V) × Sd(V)

which gives the inclusion when combined with the isomorphism from the first part of the
proof. �

4.4.7 The hyperplane line bundle

We refer here to the constructions of Section 4.4.3. With these constructions in
mind, let us define

OP(V)(1) = P(F ⊕ V) \ P(F ⊕ 0)
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and takeπ(1)
P(V) = P(pr2), so that we have the vector bundleπ(1)

P(V) : OP(V)(1)→ P(V) whose
fibre over L ∈ P(V) is canonically isomorphic to L∗. Thus the fibres of OP(V)(1) are linear
functions on the fibres of the tautological line bundle. We call OP(V)(1) the hyperplane
line bundle of P(V).

We have the following important attribute of the hyperplane line bundle.

4.4.17 Proposition (A projection from a trivial bundle onto the hyperplane line bundle)
We have a surjective mapping

P(V) × V∗ → OP(V)(1),

as a vector bundle map over idP(V).
Proof Let ([v],A) ∈ P(V) × Sd(V∗) and consider [A(v) ⊕ v] ∈ P(F ⊕ V) \ P(F ⊕ 0). Since

[A(av) ⊕ (av)] = [A(v) ⊕ v], a ∈ F,

it follows that [A(v)⊕ v] is a well-defined function of [v]. Recalling from Lemma 4.4.2 that
vector addition and scalar multiplication on P(pr2)−1([v]) (with the origin [0⊕v]) are given
by

[a ⊕ v] + [b ⊕ v] = [(a + b) ⊕ v], α[a ⊕ v] = [(αa) ⊕ v], (4.15)

respectively, we see that the mapping ([v],A) 7→ [A(v)⊕ v] is a vector bundle mapping. To
see that the mapping is surjective, we need only observe that, if [a⊕v] ∈ P(pr2)−1([v]), then,
if we take A ∈ Sd(V∗) to satisfy A(v) = a, we have [A(v) ⊕ v] = [a ⊕ v], giving surjectivity. �

If, for [v] ∈ P(V) we denote by KV,[v] the kernel of the projection from {[v]} ×V∗ onto
OP(V)(1)[v], we have the following exact sequence,

0 // KV
// P(V) × V∗ // OP(V)(1) // 0

which we call the hyperplane sequence. Note that KV,[v] = ann([v]), where “ann ”
denotes the annihilator.

The following result gives an essential property of the hyperplane line bundle.

4.4.18 Proposition (The hyperplane line bundle is the dual of the tautological line bun-
dle) We have an isomorphism

OP(V)(−1)∗ ' OP(V)(1)

as a vector bundle map over idP(V).
Proof If we take the dual of the tautological sequence, we get the diagram

0 // Q∗V
//

��

P(V) × V∗ // OP(V)(−1)∗ //

��

0

0 // KV // P(V) × V∗ // OP(V)(1) // 0

thinking of each component as a vector bundle over P(V) and each arrow as a vector
bundle mapping over the identity. The leftmost vertical arrow is the defined by the
canonical isomorphism

Q∗V,[v] = (V/[v])∗ ' ann [v] = KV,[v].
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The dashed vertical arrow is then defined by taking a preimage of α[v] ∈ OP(V)(−1)∗ in
P(V) × V∗ then projecting this to OP(V)(1). A routine argument shows that this mapping is
a well-defined isomorphism. �

4.4.8 The degree d line bundles, d ∈ Z>0

For d ∈ Z>0 we define

OP(V)(d) = {([v],M) ∈ P(V) ×OP(Sd(V))(1) | ϑd([v]) = π(1)
P(Sd(V))

(M)}

and
π(d)

OP(V)
: OP(V)(d)→ P(V)

([v],M) 7→ [v].

As with the negative degree line bundles, we think of this as the pull-back of OP(Sd(V))(1)
to P(V) by the Veronese embedding. Note that the fibre over L ∈ P(V) is canonically
isomorphic to (Sd(L))∗ ' Sd(L∗). Thus the fibres of OP(V)(d) are polynomial functions of
degree d on the fibres of the tautological line bundle. With this in mind, we have the
following adaptation of Proposition 4.4.16.

4.4.19 Proposition (Morphisms associated with OP(V)(d)) For d ∈ Z>0 we have a canonical
isomorphism

OP(V)(d) ' OP(V)(1)⊗d

and a canonical surjective mapping

P(V) × Sd(V∗)→ OP(V)(d),

both being vector bundle mappings over idP(V).
Proof Keeping in mind the vector bundle structure on OP(V)(1) given explicitly by (4.15),
an element of OP(V)(1)⊗d can be written as [ad

⊕ v] for [v] ∈ P(V) and a ∈ F. Thus consider
the mapping

OP(V)(1)⊗d
3 [ad

⊕ v] 7→ ([v], [ad
⊕ v⊗d]) ∈ OP(Sd(V))(1).

Another application of (4.15) to OP(Sd(V))(1) shows that the preceding map is a vector bundle
map, and it is also clearly an isomorphism.

Now we can take the dual of the inclusion

OP(V)(−d)→ P(V) × Sd(V)

from Proposition 4.4.16 to give the surjective mapping in the statement of the proposition.
�

4.4.9 The tangent bundle, the cotangent bundle, and the Euler sequence

To motivate our discussion of tangent vectors and the tangent bundle, we consider
the case when F = R and so V is a R-vector space. In this case, we establish a lemma.
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4.4.20 Lemma (Tangent vectors on real projective space) If V is a R-vector space, there
exists a canonical isomorphism of T[v]P(V) with HomR([v]; V/[v]) for every [v] ∈ P(V).

Proof For L ∈ P(V), the tangent space TLP(V) consists of tangent vectors to curves at L. We
define a map TL ∈ HomR(TLP(V); HomR(L; V/L)) as follows. Let v ∈ TLP(V), let γ : I→ P(V)
be a smooth curve for which γ′(0) = v. Let u ∈ L and let σ : I → V be a smooth curve for
which σ(0) = u and γ(t) = [σ(t)], and define TL(v) ∈ HomR(L; V/L) by

TL(v) · u = σ′(0) + L.

To see that TL is well-defined, let τ be another curve for which τ(t) = u and γ(t) = [τ(t)].
Since τ(0) − σ(0) = 0 we can apply Lemma 1 from the proof of Proposition 4.5.4 below to
write τ(t) − σ(t) = tρ(t) where ρ : I→ V satisfies ρ(t) ∈ γ(t). Therefore,

τ′(0) = σ′(0) + ρ(0) + L = σ′(0) + L,

showing that TL(v) is indeed well-defined. To show that TL is injective, suppose that
TL(v) = 0. Thus TL(v) · u = 0 for every u ∈ L. Let γ be a smooth curve on P(V) for which
γ′(0) = v, let u ∈ L, and let σ be a curve on V for which σ(0) = u and γ(t) = [σ(t)]. Then

0 = TL(v) · u = σ′(0) + L =⇒ σ′(0) ∈ L.

Since γ(t) is the projection of σ(t) from V \ {0} to P(V), it follows that γ′(0) is the derivative
of this projection applied to σ′(0). But since σ′(0) ∈ L and since L is the kernel of the
derivative of the projection, this implies that v = γ′(0) = 0. Since

dimR(TLP(V)) = dimR(HomR(L; V/L)),

it follows that TL is an isomorphism. �

With the lemma as motivation, in the general algebraic setting we define the tangent
space of P(V) at [v] to be

T[v]P(V) = [v]∗ ⊗ V/[v].

The tangent bundle is then, as usual, TP(V) =
◦

∪[v]∈P(V) T[v]P(V). Recalling the quotient
vector bundle QV used in the construction of the tautological sequence and recalling
the definition of the hyperplane line bundle, we clearly have

TP(V) = OP(V)(1) ⊗QV.

We then also have the cotangent bundle

T∗P(V) = OP(V)(−1) ⊗ KV,

noting that OP(V)(−1) ' OP(V)(1)∗ and Q∗V = KV.
We have the following result.
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4.4.21 Proposition (The Euler sequence) We have a short exact sequence

0 // P(V) × F // P(V) × (V ⊗OP(V)(1)) // TP(V) // 0

Proof This follows by taking the tensor product of the tautological sequence with OP(V)(1),
noting that

OP(V)(−1) ⊗OP(V)(1) ' F

by the isomorphism v ⊗ α 7→ α(v). This is indeed an isomorphism since the fibres of
OP(V)(−1) and its dual OP(V)(1) are one-dimensional. �

Sometimes the dual

0 // T∗P(V) // P(V) × (V∗ ⊗OP(V)(−1)) // P(V) × F∗ // 0

of the Euler sequence is referred to as the Euler sequence. In the more usual presenta-
tion of the Euler sequence one has V = Fn+1 so the sequence reads

0 // P(Fn+1) × F // OP(V)(1)n+1 // TP(Fn+1) // 0

It is difficult to imagine that the Euler sequence can be of much importance from
the manner in which it is developed here. But it has significance, for example, in
commutative algebra where it is related to the so-called Koszul sequence [Eisenbud
1995, §17.5].

In case dim(V) = 2, the tangent and cotangent bundles are line bundles, and have
a simple representation in terms the line bundles we have introduced above.

4.4.22 Proposition (Tangent and cotangent bundles of one-dimensional projective
spaces) If F is a field and if V is a two-dimensional F-vector space, then we have iso-
morphisms

TP(V) ' OP(V)(2), T∗P(V) ' OP(V)(−2).
Proof By a choice of basis, we can and do assume that V = F2. We closely examine the
Euler sequence. To do this, we first closely examine the tautological sequence in this case.
The sequence is

0 // OP(F2)(−1)
I1 // P(F2) × F2 P1 // QF2 // 0

and, explicitly, we have

I1(([(x, y)]), a(x, y)) = ([(x, y)], (ax, ay)), P1([(x, y)], (u, v) + [(x, y)]).

The Euler sequence is obtained by taking the tensor product of this sequence with OP(F2)(1):

0 // OP(F2)(−1) ⊗OP(F2)(1)
I1⊗id // OP(F2)(1)2 P1⊗id // TP(F2) // 0

with id denoting the identity map on OP(F2)(1). Explicitly we have

I1 ⊗ id([(x, y)], (a(x, y)) ⊗ α) = I1([(x, y)], (ax, ay)) ⊗ α = (axα) ⊕ (ayα).
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Now let [(x, y)] ∈ P(F2) so that x and/or y is nonzero. Obviously (x, y) is a basis for
L = [(x, y)]. Let (ξ(x,y), η(x,y)) ∈ F2 be such that ((x, y), (ξ(x,y), η(x,y))) is a basis for F2. For
(u, v) ∈ F2 write

(u, v) = a(x,y)(u, v)(x, y) + b(x,y)(u, v)(ξ(x,y), η(x,y)),

uniquely defining a(x,y)(u, v), b(x,y)(u, v) ∈ F. Using this we write

P1 ⊗ id([(x, y)], (u, v) ⊗ α) = ([(x, y)], (b(x,y)(u, v)(ξ(x,y), η(x,y)) + [(x, y)]) ⊗ α).

Now consider the map

φ : OP(F2)(1)2
→ OP(F2)(2)

([(x, y)], α ⊕ β) 7→ ([(x, y)], (ξ(x,y)α) ⊗ (η(x,y)β)).

Making the identification OP(F2)(−1) ⊗ OP(F2)(1) ' P(F2) × F as in the proof of Proposi-
tion 4.4.21, we have the commutative diagram

0 // P(F2) × F //

��

OP(F2)(1)2 // TP(F2) //

��

0

0 // P(F2) × F // OP(F2)(1)2 // OP(F2)(2) // 0

with exact rows. The dashed arrow is defined by taking a preimage of vL ∈ TLP(F2) in
O2

P(F2)
and projecting this to OP(F2)(2). One verifies easily that this map is a well-defined

isomorphism.
That T∗P(V) ' OP(V)(−2) follows from Propositions 4.4.18 and 4.4.19. �

4.4.10 Global sections of the line bundles

Let us consider the global sections of OP(V)(d) for d ∈ Z. The sections we consider
are those that satisfy the sort of regularity conditions we introduced in Section 4.4.4.
This takes a slightly different form, depending on the degree of the line bundle.

4.4.23 Definition (Regular sections of line bundles over projective space) Let F be a
field, let V be a finite-dimensional F-vector space, and let d ∈ Z. A section of OP(V)(d)
is a map σ : P(V)→ OP(V)(d) for which π(d)

P(V)
◦σ = idP(V). A section σ is regular if

(i) d < 0: σ̂ : P(V) → Sd(V) is regular in the sense of Definition 4.4.11, where σ̂ is
defined by the requirement that

σ([v]) = ([v], ([v⊗d], σ̂([v])));

(ii) d = 0: σ̂ : P(V)→ F is regular in the sense of Definition 4.4.11, where σ̂ is defined
by the requirement that

σ([v]) = ([v], σ̂([v]));

(iii) d > 0: σ̂ : V→ F is regular in the sense of Definition 4.4.8, where σ̂ is defined by
the requirement that

σ([v]) = ([v], [σ̂(v) ⊕ v⊗d]).
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The set of regular sections of OP(V)(d) we denote by Γ(OP(V)(d)). •

With these definitions, we have the following result that gives a complete charac-
terisation of the space of global sections in the algebraically closed case.

4.4.24 Proposition (Sections of line bundles over projective space) If F is a field and if V
is an (n + 1)-dimensional F-vector space, for d ≥ 0 we have

dimF(Γ(OP(V)(d))) ≥
(
n + d

n

)
=

(n + d)!
n!d!

.

Moreover, if F is algebraically closed, then we have

dimF(Γ(OP(V)(d))) =

0, d < 0,(n+d
n

)
, d ≥ 0.

Proof Let d ≥ 0. If A ∈ Sd(V∗) then there is a corresponding regular section σA of OP(V)(d)
defined by

σA([v]) = ([v], [A(v⊗d), v⊗d]).

Thus we have a mapping from Sd(V∗) to Γ(OP(V)(d)). We claim that this map is injective.
Indeed, if σA([v]) = 0 for every [v] ∈ P(V). This means that A(v⊗d) = 0 for every v ∈ V
and so A = 0. The first statement of the proposition now follows from Proposition F.2.9,
also cf. Lemma 1.1.1.

For the remainder of the proof we suppose that F is algebraically closed.
Let us next consider the negative degree case. Let σ be a global section of OP(V)(d)

with σ̂ : P(V) → Sd(V) the induced map. Let α ∈ Sd(V∗) so that α ◦ σ̂ is an F-valued regular
function on P(V), and so is constant by Proposition 4.4.12. We claim that this implies that
σ̂ is constant. Suppose otherwise, and that σ̂([v1]) , σ̂([v2]) for distinct [v1], [v2] ∈ P(V).
This implies that we can choose α ∈ Sd(V∗) such that α ◦ σ̂([v1]) , α ◦ σ̂([v2]). To see this,
suppose first that only one of σ̂([v1]) and σ̂([v2]) are nonzero, say σ̂([v1]). Then we need
only choose α so that σ̂([v1]) , 0. If both of σ̂([v1]) and σ̂([v2]) are nonzero, then they are
either collinear (in which case our conclusion follows) or linearly independent (so one can
certainly choose α so that α ◦ σ̂([v1]) , α ◦ σ̂([v2])). Thus we can indeed conclude that σ̂ is
constant. Note that, for [v] ∈ P(V) we have σ̂([v]) = a[v]v⊗d for some a[v] ∈ F. That is to say,
σ̂([v]) is a point on the line [v⊗d] for every [v] ∈ P(V). The only point in Sd(V) on every such
line is zero, and so σ̂ is the zero function.

For d = 0 the result follows from Proposition 4.4.12.
Now consider d > 0 and let σ be a regular section of OP(V)(d) with σ̂ : P(V) → F the

corresponding function. In order that this provide a well-defined section of OP(V)(d), we
must have

[σ̂([λv]) ⊕ (λv)⊗d] = [σ̂([v]) ⊕ v⊗d],

which means that
σ̂([λv]) ⊕ (λv)⊗d = α([σ̂([v]) ⊕ v⊗d])

for some α ∈ F. Since v , 0, v⊗d , 0 and so we must have α = λd, and so σ̂(λ[v]) = λdσ̂([v]).
The requirement that σ̂ be regular then ensures that σ̂ = fA for A ∈ Sd(V∗), according to
Proposition 4.4.9, since F is algebraically closed. �
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Let us observe that the conclusions of the proposition do not necessarily hold when
the field is not algebraically closed.

4.4.25 Example (Sections of line bundles over RP1) We consider the simple example of
line bundles over RP1. First let us show that there are nonzero regular sections of the
tautological line bundle in this case. To define a section σ of ORP1(−1), we prescribe
σ̂ : RP1

→ R2, as in Definition 4.4.23(i). There are many possibilities here, and one
way to prescribe a host of these is to take σ̂ to be of the form

σ̂([a0 : a1]) =

(
a0

p(a0, a1)

a2k
0 + a2k

1

, a1
p(a0, a1)

a2k
0 + a2k

1

)
for k ∈ Z>0 and where p is a polynomial function of homogeneous degree 2k − 1. In
Figure 4.7 we show the images of σ̂ in a few cases, just for fun. Note that if σ is a section

Figure 4.7 The image of σ̂ for k = 1 and p(a0, a1) = a0 (top left),
k = 2 and p(a0, a1) = a2

0a1 (top right), and k = 3 and p(a0, a1) =

a2
0a3

1 + a3
0a2

1 (bottom)

of ORP1(−1) then σ⊗d is a section of ORP1(−d). In this way, we immediately deduce that
ORP1(−d) has nonzero regular sections for every d ∈ Z>0.



68 4 Holomorphic and real analytic differential geometry 28/02/2014

Of course, there are nonzero regular sections of ORP1(0), as such sections are in
correspondence with regular functions, cf. Example 4.4.10.

As for sections of ORP1(d) for d > 0, it still follows from the proof of Proposi-
tion 4.4.24 that, if A ∈ Sd(V∗), we have a corresponding regular section of ORP1(d).
However, there are many other global regular sections since, given a given a regular
function f , there is the corresponding regular section f A. •

4.4.26 Remark (The case of real and complex projective spaces) Note that the preceding
discussion regarding sections of line bundles reveals essential differences between
the real and complex case that arise, at least in this algebraic setting, from the fact
that C is algebraically closed, whereas R is not. These differences are also reflected
in the geometric setting where, instead of regular sections, one wishes to consider
holomorphic or real analytic sections. As we saw in Example 4.3.14, the restrictions
for sections that we have seen in Proposition 4.4.24 in the algebraic case are also
present in the holomorphic case. On the flip side of this, we see that even in the
algebraic case, there are many sections of vector bundles over real projective space.
This is, moreover, consistent with the fact that, in the geometric setting, real analytic
vector bundles admit many real analytic sections, cf. Cartan’s Theorem A in the real
analytic case. •ref

4.4.11 Coordinate representations

In this section, after working hard to this point to avoid the use of bases, we connect
the developments above to the commonly seen transition function treatment of line
bundles over projective space.

Coordinates for projective space

We fix a basis (e0, e1, . . . , en) for V, giving an isomorphism

(x0, x1, . . . , xn) 7→ x0e0 + x1e1 + · · · + xnen

of Fn+1 with V. We shall engage in a convenient abuse of notation and write

x = (x0, x1, . . . , xn),

i.e., confound a vector with its components. The line

[x0e0 + x1e1 + · · · + xnen]

is represented by [x0 : x1 : · · · : xn]. Again, we shall often write

[x] = [x0 : x1 : · · · : xn],

confounding a line with its component representation. For j ∈ {0, 1, . . . ,n}we denote

U j = {[x0 : x1 : · · · : xn] | x j , 0}
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and note thatP(V) = ∪n
j=0U j. We let O j = spanF(e j), j ∈ {0, 1, . . . ,n}. As per Lemma 4.4.2,

the map

φ j : U j → Fn

[x0 : x1 : · · · : xn] 7→ (x−1
j x0, x−1

j x1, . . . , x−1
j x j−1, x−1

j x j+1, . . . , x−1
j xn)

is an affine isomorphism.

Coordinate representations for the negative degree line bundles

Let us consider the structure of our line bundles over P(V). We first consider the
negative degree line bundles OP(V)(−d) for d ∈ Z>0. In doing this, we recall from
Proposition 4.4.16 that OP(V)(−d) is a subset of the trivial bundle P(V) × Sd(V). We will
thus use coordinates

([x0, x1, . . . , xn],A),

to denote a point in ([x],A) ∈ OP(V)(−d), with the understanding that (1) this is a basis
representation and (2) the requirement to be in OP(V)(−d) is that

[A] = [(x0, x1, . . . , xn)⊗d].

The following lemma gives a local trivialisation of OP(V)(−d) over the affine sets U j,
j ∈ {0, 1, . . . ,n}.

4.4.27 Lemma (Local trivialisation of OP(V)(−d)) With all the above notation, for j ∈ {0, 1, . . . ,n}
and d ∈ Z>0, the map

τ(−d)
j : OP(V)(−d)|Uj → Uj × F

([x0, x1 : · · · : xn], a(x0, x1, . . . , xn)⊗d) 7→ ([x0 : x1 : · · · : xn], axd
j )

is an isomorphism of vector bundles.
Proof Let us first show that τ(−d)

j is well-defined. Suppose that [x] ∈ U j is written as

[x] = [x0 : x1 : · · · : xn] = [y0, y1 : · · · : yn]

so that
x−1

j (x0, x1, . . . , xn) = y−1
j (y0, y1, . . . , yn).

If v = (x0, x1, . . . , xn) then we have

v = x jy−1
j (x0, x1, . . . , xn)

and so
(x0, x1, . . . , xn)⊗d = xd

j y−d
j (y0, y1, . . . , yn)⊗d.
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From this we deduce that

τ(−d)
j ([x0 : x1 : · · · : xn],a(x0, x1, . . . , xn)⊗d) = ([x0 : y1 : · · · : xn], axd

j )

= ([(x jy−1
j )y0 : (x jy−1

j )y1 : · · · : (x jy−1
j )yn], axd

j (yd
j y−d

j ))

= ([y0 : y1 : · · · : yn], ayd
j (x

d
j y−d

j ))

= τ(−d)
j ([y0 : y1 : · · · : yn], axd

j y−d
j (y0, y1, . . . , yn)⊗d),

and from this we see that τ(−d)
j is well-defined. Clearly τ(−d)

j is a vector bundle map.

Moreover, since x j is nonzero on U j, τ
(−d)
j is surjective, and so an isomorphism. �

Now suppose that [x] ∈ U j ∩ Uk and that ([x],A) ∈ OP(V)(−d). The following lemma
relates the representations of ([x],A) in the two local trivialisations.

4.4.28 Lemma (Transition functions for OP(V)(−d)) With all the above notation, if

τ(−d)
j ([x],A) = ([x0 : x1 : · · · : xn], aj), τ(−d)

k ([x],A) = ([x0 : x1 : · · · : xn], ak),

then ak = (xk
xj

)daj.
Proof Note that

(τ(−d)
j )−1([x0 : x1 : · · · : xn], a) = ([x0 : x1 : · · · : xn], ax−d

j (x0, x1, . . . , xn)⊗d)

and so

τ(−d)
k

◦ (τ(−d)
j )−1([x0 : x1 : · · · : xn], a) = τ(−d)

k ([x0 : x1 : · · · : xn], ax−d
j (x0, x1, . . . , xn)⊗d)

= ([x0 : x1 : · · · : xn], axd
kx−d

j ).

We then compute

([x0 : x1 : · · · : xn], ak) = τ(−d)
k ([x],A) = τ(−d)

k
◦ (τ(−d)

j )−1
◦τ(−d)

j ([x],A)

= τ(−d)
k

◦ (τ(−d)
j )−1([x0 : x1 : · · · : xn], a j)

= ([x0 : x1 : · · · : xn], a jxd
kx−d

j ),

giving the desired conclusion. �

Since the function
[x0 : x1 : · · · : xn] 7→

(xk

x j

)d

is a regular function on U j ∩ Uk, we are finally justified in calling OP(V)(−d) a vector
bundle over P(V) since we have found local trivialisations which satisfy an appropriate
overlap condition within our algebraic setting.



28/02/2014 4.4 Line bundles over general projective spaces 71

Coordinate representations for the positive degree line bundles

Next we turn to the positive degree line bundles. Here we have to consider sections
of the bundle

P(F ⊕ Sd(V)) \ P(F ⊕ 0),

so we establish some notation for this. We use the basis

1 ⊕ 0, 0 ⊕ e1, . . . , 0 ⊕ en

for F ⊕ V and denote a point

F ⊕ V 3 (ξ, x) = ξ(1 ⊕ 0) + x0(0 ⊕ e0) + x1(0 ⊕ e1) + · · · + xn(0 ⊕ en)

by (ξ, (x0, x1, . . . , xn)) ∈ F ⊕ Fn. The line [(ξ, x)] is then denoted by [ξ : [x0 : x1 : · · · : xn]].
We shall also need notation for lines in Sd(V) and F ⊕ Sd(V). For x ∈ V \ {0} we use the
notation

[x0 : x1 : · · · : xn]⊗d, [ξ : [x0 : x1 : · · · : xn]⊗d]

to denote the lines [x⊗d] and [ξ ⊕ x⊗d], respectively.
We are now able to give the following local trivialisations for the positive degree

line bundles.

4.4.29 Lemma (Local trivialisation of OP(V)(d)) With all the above notation, for j ∈ {0, 1, . . . ,n}
and d ∈ Z>0, the map

τ(d)
j : OP(V)(d)|Uj → Uj × F

([x0 : x1 : · · · : xn], [ξ : [x0 : x1 : · · · : xn]⊗d]) 7→ ([x0 : x1 : · · · : xn], ξx−d
j )

is an isomorphism of vector bundles.
Proof Suppose that

[x0 : x1 : · · · : xn] = [y0 : y1 : · · · : yn]

and
[ξ : [x0 : x1 : · · · : xn]⊗d] = [η : [y0 : y1 : · · · : yn]⊗d],

which implies that
x−1

j (x0, x1, . . . , xn) = y−1
j (y0, y1, . . . , yn)

and so ξx−d
j = ηy−d

j . From this we conclude that τ(d)
j is well-defined. To verify that τ(d)

j

is linear, we recall from Lemma 4.4.2 that, with the origin [0 : [x0 : x1 : · · · : xn]⊗d], the
operations of vector addition and scalar multiplication in OP(V)(d)[x] are given by

[ξ : [x0 : x1 : · · · : xn]⊗d] + [ξ : [x0 : x1 : · · · : xn]⊗d] = [ξ + η : [x0 : x1 : · · · : xn]⊗d],

α[ξ : [x0 : x1 : · · · : xn]⊗d] = [αξ : [x0 : x1 : · · · : xn]⊗d].

From this, the linearity of τ(d)
j follows easily. It is also clear that τ(d)

j is an isomorphism
since x j is nonzero on U j. �

Finally, we can give the transition functions for the line bundles in this case. That
is, we let [x] ∈ U j ∩ Uk and consider the representation of ([x], [a ⊕ x⊗d]) in both
trivialisations.
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4.4.30 Lemma (Transition functions for OP(V)(d)) With all of the above notation, if

τ(d)
j ([x], [a ⊕ x⊗d]) = ([x0 : x1 : · · · : xn], aj),

τ(d)
k ([x], [a ⊕ x⊗d]) = ([x0 : x1 : · · · : xn], ak),

then ak = ( xj

xk
)daj.

Proof We have

(τ(d)
j )−1([x0 : x1 : · · · : xn], a) = ([x0 : x1 : · · · : xn], [axd

j : [x0 : x1 : · · · : xn]⊗d])

which gives

τ(d)
k
◦ (τ(d)

j )−1([x0 : x1 : · · · : xn], a) = τ(d)
k ([x0 : x1 : · · · : xn], [axd

j : [x0 : x1 : · · · : xn]⊗d])

= ([x0 : x1 : · · · : xn], axd
j x
−d
k ).

Thus we compute

([x0 : x1 : · · · : xn], ak) = τ(d)
k ([x]; [a ⊕ x⊗d])

= τ(d)
k
◦ (τ(d)

j )−1
◦τ(d)

j ([x]; [a ⊕ x⊗d])

= τ(d)
k
◦ (τ(d)

j )−1([x0 : x1 : · · · : xn], a j)

= ([x0 : x1 : · · · : xn], a jxd
j x
−d
k ),

as desired. �

4.5 Tangent bundles of holomorphic and real analytic manifolds

In this section we discuss tangent bundles of holomorphic and real analytic man-
ifolds. This breaks into two parts. First we recall the basics of tangent bundles from
smooth real differential geometry, but now applied to the real analytic case. There
is really nothing new here, but we fix notation and conventions. In the holomorphic
case, there is additional structure inherited from the fact that the real tangent spaces
are, in fact, C-vector spaces. This additional structure is considered in detail.

4.5.1 Real tangent vectors and the real tangent bundle

Note that a holomorphic manifold is a real analytic manifold and that a real analytic
manifold is a smooth real manifold. Thus we can adopt from the smooth real setting
the construction of tangent vectors. There are (at least) two equivalent definitions of
tangent vector on a smooth manifold. The definition we use is a geometric definition.

4.5.1 Definition (Tangent vector, tangent space, tangent bundle) Let M be a smooth or
real analytic manifold and let x0 ∈ M.
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(i) A curve at x0 is a differentiable map γ : I → M such that I ⊆ R is an interval,
0 ∈ int(I), and γ(0) = x0;

(ii) Two curves at x0, γ1 : I1 → M and γ2 : I2 → M, are equivalent if, for some R-chart
(U, φ) with x0 ∈ U, we have

Dφ ◦γ1(0) = Dφ ◦γ2(0).

(iii) A tangent vector at x0 is an equivalence class of curves under the preceding
notion of equivalence. Thus a tangent vector may be denoted by [γ]x0 with γ
being a curve at x0.

(iv) The tangent space at x0 is the set of all equivalence classes of curves, and is
denoted by TxM.

(v) The tangent bundle of M is the disjoint union of the tangent spaces, and is denoted
by TM =

◦

∪x∈M TxM.
(vi) The projection from TM to M is denoted by πTM. •

In Figure 4.8 we depict the idea behind our definition of a tangent vector. One

M

U Fn

φ

Figure 4.8 The idea behind equivalence of curves at x0

can verify, using the Inverse Function Theorem and the fact that the overlap map is a
diffeomorphism to verify that the definition of equivalence of curves does not depend
on the particular choice of chart (U, φ).

An alternative and equivalent characterisation of tangent vectors comes in terms
of derivations.

4.5.2 Definition (R-derivation at x0) Let M be a smooth or real analytic manifold and let
x0 ∈ M. A R-derivation at x0 is a R-linear map θ : C∞(M)→ R such that

θ( f g) = θ( f )g(x0) + f (x0)θ(g). •

We shall subsequently explore derivations in more detail in the holomorphic case,
so let us say a few more things about their structure here.
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4.5.3 Proposition (Derivations are local) Let M be a smooth or real analytic manifold and let
x0 ∈ M. If θ is an R-derivation at x0 ∈ M and if f,g ∈ C∞(M) have the property that f|U = g|U
for some neighbourhood U of x0, then θ(f) = θ(g).

Proof First let us suppose that g vanishes on U. Let V ⊆ U be a neighbourhood of x0 such
that cl(V) ⊆ U and, by the Tietze Extension Theorem [Abraham, Marsden, and Ratiu 1988,
§5.5], let h ∈ C∞(M) be such that h(x) = 0 for x ∈ V and h(x) = 1 for x ∈ M \U. We then have
h f = f and so

θ( f ) = θ(h f ) = θ(h) f (x0) + h(x0)θ( f ) = 0.

Now let g agree with f on U. By our computation above and by the R-linearity of
derivations,

0 = θ( f − g) = θ( f ) − θ(g),

as desired. �

The previous result has (at least) two important consequences. First of all, and
somewhat pragmatically, it allows us to work locally in describing R-derivations at x0,
and so we can work in the domain of a coordinate chart about x0. Second of all, and
of conceptual importance, we can as well think of a derivation θ as being a R-linear
map from the ring of germs C∞x0,M

to R satisfying

θ([ f ]x0[g]x0) = θ([ f ]x0)g(x0) + f (x0)θ([g]x0). (4.16)

This latter point will be crucial when we subsequently consider the holomorphic case
in detail.

Let us go along the pragmatic lines suggested above to arrive at a concrete descrip-
tion of a derivation is a coordinate chart. Let us provide the notation first of all. We let
M be a smooth or real analytic manifold, let x0 ∈ M, and let (U, φ) be a R-chart about
x0. Let us denote the coordinates in the chart by (x1, . . . , xn). For j ∈ {1, . . . ,n} define
the R-derivation ∂

∂x j (x0) at x0 by asking that

∂

∂x j (x0)( f ) =
∂( f ◦φ−1)
∂x j (φ(x0)).

for f ∈ C∞(M).

4.5.4 Proposition (Coordinate characterisation of derivations) Let M be a smooth or real
analytic manifold, let x0 ∈ M, and let (U, φ) be a R-chart with x0 ∈ U. Then the following
statements hold:

(i) the set of R-derivations at x0 has a natural R-vector space structure;
(ii) the R-derivations ( ∂

∂x1 (x0), . . . , ∂
∂xn (x0)) form a basis for the vector space of R-derivations

at x0.
Proof The R-vector space structure for the set of R-derivations is given by

(θ1 + θ2)( f ) = θ1( f ) + θ2( f ), (aθ)( f ) = a(θ( f )),

for derivations θ, θ1, θ2 and for a ∈ R. The verification that these operations define a vector
space structure is the usual tedious procedure.

To verify that the derivations ∂
∂x j (x0), j ∈ {1, . . . ,n}, form a basis for the set of derivations.

We first prove a lemma.
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1 Lemma Let f ∈ C∞(Bn(r, 0)) satisfy f(0) = 0. Then

f(x) =

n∑
j=1

xjgj(x)

for g1, . . . ,gn ∈ C∞(Bn(r, 0)).

Proof Let x ∈ Bn(r, 0) and define
γx(t) = f (tx).

We calculate

f (x) = f (x) − f (0) = γx(1) − γx(0) =

∫ 1

0
γ′x(t) dt

=

n∑
j=1

∫ 1

0
x j ∂ f
∂x j (tx) dt =

n∑
j=1

x jg j(x),

where

g j(x) =

∫ 1

0

∂ f
∂x j (tx) dt.

The functions g1, . . . , gn are smooth by standard theorems on parameter dependence of
integrals. H

With this in mind, let us assume without loss of generality (by Proposition 4.5.3) that
(U, φ) is such thatφ(U) is a ball about some point x0 ∈ Rn. Let ξ1, . . . , ξn

∈ C∞(U) be defined
by ξ j

◦φ−1(x) = x j. By the lemma we have

f (x) = f (x0) +

n∑
j=1

(ξ j(x) − ξ j(x0))g j(x)

for smooth functions g1, . . . , gn on U. We claim that a R-derivation θ at x0 applied to a
constant function vanishes. Let us first prove this for the constant function 1:

θ(1) = θ(1 · 1) = θ(1) · 1 + 1 · θ(1) = 2θ(1),

giving θ(1) = 0. For a general constant function g taking the value α we have g · 1 = c · 1
and so, using R-linearity of derivations,

θ(g) = θ(g · 1) = αθ(1) = 0.

Now using the fact that derivations of constant functions are zero, we have

θ( f ) =

n∑
j=1

θ(ξ j
− ξ j(x0))g j(x0).

From the proof of the lemma we have g j(x0) = ∂
∂x j (x0)( f ), giving the result. �
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Note that the proof of the preceding result also gives the coefficients of θ when
written as a linear combination of the basis vectors:

θ =

n∑
j=1

θ(ξ j)
∂

∂x j (x0),

where ξ1, . . . , ξn are the coordinate functions.
Let us use this coordinate representation of a derivation to establish the correspon-

dence between R-derivations at x0 and tangent vectors at x0. Again, we stick to the
real case to keep the notation simple. For [γ]x0 ∈ Tx0M let us define a R-derivation θγ
at x0 by

θγ( f ) =
d
ds

∣∣∣∣
s=0

f ◦γ(s).

With this notation we have the following result.

4.5.5 Proposition (Tangent vectors and derivations) If M is a smooth or real analytic manifold
and if x0 ∈ M, the map

[γ]x0 7→ θγ

is a bijection from Tx0M to the set of R-derivations at x0.
Proof Let (U, φ) be a chart about x0. The derivation θγ is computed to be

θγ( f ) =
d
ds

∣∣∣∣
s=0

f ◦γ(s) =
d
ds

∣∣∣∣
s=0

f ◦φ−1
◦φ ◦γ(s)

=

n∑
j=1

∂( f ◦φ−1)
∂x j (φ(x0))v j,

where v = d
ds

∣∣∣
s=0φ ◦γ(s). From this expression we may directly verify the bijection asserted

in the statement of the result. �

Thus tangent vectors at x0, in the geometric sense we have defined, are exactly the
R-derivations at x0. We shall not distinguish these things.

4.5.6 Remark (Why are we using smooth objects on holomorphic or real analytic man-
ifolds?) One might justifiably wonder whether the constructions we have made here
are appropriate. Specifically, while we are considering smooth or real analytic mani-
folds, our curve definition of a tangent vector depended on only differentiable curves
and the R-derivation definition of a tangent vector depended on smooth functions.
The reason this works is that tangent vectors are defined using only first derivatives of
objects defined in a neighbourhood of the point where the tangent vector is anchored.
For this reason, in the real analytic case one could as well define tangent vectors as
equivalence classes of real analytic curves. In the derivation setting, we could as well
use the definition of (4.16) to think of aR-derivation at x as aR-linear mapθ : C ω

x,M → R.
However, it is true that in the holomorphic case, there is additional structure to

be gained by really working with holomorphic objects rather that with smooth real
objects. We turn to this now. •
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4.5.2 The complex structure of the tangent bundle of a holomorphic manifold

Let us now adapt the preceding discussion to manifolds. The discussion here is
really a smooth one, so let us consider only this case for the moment.

4.5.7 Definition (Almost complex structure, complex structure) Let M be a smooth man-
ifold.

(i) An almost complex structure on M is a smooth (1, 1)-tensor field J on M such that
J(x) ∈ EndR(TxM) is a linear complex structure for every x ∈ M.

(ii) An almost complex structure J is a complex structure if there exists an atlas
((Ua, φa))a∈A for M such that the local representative of J with respect to each
coordinate chart is constant and such that the derivatives of the overlap maps
commute with the local representatives of J. •

First of all, let us be sure that we understand that complex structures arise naturally
on holomorphic manifolds. We shall in Section 4.8 that, conversely, complex structures
give rise to holomorphic manifolds.

4.5.8 Proposition (Holomorphic manifolds have complex structures) A holomorphic man-
ifold possesses a natural complex structure.

Proof Suppose that M has the structure of a holomorphic manifold. Let (U, φ) be a C-chart
and let us denote (real) coordinates by (x1, . . . , xn, y1, . . . , yn). Let us define a (1, 1)-tensor
field Jφ on U as that whose local representative is

Jφ =

n∑
j=1

∂

∂x j ⊗ dym+ j
−

n∑
j=1

∂

∂xm+ j ⊗ dy j, (4.17)

cf. Proposition 4.1.2. If we have another chart (V, ψ), then on the overlap U ∩ V the
local representatives Jφ and Jψ are related by the Jacobian of the overlap map. Since
this Jacobian is C-linear by virtue of the overlap map being holomorphic, it follows that
multiplication by i is preserved by the Jacobian, and so agrees for the linear complex
structures Jφ and Jψ on each local representative of each tangent space. Thus we can use
either Jφ or Jψ to define a linear complex structure on the tangent spaces. In other words,
M possesses a well-defined almost complex structure. However, we started the proof by
showing that the natural holomorphic coordinates give a constant local representative for
this almost complex structure. If ((Ua, φa))a∈A is an atlas of C-charts, one readily verifies
that the derivatives of the overlap maps commute with the local representatives of J since
the derivatives are C-linear maps, cf. Proposition 4.1.6. Thus a holomorphic manifold
possesses a natural complex structure. �

It follows immediately that the constructions of Section 4.1.1 apply to each tangent
space of a holomorphic manifold. Indeed, these constructions can be applied to each
tangent space of a manifold with an almost complex structure, a fact that we will take
advantage of in Section 4.8. But for now we just have the following definition.
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4.5.9 Definition (Complex tangent bundle, holomorphic tangent bundle, antiholomor-
phic tangent bundle) Let M be a holomorphic manifold and denote by CM = M × C
the trivial R-vector bundle.

(i) The complex tangent bundle is TCM = CM ⊗R TM.
(ii) The holomorphic tangent bundle, denoted by T1,0M, is the (real) subbundle of

TCM whose fibre at x ∈ M is T1,0
x M = (TxM)1,0.

(iii) The antiholomorphic tangent bundle, denoted by T0,1M, is the (real) subbundle
of TCM whose fibre at x ∈ M is T0,1

x M = (TxM)0,1. •

These are R-vector bundles. As we shall see in Corollary 4.5.18, T1,0M has the
structure of a C-vector bundle.

Let us give a few alternative characterisations of the holomorphic tangent bundle
that are insightful. To do this, we first make some definitions. We start with curves.

4.5.10 Definition (Complex curves) Let M be a holomorphic manifold and let z0 ∈ M.
(i) A complex curve at z0 is a differentiable map γ : D1(r, 0)→ M such that γ(0) = z0.
(ii) The tangent vector to a complex curve γ : D1(r, 0) → M at z0 is the element

γ′(0) ∈ TC
z0

M defined by

γ′(0) =
1
2

(
1 ⊗

∂γ

∂x
(0) − i ⊗

∂γ

∂y
(0)

)
.

(iii) Two complex curves at z0, γ1 : D1(r1, 0)→ M and γ2 : D1(r2, 0)→ M, are equivalent
if γ′1(0) = γ′2(0). •

Of course, it is holomorphic curves that will be of most interest to us. But to make
the setting have some context, we give general definitions.

Next we work with derivations.

4.5.11 Definition (C-derivation at z0) For a holomorphic manifold M and for z0 ∈ M, a
C-derivation at z0 is a C-linear map θ : C hol

z0,M
→ C such that

θ([ f ]z0[g]z0) = θ([ f ]z0)g(z0) + f (z0)θ([g]z0). •

With these notions at hand, we have the following characterisations of holomorphic
tangent vectors. As we see, the situation mirrors the smooth real case in a pleasing
way.

4.5.12 Proposition (Characterisations of T1,0M) Let M be a holomorphic manifold and let z0 ∈ M.
Then there exist natural C-linear isomorphisms between the following vector spaces:

(i) T1,0
z0 M;

(ii) the set of equivalence classes of holomorphic curves at z0;
(iii) the set of C-derivations at z0.
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Proof Note that the tangent vector to a holomorphic curve at z0 is simply theC-derivative,
which is a C-linear map from C to Tz0M, which we naturally identify with an element (the
image of 1 ∈ C) of Tz0M. Thus, by Proposition 4.1.5(iv), the set of equivalence classes of
holomorphic curves at z0 is isomorphic to T1,0

z0
M.

Next let us consider derivations as represented in coordinates. We let θ : C hol
z0,M
→ C be

a C-derivation at z0. Let [( f ,U)]z0 ∈ C hol
z0,M

. Without loss of generality, we suppose that U is
the domain of a C-coordinate chart (U, φ) for which φ(U) is a ball about z0 = φ(z0). Let us
also suppose that the Taylor series for f ◦φ−1 at φ(z0) converges uniformly on φ(U):

f ◦φ−1(z) =
∑

I∈Zn
≥0

1
I!

DI( f ◦φ−1)(z0)(z − z0)I, z ∈ φ(U).

We can factor linear terms from each of the summands in the Taylor series to write

f (z) = f (z0) +

n∑
j=1

(ζ j(z) − ζ j(z0))g j(z),

whereζ j
∈ Chol(U), j ∈ {1, . . . ,n}, are the coordinate functions and g j ∈ Chol(U), j ∈ {1, . . . ,n}.

As in the proof of Proposition 4.5.4, θ is zero applied to germs of constant functions. We
thus have

θ([ f ]z0) =

n∑
j=1

θ([ζ j
− ζ j(z0)]z0)g j(z0),

where

g j(z0) =
1
2

( ∂
∂x j (z0)([ f ]z0) − i

∂

∂y j (z0)([ f ]z0)
)
, j ∈ {1, . . . ,n}.

Knowing what a C-derivation at z0 looks like in coordinates, it is easy to verify in
coordinates that, if we define a C derivation θγ at z0 associated to an equivalence class
[γ]z0 of holomorphic curves by

θγ( f ) =
d( f ◦γ)

dz
(0),

then the map [γ]z0 7→ θγ is an isomorphism of C-vector spaces. �

Let us relate R- and C-derivations, a process begun in the preceding proof. First
note that C hol

z0,M
is a C-subspace of C ⊗ C ω

z0,M
. Thus we can write [ f ]z0 ∈ C hol

z0,M
as

[ f ]z0 = 1 ⊗ [g]z0 + i ⊗ [h]z0

for [g]z0 , [h]z0 ∈ C ω
z0,M

. We can then define a map θ 7→ θ̂ from the set Tz0M of R-
derivations at z0 to the set of C-derivations at z0 by

θ̂(1 ⊗ [g]z0 + i ⊗ [h]z0) = θ([g]z0) + iθ([h]z0).

Now suppose that we have a C-chart (U, φ) for M about z0 with coordinates denoted
by z j = x j + iy j, j ∈ {1, . . . ,n}. Thus we have R-derivations ∂

∂x j and ∂
∂y j , j ∈ {1, . . . ,n}.
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Associated with these R-derivations (which are, by Proposition 4.5.5, elements of the
R-tangent space Tz0M) are the elements of TC

z0
M

∂

∂z j (z0) =
1
2

(
1 ⊗

∂

∂x j (z0) − i ⊗
∂

∂y j (z0)
)
, j ∈ {1, . . . ,n},

and
∂

∂z̄ j (z0) =
1
2

(
1 ⊗

∂

∂x j (z0) + i ⊗
∂

∂y j (z0)
)
, j ∈ {1, . . . ,n}.

These form a basis for TC
z0

M, a fact we record as follows.

4.5.13 Proposition (Coordinate bases for TC
z0

M) With the above notation, ( ∂
∂z1 (z0), . . . , ∂

∂zn (z0))
is a basis for T1,0

z0 M and ( ∂
∂z̄1 (z0), . . . , ∂

∂z̄n (z0)) is a basis for T0,1
z0 M.

Proof This follows from Proposition 4.1.7 since the local representative of the linear
complex structure is

m∑
j=1

∂

∂y j ⊗ dx j
−

m∑
j=1

∂

∂x j ⊗ dy j. �

Let us look at the tangent bundle of CP1.

4.5.14 Example (The tangent bundle of CP1) We again work with the one-dimensional
complex projective space CP1

' S2. To describe the holomorphic tangent bundle of
CP1 we again start with our charts (U+, φ+) and (U−, φ−) as in Example 4.3.5–4. For
our purposes here, it is advantageous to modify these charts slightly. We leave the
domains unchanged, take ψ− = φ−, and define ψ+ : U+ → C by ψ+(x) = −φ+(x). Since
multiplication by −1 is a holomorphic map, the pair of charts (U+, ψ+) and (U−, ψ−)
still provide a holomorphic atlas. The overlap condition in this case is ψ− ◦ψ−1

+ (z+) =
−z−1

+ . As we have done previously, we let z+ and z− be the coordinates for the two
charts, understanding that in the present setting these are not related as previously.
The tangent bundle coordinates we denote by (z+,w+) and (z−,w−). Using the fact
that holomorphic tangent vectors are equivalence classes of holomorphic curves, the
representation of the tangent vector with local representative (z+,w+) in the chart
(U+, ψ+) is given in the chart (U−, ψ−) by (z−,w−) with z− = −z−1

+ and

w− =
∂z−
∂z+

w+ = z−2
+ w+.

This is precisely the overlap condition for OCP1(2), and so we have a vector bundle
atlas for T1,0(CP1) which gives the same vector bundle structure as that for OCP1(2).

For a more elevated presentation of the relationship between the tangent bundle
and the degree 2 line bundle, we refer to Section 4.4.9. •
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4.5.3 The derivative of a real analytic map

The notion of derivative for a real analytic map follows that for the smooth case, and
in this section we recall this definition. In the next section we explore the additional
structure possessed by the derivative when dealing with holomorphic manifolds.

First, let us give the basic definition. We deal with the smooth or real analytic case
in the following definition.

4.5.15 Definition (Derivative of real analytic map) If M and N are smooth or real analytic
maps and if Φ : M → N is smooth or real analytic, the tangent map for Φ is the map
TΦ : TM → TN defined by TΦ([γ]x) = [Φ ◦γ]Φ(x), where [γ]x ∈ TxM is an equivalence
class of curves. The restriction of TΦ to TxM we denote by TxΦ. •

We leave to the reader the mundane chore of verifying that this definition of the
tangent map is independent on the choice of representative for the tangent vector. We
also leave to the reader the task of verifying that, if a tangent vector at x is thought
of as a R-derivation at x, then the tangent map is equivalently defined by asking that
TΦ(θ) is the R-derivation at Φ(x) given by

TΦ(θ) · g = θ(Φ∗g)

for g ∈ C∞(M). Equivalently, following Remark 4.5.6, in the real analytic setting, we
can think of TΦ as acting on germs:

TΦ(θ) · [(g,V)]Φ(x) = [(Φ∗g,Φ−1(V))]x,

for [(g,V)]Φ(x) ∈ C ω
Φ(x),N and where Φ∗ f is the pull-back of g from the neighbourhood

V of Φ(x) to the neighbourhood Φ−1(V) of x. The definition of TΦ using derivations
shows that it is a R-linear map.

The following coordinate characterisation of TΦ is easily proved using the above
definitions.

4.5.16 Proposition (Local representative of the tangent map) Let M and N be smooth or real
analytic manifolds, let Φ : M → N be smooth or real analytic, let x0 ∈ M, and let (U, φ) and
(V, ψ) be charts about x0 and Φ(x0), respectively. Then the components of Tx0Φ with respect
to the bases ( ∂

∂x1 (x0), . . . , ∂
∂xn (x0)) for Tx0M and ( ∂

∂y1 (Φ(x0)), . . . , ∂
∂ym (Φ(x0))) for TΦ(x0)N are

∂Φa

∂xj (φ(x0)), a ∈ {1, . . . ,m}, j ∈ {1, . . . ,n}.

4.5.4 The derivative of a holomorphic map

Now we turn to the case of holomorphic maps. Thus we let M and N be holomorphic
manifolds and let Φ : M → N be a smooth map. For each x ∈ M the R-linear map
TxΦ : TxM→ TΦ(x)N extends to a C-linear map

TC
x Φ , (TxΦ)C : TC

x M→ TC
Φ(x)N.
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We can give the coordinate form for the tangent map of a holomorphic map. We let
M and N be holomorphic manifolds, let Φ : M → N be holomorphic, let z0 ∈ M, and
let (U, φ) and (V, ψ) be C-charts about z0 and Φ(z0), respectively. Denote coordinates
for M by z j = x j + iy j, j ∈ {1, . . . ,n}, and for N by wa = ua + iva, a ∈ {1, . . . ,m}. As
in Proposition 4.5.13, we have the basis vectors ∂

∂z j (z0) and ∂
∂z̄ j (z0), j ∈ {1, . . . ,n}, for

TC
z0

M. We have similar notation, of course, for a basis for TC
Φ(z0)N. Note that ∂

∂z j and
∂
∂z̄ j , j ∈ {1, . . . ,n}, are to be thought of as R-derivations. The components of Φ relative
to these coordinates are denoted by Φa, a ∈ {1, . . . ,m}. We also define the partial
derivative notation

∂ f
∂z j =

1
2

( ∂ f
∂x j − i

∂ f
∂y j

)
, j ∈ {1, . . . ,n},

and
∂ f
∂z̄ j =

1
2

( ∂ f
∂x j + i

∂ f
∂y j

)
, j ∈ {1, . . . ,n},

adapting that use in Cn, cf. (1.11). With all this notation, we have the following result.

4.5.17 Proposition (Local representative of the holomorphic tangent map) Let M and N
be holomorphic manifolds, let Φ : M → N be smooth, let z0 ∈ M, and let (U, φ) and (V, ψ) be
C-charts about z0 and Φ(z0), respectively. Then the matrix of components of TC

z0
Φ with respect

to the bases above is 

∂Φ1

∂z1 · · ·
∂Φ1

∂zn
∂Φ1

∂z̄1 · · ·
∂Φ1

∂z̄n

...
. . .

...
...

. . .
...

∂Φm

∂z1 · · ·
∂Φm

∂zn
∂Φm

∂z̄1 · · ·
∂Φm

∂z̄n

∂Φ̄1

∂z1 · · ·
∂Φ̄1

∂zn
∂Φ̄1

∂z̄1 · · ·
∂Φ̄1

∂z̄n

...
. . .

...
...

. . .
...

∂Φ̄m

∂z1 · · ·
∂Φ̄m

∂zn
∂Φ̄m

∂z̄1 · · ·
∂Φ̄m

∂z̄n


(φ(z0))

This result has the following corollary which gives useful structure to the holomor-
phic tangent bundle.

4.5.18 Corollary (The holomorphic tangent bundle is a C-vector bundle) If M is a holomor-
phic manifold then T1,0M, with the natural R-vector bundle structure induced by the tangent
bundle structure, is a C-vector bundle.

Proof If (U, φ) and (V, ψ) are overlapping C-charts, the resulting overlap map is holomor-
phic. The derivative of the overlap map is the C-derivative of the overlap map, and this
map is C-linear. Thus, by the preceding proposition, the vector bundle structure for TCM,
restricted to T1,0M, is that of a C-vector bundle. �

We can then characterise holomorphicity of maps as follows.

4.5.19 Proposition (Characterisation of holomorphic maps) If M and N are holomorphic
manifolds and if Φ : M→ N is smooth, then the following statements are equivalent:

(i) Φ is holomorphic;
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(ii) for each x ∈ M, TxΦ is C-linear with respect to the linear complex structures on TxM
and TΦ(x)N, cf. Proposition 4.5.8;

(iii) for each x ∈ M, TC
x Φ(T1,0

x M) ⊆ T1,0
Φ(x)N;

(iv) for each x ∈ M, TC
x Φ(T0,1

x M) ⊆ T0,1
Φ(x)N.

Proof By Corollary 1.1.22 it follows that Φ is holomorphic if and only if

∂Φa

∂z̄ j =
∂Φ̄a

∂z̄ j = 0, a ∈ {1, . . . ,m}, j ∈ {1, . . . ,n}.

The result then follows from Proposition 4.5.17, along with the characterisations of C-
linear maps in Proposition 4.1.6. �

4.5.5 Vector fields on real analytic manifolds

Let us first recall basic constructions for vector fields on smooth or real analytic
manifolds. Thus we let M be a smooth or real analytic manifold. Recall that a Cr-vector
field, r ∈ {∞, ω}, is a Cr-section of the R-vector bundle πTM : TM → M. A vector field
defines a map L X : Cr(M)→ Cr(M) by

L X f (x) = X(x)( f ),

noting that tangent vectors at x are R-derivations at x. Note that L X is a derivation,
by which we mean that it is R-linear and satisfies

L X( f g) = (L X f )g + f (L Xg).

It is advantageous to have this notion of derivation be localised, i.e., given on germs
of functions. That is, as in (4.16), we think of a vector field X as an assignment to each
x ∈ M a R-derivation L X,x : C∞x,M → C∞x,M. In this definition of a vector field, one has
to worry about how one prescribes that X be smooth or real analytic. This is taken
care of using the language of sheaf theory by asking that the assignment x 7→ L X,x

be continuous in an appropriate sense. However, we do not worry about this here.
Instead, we use this characterisation of vector fields to define the Lie bracket of two
Cr-vector fields X and Y by requiring that

L [X,Y],x[ f ]x = L X,xL Y,x[ f ]x −L Y,xL X,x[ f ]x.

Using this definition one readily verifies that, in a chart (U, φ) with coordinates
(x1, . . . , xn), the local representative of X is

[X,Y]|U =

n∑
j=1

( n∑
k=1

∂Y j

∂xk
Xk
−

n∑
k=1

∂X j

∂xk
Yk

) ∂
∂x j ,

where

X|U =

n∑
j=1

X j ∂

∂x j , Y|U =

n∑
j=1

Y j ∂

∂x j .
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4.5.6 Vector fields on holomorphic manifolds

Next we let M be a holomorphic manifold. We have the R-vector bundles TM,
TCM, T1,0M, and T0,1M. Thus these vector bundles possess sets of Cr-sections for
r ∈ {∞, ω}, and we denote these sets of sections by Γr(TM), Γr(TCM), Γr(T1,0M), and
T0,1

r TM, respectively. Since TCM = CM ⊗R TM, a Cr-section Z of TCM, r ∈ {∞, ω}, can be
written

Z = 1 ⊗U + i ⊗ V, U,V ∈ Γr(TM).

Note that by Corollary 4.5.18 we have that T1,0M is a C-vector bundle. A holomorphic
vector field is a holomorphic section of T1,0M. By Γhol(T1,0M) we denote the set of
holomorphic vector fields.

As contrasted with the smooth case, the set of holomorphic vector fields can be
quite small, as the following example shows.

4.5.20 Example (Holomorphic vector fields on CP1) According to Examples 4.3.14
and 4.5.14, the dimension of the C-vector space of holomorphic vector fields is 3. •

Let us adapt our notion of Lie derivative to the complex setting. Thus let M be a
holomorphic manifold, let r ∈ {∞, ω}, let Z ∈ Γr(TCM), and let f ∈ Cr(M;C). We write

Z = 1 ⊗U + i ⊗ V, f = g + ih

for U,V ∈ Γr(TM) and g, h ∈ Cr(M). We define the Lie derivative of f with respect to Z
by extension:

L Z f = (L U g −L Vh) + i(L Uh + L V g).

Let us see how these various sections are represented in coordinates. Thus we let
(U, φ) be a C-chart with coordinates z j = x j + iy j, j ∈ {1, . . . ,n}. We have the basis vector
fields ∂

∂x j and ∂
∂y j , j ∈ {1, . . . ,n}, for TM and ∂

∂z j and ∂
∂z̄ j , j ∈ {1, . . . ,n}, for TCM. Then the

local representative of a section X of TM is given by

X|U =

n∑
j=1

X j ∂

∂x j +

n∑
j=1

Y j ∂

∂y j

for X j,Y j
∈ Cr(U), j ∈ {1, . . . ,n}, r ∈ {∞, ω}. The local representative of a section Z of

TCM, T1,0M, or T0,1M is given by

Z|U =

n∑
j=1

U j ∂

∂z j +

n∑
j=1

V j ∂

∂z̄ j ,

Z|U =

n∑
j=1

U j ∂

∂z j , (4.18)

or

Z|U =

n∑
j=1

V j ∂

∂z̄ j ,
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respectively, for U j,V j
∈ Cr(U;C), j ∈ {1, . . . ,n}, r ∈ {∞, ω,hol}. Thus a holomorphic

vector field has the form (4.18), where U j
∈ Chol(U;C).

Now let us define the notion of Lie bracket for vector fields on holomorphic mani-
folds. Let r ∈ {∞, ω} and let

Za = 1 ⊗ Xa + i ⊗ Ya ∈ Γr(TCM), Xa,Ya ∈ Γr(T∗M), a ∈ {1, 2}.

The complex Lie bracket of Z1 and Z2 is

[Z1,Z2]C = 1 ⊗ ([X1,X2] − [Y1,Y2]) + i ⊗ ([Y1,X2] + [X1,Y2]). (4.19)

The following lemma is fundamental to the structure of a holomorphic manifold.

4.5.21 Lemma (Property of the complex Lie bracket) If M is a holomorphic manifold then
(i) [Z1,Z2]C ∈ Γ∞(T1,0M) for every Z1,Z2 ∈ Γ∞(T1,0M) and
(ii) [Z1,Z2]C ∈ Γ∞(T0,1M) for every Z1,Z2 ∈ Γ∞(T0,1M).

Proof We prove the first assertion, the second following in a similar manner.
If Z1,Z2 ∈ Γ∞(T1,0M) then, by Proposition 4.1.5(iv), we write

Za = 1 ⊗ Xa − i ⊗ J(Xa), a ∈ {1, 2},

for some Xa ∈ Γ∞(TM), a ∈ {1, 2}. We then have

[Z1,Z2]C = 1 ⊗ ([X1,X2] − [J(X1), J(X2)]) − i ⊗ ([J(X1),X2] + [X1, J(X2)]).

A direct slightly messy computation then gives

JC([Z1,Z2]C) − i[Z1,Z2]C = −1 ⊗ J ◦NJ(X1,X2)) + i ⊗NJ(X1,X2),

where NJ is the Nijenhuis tensor of Section 4.8.1. By the easy part of Theorem 4.8.4 we
then have

[Z1,Z2]C ∈ Γ∞((ker(JC − i idTCM))),

and so the lemma follows by definition of T1,0M. �

Let us consider the above constructions specialised to holomorphic vector
fields, i.e., holomorphic sections of T1,0M. First of all, let us show that holomorphic
vector fields give rise to C-derivations.

4.5.22 Proposition (Holomorphic vector fields are C-derivations) Let M be a holomorphic
manifold and let Z ∈ Γhol(T1,0M). Then the map

L Z : Chol(M)→ Chol(M)
f 7→ L Zf

is a derivation of the C-algebra Chol(M), i.e., the map is C-linear and satisfies

L Z(fg) = (L Zf)g + f(L Zg).

Moreover, if Z1,Z2 ∈ Γhol(T1,0M) and if f ∈ Chol(M), then

L [Z1,Z2]Cf = L Z1L Z2f −L Z2L Z1f.
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Proof Let (U, φ) be a C-chart with coordinates (z1, . . . , zn). A direct computation in coor-
dinates shows that if the local representative of Z is

Z|U =

n∑
j=1

Z j ∂

∂z j ,

then the local representative of L Z f is

L Z f |U =

n∑
j=1

Z j ∂ f
∂z j ,

and the first part of the result follows from this, along with standard rules for C-
differentiation.

The second part of the result follows again from a direct computation in coordinates.�

As in the real analytic case, this can all be localised by considering vector fields to
be derivations on germs of functions. That is, we can think of a holomorphic vector
field Z as an assignment to each z ∈ M a derivation L Z,z : C hol

z,M → C hol
z,M . We can then

define the Lie bracket of holomorphic vector fields as

L [Z,W]C,z[ f ]z = L Z,zL W,z[ f ]z −L W,zL Z,z[ f ]z,

and verify that, in coordinates (z1, . . . , zn) in a C-chart, we have

[Z,W]|U =

n∑
j=1

( n∑
k=1

∂W j

∂zk
Zk
−

n∑
k=1

∂Z j

∂zk
Wk

) ∂
∂z j ,

where

Z|U =

n∑
j=1

Z j ∂

∂z j , W|U =

n∑
j=1

W j ∂

∂z j .

4.6 Differential forms on holomorphic and real analytic manifolds

In this section we turn to the study of differential forms on holomorphic and real
analytic manifolds. In the real analytic case, our presentation will be along the lines
of a review for readers familiar with smooth differential geometry; the constructions
are the same and the main results are the same. In the holomorphic case, however, the
complex structure has important interplay with the algebraic and analytical structure
of differential forms, and we spend some time understanding this.

4.6.1 Differential forms on real analytic manifolds

Let us provide the notation we shall use for differential forms. First let M be
a real analytic manifold. By πT∗M : T∗M → M we denote the cotangent bundle. By
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class Cr, r ∈ {∞, ω}, is a Cr-section of

∧k(T∗M), and we denote the set of all such
sections by Γr(

∧k(T∗M)). Let us recall the usual notation for locally representing
differential forms. We let (U, φ) be a R-chart with coordinates (x1, . . . , xn). In the
usual manner, cf. Proposition 4.5.4, we have the basis{ ∂

∂x1 (x), . . . ,
∂
∂xn (x)

}
for TxM for each x ∈ U. The dual basis for T∗xM is denoted by

{dx1(x), . . . ,dxn(x)}.

Given α ∈ Γr(
∧k(T∗M)) we can write

α(x) =
∑

j1,..., jk∈{1,...,n}
j1<···< jk

α j1··· jk(x)dx j1(x) ∧ · · · ∧ dx jk(x), x ∈ U, (4.20)

where
α j1··· jk(x) = α

( ∂

∂x j1
(x), . . . ,

∂

∂x jk
(x)

)
.

We shall frequently write
α(x) =

∑
′

I∈nk

αIdxI

as a shorthand for expressions like (4.20), where n = {1, . . . ,n}, where

αI = αi1,··· ,ik , dxI = dxi1 ∧ · · · ∧ dxik

if I = (11, . . . , ik), and where
∑
′ denotes the sum over increasing multi-indices.

The exterior derivative is then a map d: Γr(
∧k(T∗M)) → Γr(

∧k+1(T∗M)) of such a
differential form is given by

dα(X0,X1, . . . ,Xk) =

k∑
j=0

(−1) jL X j(α(X0,X1, . . . , X̂ j, . . . ,Xk))

+
∑

j,l∈{0,1,...,k}
j<l

(−1) j+lα([X j,Xl],X0, . . . , X̂ j, . . . , X̂l, . . . ,Xk), (4.21)

where the terms involving a ·̂mean that that term is omitted from the argument. One
can verify that, in local coordinates,

dα(x) =

n∑
j=1

∑
′

J∈nk

∂αJ

∂x j (x) dx j(x) ∧ dxI(x), x ∈ U.
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Alternatively, in terms of components,

dα j1··· jk jk+1 =

k∑
m=1

(−1)m−1 ∂

∂x jm
α j1··· jm−1 jm+1··· jk+1 + (−1)k ∂

∂x jk+1
α j1··· jk . (4.22)

The exterior derivative obeys the following rules whose standard proofs can be found
in [Abraham, Marsden, and Ratiu 1988, §6.4].

4.6.1 Proposition (Properties of exterior derivative) Let r ∈ {∞, ω} and let M be a smooth or
real analytic manifold. The exterior derivative has the following properties:

(i) the map d is well-defined, i.e., the expression (4.21) defines dα as a differential (k + 1)-
form;

(ii) the map d is R-linear;
(iii) d ◦d = 0;
(iv) if U ⊆ M is open and if α ∈ Γr(

∧k(T∗M)), then (dα)|U = d(α|U);

(v) if α ∈ Γr(
∧k(T∗M)) and β ∈ Γr(

∧l(T∗M)), then

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ.

The fact that d ◦d = 0 has important consequences, and the starting point for this
is the following definition.

4.6.2 Definition (Closed/exact differential form) On a real analytic manifold M and for
r ∈ {∞, ω}, a differential form α ∈ Γr(

∧k(T∗M)) is closed if dα = 0 and is exact if there
exists β ∈ Γr(

∧k−1(T∗M)) such that α = dβ. •

Evidently, exact forms are closed, and so we have the de Rham complex:

0 // Cr(M) d // Γr(
∧1(T∗M)) d d // Γr(

∧n(T∗M)) // 0

where n is the dimension of M. Let us denote by Zk
d(M) to be the kernel of

d: Γr(
∧k(T∗M)) → Γr(

∧k+1(T∗M)) and Bk
d(M) to be the image of d: Γr(

∧k−1(T∗M)) →
Γr(

∧k(T∗M)). Since Bk
d(M) ⊆ Zk

d(M), we can define the kth de Rham cohomology group
to be

Hk
d(M) =

Zk
d(M)

Bk
d(M)

.

Note that H0
d(M) ' Rc, where c is the number of connected components of M. This

follows from the fact that smooth functions whose exterior derivative vanishes are
locally constant, i.e., constant on connected components of M.

The following result says that closed forms are locally exact.
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4.6.3 Theorem (Poincaré Lemma) If M is a smooth manifold and if α ∈ Γ∞(
∧k(T∗M)) is closed,

then, for any x ∈ M, there exists a neighbourhood U of x and β ∈ Γ∞(
∧k−1(T∗U)) such that

α|U = dβ.
Proof As the result is local, we assume that M is a ball centred at x = 0 ∈ Rn. Let X be the
time-varying vector field on M \ {0} given by X(t, x) = t−1x. The flow of X starting at t = 1
at x is ΦX

1,t(x) = tx. Using Cartan’s magic formula [Abraham, Marsden, and Ratiu 1988,
Theorem 6.4.8(v)] we have

d
dt

(ΦX
1,t)
∗α = (ΦX

1,t)
∗L Xα = (ΦX

1,t)
∗dX α = d((ΦX

1,t)
∗X α).

If t ∈ (0, 1] we have

α − (ΦX
1,t)
∗α = d

(∫ 1

t
((ΦX

1,s)
∗X α)ds

)
.

For y ∈ M and for v1, . . . ,vk ∈ TyM we have

(ΦX
1,t)
∗α(v1, . . . ,vk) = α(TyΦX

1,t · v1, . . . ,TyΦX
1,t · v1) = tkα(v1, . . . ,vk).

Thus
lim
t→0

(ΦX
1,t)
∗α = 0

and so α = dβ where

β =

∫ 1

0
((ΦX

1,s)
∗X α)ds,

and this gives the result. �

Note that if d f = 0 for f ∈ C∞(M), then f is locally constant. Thus, for each x ∈ M,
we have an exact sequence

0 // R // C∞x,M
d // G∞

x,∧1(T∗M)

d d // G∞
x,∧n(T∗M)

// 0 (4.23)

of R-vector spaces, where by “R” we mean the germs of functions that are constant
in a neighbourhood of x (this will be made more clear and put into some context
when we talk about the constant sheaf and its sheafification in Section GA2.1.1). In
we shall extend this exact sequence from individual stalks to sheaves, and shall as what

a consequence say that this sequence is a soft resolution of the constant sheaf taking
values in R.

4.6.2 Differential forms on holomorphic manifolds

Let us now adapt and extend the preceding discussion to holomorphic manifolds.
Thus we let M be a holomorphic manifold. By

T∗Cz M = (T∗zM)C ' (TC
z M)∗ ' HomR(TzM;C),
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we denote the complex dual of TC
z M, the isomorphisms arising by virtue of

Lemma 4.1.10. Let (U, φ) be a C-chart for M with coordinates given by

(z1 = x1 + iy1, . . . , zn = xn + iyn).

By Proposition 4.5.13 we have the basis vectors ∂
∂z j (z) and ∂

∂z̄ j (z), j ∈ {1, . . . ,n}, for TC
z M,

z ∈ U. According to Proposition 4.1.12, we have the basis vectors

dz j(z) = 1 ⊗ dx j(z) + i ⊗ dy j(z), dz̄ j(z) = 1 ⊗ dx j(z) − i ⊗ dy j(z), j ∈ {1, . . . ,n},

for T∗Cz M, z ∈ U.
Let

∧k,l(T∗CM) be the subbundle of
∧k+l(T∗CM) consisting of those alternating tensors

of bidegree (k, l). By Γr(
∧k,l(T∗CM)) we denote the set of Cr-sections, r ∈ {∞, ω,hol}, of

this subbundle, which we call the complex differential forms of bidegree (k, l). Note
that

Γr(
∧0,0(T∗CM)) = Cr(M;C).

Let us represent these differential forms in a C-chart (U, φ) with coordinates (z1, . . . , zn),
as above. As we saw at the end of Section 4.1.4, the local representative of α ∈
Γr(

∧k,l(T∗CM)) is given by

α|U =
∑

i1,...,ik∈{1,...,n}
i1<···<ik

∑
j1,..., jl∈{1,...,n}

j1<···< jl

αi1,...,ik, j1,..., jldzi1 ∧ · · · ∧ dzik ∧ dz̄ j1 ∧ · · · ∧ dz̄ jl , (4.24)

where
αi1,...,ik, j1,..., jl = α

( ∂
∂zi1

, . . . ,
∂

∂zik
,
∂

∂z̄ j1
, . . . ,

∂

∂z̄ jl

)
are coefficients in Cr(U;C). We shall frequently abbreviate expression like (4.24) to

α|U =
∑

′

I∈nk

∑
′

J∈nl

αI,JdzI
∧ dz̄J,

with
∑
′ denoting a sum over increasing multi-indices.

Let us now consider how the exterior derivative is adapted to complex differential
forms. First we note that ∧m(T∗Cz M) ' C ⊗R

∧m(T∗zM),

from which we deduce that

Γr(
∧m(T∗CM)) ' C ⊗R Γr(

∧m(T∗M)).

Thus d: Γr(
∧m(T∗M))→ Γr(

∧m+1(T∗M)) extends to a C-linear map dC : Γr(
∧m(T∗CM))→

Γr(
∧m+1(T∗CM)) which we call the complex exterior derivative. The basic properties of

the exterior derivative carry over to the complex exterior derivative.
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4.6.4 Proposition (Properties of complex exterior derivative) Let M be a holomorphic man-
ifold. The complex exterior derivative has the following properties:

(i) the map dC is C-linear;
(ii) dC ◦dC = 0;
(iii) if U ⊆ M is open and if α ∈ Γ∞(

∧k(T∗CM)), then (dCα)|U = dC(α|U);

(iv) if α ∈ Γ∞(
∧k(T∗CM)) then dCᾱ = dCα;

(v) if α ∈ Γ∞(
∧k(T∗CM)) and β ∈ Γ∞(

∧l(T∗M)), then

dC(α ∧ β) = dCα ∧ β + (−1)kα ∧ dCβ.

The following lemma is key to studying complex differential forms.

4.6.5 Lemma (Decomposition of the complex exterior derivative) Let M be a holomorphic
manifold, let m ∈ Z≥0, and let α ∈ Γ∞(

∧k,l(T∗M)). Then

dCα ∈ Γ∞(
∧k+1,l(T∗M)) ⊕ Γ∞(

∧k,l+1(T∗M)).

Proof We adapt the formula (4.21) to the complex setting:

dCα(X0,X1, . . . ,Xk+l) =

k+l∑
r=0

(−1)rL Xr(α(X0,X1, . . . , X̂r, . . . ,Xk+l))

+
∑

r,s∈{0,1,...,k+l}
r<s

(−1)r+sα([Xr,Xs]C,X0, . . . , X̂r, . . . , X̂s, . . . ,Xk+l), (4.25)

where X0,X1, . . . ,Xk+l ∈ Γ∞(TCM). Note that the coordinate expression (4.24) implies that
if we evaluate α(x) on k + l tangent vectors of which more than k are in T1,0

k M or more than
l are in T0,1

x M, the result is necessarily zero. Taking advantage of Lemma 4.5.21, it follows
that if we evaluate dCα(x) on k + l + 1 tangent vectors of which more than k + 1 are in T1,0

k M
or more than l+1 are in T0,1

x M, the result is zero. Again by the coordinate expression (4.24),
it follows that dCα is a sum of differential forms of bidegree (k + 1, l) and (k, l + 1). �

Given the lemma, for α ∈ Γ∞(
∧k,l(T∗M)), we can write

dCα = ∂α + ∂̄α,

for some unique

∂α ∈ Γ∞(
∧k+1,l(T∗M)), ∂̄α ∈ Γ∞(

∧k,l+1(T∗M)).

It is straightforward to give the local representatives of ∂α and ∂̄α.
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4.6.6 Lemma (The local representative of the complex exterior derivative) Let M be a
holomorphic manifold, let m ∈ Z≥0, let α ∈ Γ∞(

∧k,l(T∗M)), and let (U, φ) be a C-chart for M.
If the local representative of α is

α|U =
∑

′

I∈nk

∑
′

J∈nl

αI,JdzI
∧ dz̄J,

then the local representatives of ∂α and ∂̄α are

∂α|U =
∑

′

I∈nk

∑
′

J∈nl

n∑
i=1

∂αI,J

∂zi dzi
∧ dzI

∧ dz̄J

and

∂̄α|U =
∑

′

I∈nk

∑
′

J∈nl

n∑
j=1

∂αI,J

∂z̄j dz̄j
∧ dzI

∧ dz̄J.

Proof Let f ∈ C∞(M;C). A direct computation gives the local representative dC f as

dC f |U =

n∑
i=1

∂ f
∂zi dzi +

n∑
j=1

∂ f
∂z̄ j dz̄ j.

The lemma then follows from Proposition 4.6.4(v). �

We may alternatively express the local forms for ∂ and ∂̄ by using components:

(∂α)i1···ikik+1, j1··· jl =

k∑
m=1

(−1)m−1 ∂

∂z jm
αi1···im−1im+1···ik+1, j1··· jl + (−1)k ∂

∂z jk+1
αi1···ik, j1··· jl

and

(∂̄α)i1···ik, j1··· jl jl+1 =

l∑
m=1

(−1)m−1 ∂

∂z̄ jm
αi1···ik, j1··· jm−1 jm+1··· jl+1 + (−1)k ∂

∂z̄ jl+1
αi1···ik, j1··· jl (4.26)

Using the fact that

Γ∞(
∧m(T∗CM)) =

⊕
k,l

k+l=m

Γ∞(
∧k,l(T∗CM)),

we can extend the maps ∂ and ∂̄ to be defined on complex differential m-forms.
Applying Proposition 4.6.4 to the decomposition dC = ∂ + ∂̄ gives the following

result.
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4.6.7 Proposition (Properties of ∂ and ∂̄) Let M be a holomorphic manifold. The following
statements hold:

(i) the maps ∂ and ∂̄ are C-linear;
(ii) ∂ ◦∂ = 0, ∂̄ ◦ ∂̄ = 0, and ∂ ◦ ∂̄ + ∂̄ ◦∂ = 0;
(iii) if U ⊆ M is open and if α ∈ Γ∞(

∧k(T∗CM)), then (∂α)|U = ∂(α|U) and (∂̄α)|U = ∂̄(α|U);

(iv) if α ∈ Γ∞(
∧k(T∗CM)) then ∂ᾱ = ∂̄α and ∂̄ᾱ = ∂α;

(v) if α ∈ Γ∞(
∧k(T∗CM)) and β ∈ Γ∞(

∧l(T∗CM)), then

∂(α ∧ β) = ∂α ∧ β + (−1)kα ∧ ∂β

and
∂̄(α ∧ β) = ∂̄α ∧ β + (−1)kα ∧ ∂̄β.

Similarly to vector fields, one uses our decompositions of complex differential
forms to define holomorphic differential forms.

4.6.8 Definition (Holomorphic differential form) If M is a holomorphic manifold and if
m ∈ Z≥0, a holomorphic differential m-form is a complex differential form α of bidegree
(m, 0) for which ∂̄α = 0. By Γhol(

∧m(T∗CM)) we denote the set of holomorphic differential
m-forms. •

Note that Lemma 4.6.6 shows that the components of a holomorphic differential
m-form are holomorphic functions of the local coordinates.

We have an interesting example of a bundle of holomorphic forms.

4.6.9 Example (Holomorphic forms on CP1) The holomorphic zero-forms on CP1 are pre-
cisely the holomorphic functions, and from Corollary 4.2.11 we know that such func-
tions must be constant on CP1. Combining Examples 4.3.11 and 4.5.14 we see that∧1(T∗CCP1) ' OCP1(−2). Moreover, from Example 4.3.14 we see that there are no
nonzero holomorphic one-forms on CP1. •

4.6.3 The Dolbeault complex

In this section we study a homological construction associated with complex differ-
ential forms, a construction that is the holomorphic analogue of the de Rham complex
for smooth differential forms on a smooth manifold.

The following definitions are analogous to those for the exterior derivative.

4.6.10 Definition (∂̄-closed/exact differential form) On a holomorphic manifold M, a dif-
ferential form α ∈ Γ∞(

∧k,l(T∗CM)) is ∂̄-closed if ∂̄α = 0 and is ∂̄-exact if there exists
β ∈ Γ∞(

∧k,l−1(T∗CM)) such that α = ∂̄β. •

Analogously to the de Rham complex we have the Dolbeault complex:

0 // Γ∞(
∧k,0(T∗CM)) ∂̄ // Γ∞(

∧k,1(T∗CM)) ∂̄ ∂̄ // Γ∞(
∧k,n(T∗CM)) // 0
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if M hasC-dimension n. Let us denote by Zk,l
∂̄

(M) to be the kernel of ∂̄ : Γ∞(
∧k,l(T∗CM))→

Γ∞(
∧k,l+1(T∗CM)) and Bk,l

∂̄
(M) to be the image of ∂̄ : Γ∞(

∧k,l−1(T∗CM)) → Γ∞(
∧k,l(T∗CM)).

Since Bk,l
∂̄

(M) ⊆ Zk,l
∂̄

(M), we can define the lth Dolbeault cohomology group to be

Hk,l
∂̄

(M) =
Zk,l
∂̄

(M)

Bk,l
∂̄

(M)
.

Note that Hk,0
∂̄

(M) = Γhol(
∧k,0(T∗CM)) since a smooth complex differential form α of

bidegree (k, 0) on M is holomorphic if and only if ∂̄α = 0.
Evidently, ∂̄-exact forms are ∂̄-closed. The converse, however, is not true.

4.6.11 Examples (∂̄-closed and exact forms)
1. Let U ⊆ C be open and let α ∈ Γ∞(

∧k,l(T∗CM)) be ∂̄-closed. Since U is pseudoconvex
by Example 3.3.11–1, it follows from Corollary 3.4.4 (or using a deeper result that
we will subsequently prove, Theorem 6.2.15) that there exists β ∈ Γ∞(

∧k,l−1(T∗CM))
such that α = ∂̄β. Thus ∂̄-closed forms defined on open subsets of C are ∂̄-exact,
provided that l ∈ Z>0.

2. Let us consider M = CP1. We shall determine Hk,l
∂̄

(CP1) for k, l ∈ {0, 1}, all other
cohomology groups vanishing since dimC(CP1) = 1.

(a) H0,0
∂̄

(CP1): By Corollary 4.2.11, holomorphic functions on CP1 are constant.
Thus

H0,0
∂̄

(CP1) ' C.

(b) H1,0
∂̄

(CP1): Suppose that α ∈ Z1,0
∂̄

(CP1). Since ∂α = 0 it follows that dCα = 0.
Since H1

d(S2) = {0} (see [Bott and Tu 1982, Exercise I.4.3]), it follows thatα = dC f
for some f ∈ C∞(CP1;C). Note that α is a holomorphic one-form. Thus dC f is
holomorphic and so, in coordinates, dC f =

∂ f
∂z dz. Thus ∂ f

∂z̄ = 0 and so f must
be holomorphic, and, therefore, constant by Corollary 4.2.11. Thus α = 0 and
so

H1,0
∂̄

(CP1) ' {0}.

Thus there are no nonzero holomorphic one-forms on CP1, as we have already
see in Example 4.6.9.

(c) H0,1
∂̄

(CP1): Here we recall from Example 4.2.2–4 that we have two charts
(U1, φ1) and (U2, φ2) for CP1 for which

φ1(U1) = φ2(U2) = C

and
φ1(U1 ∩ U2) = φ2(U1 ∩ U2) = C∗ , C \ {0}.
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Let us denote the respective coordinates by z1 and z2. The overlap maps are
then

φ2 ◦φ
−1
1 (z1) =

1
z1
, φ1 ◦φ

−1
2 (z2) =

1
z2
.

We then compute the change of basis relation for the basis one-forms to be

dz2 = −
1
z2

1

dz1, dz̄2 = −
1
z̄2

1

dz̄1.

Now let α ∈ Z0,1
∂̄

(CP1) have local representatives

α|U1 = α1(z1)dz̄1, α|U2 = α2(z2)dz̄2.

Let us define f ∈ C∞(CP1;C) by requiring that the local representative of f in
the chart (U1, φ1) is

f ◦φ−1
1 (z1) =

∫ z̄1

z0

α1(ζ1) dζ̄1

for some z0 , 0. We then directly compute
∂( f ◦φ−1

1 )
∂z̄1

= α1, using the fact that
∂̄α = 0. That is, on U1 we have ∂̄ f = α.
We now need to show that f extends to a well-defined function on U2 and that
the extended function also satisfies ∂̄ f = α on U2. First we note that

z̄2
2α2(z2) = −α1(z−1

2 ), z2 ∈ φ2(U1 ∩ U2).

Thus for z2 , 0 we have

f ◦φ−1
2 (z2) =

∫ 1/z̄2

z0

α1(ζ1) dζ̄1 = −

∫ z̄2

1/z0

α1(ζ−1
2 )

ζ̄2
2

dζ̄2 =

∫ z̄2

1/z0

α2(ζ2) dζ̄2,

and from this we conclude that f indeed extends to a well-defined function
on U2 satisfying ∂̄ f = α.
From the above computations we conclude that

H0,1
∂̄

(CP1) = {0}.

(d) H1,1
∂̄

(CP1): Note that if α ∈ Γ∞(
∧1,0(T∗CCP1)) then ∂̄α = dCα. Also, if α ∈

Γ∞(
∧0,1(T∗CCP1)) then ∂̄α = 0. Thus

∂̄(Γ∞(
∧1,0(T∗CCP1))) = dC(Γ∞(

∧1(T∗CCP1))) = C ⊗R d(Γ∞(
∧1(T∗CP1)))

Z1,1
∂̄

(CP1) = Γ∞(
∧1,1(T∗CCP1)) = C ⊗R Γ∞(

∧2(T∗CP1)).

Therefore, using the fact that H2
d(S2) ' R (see [Bott and Tu 1982, Exercise I.4.3]),

we have
H1,1
∂̄

(CP1) ' C.
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3. Let M be a compact connected holomorphic manifold of dimension 1. Following
the lines above for CP1, we see that

H0,0
∂̄

(M) = C,

and
H1,1
∂̄

(M) ' C ⊗R H2
d(M) ' C,

since Hn
d(M) = H0

d(M) for a connected, compact, oriented manifold of dimension
n [Bott and Tu 1982, Corollary 5.8]. •

From the examples we can see that the nonvanishing of Dolbeault cohomology
groups provides a combination of information regarding the global topology and the
global complex structure. We shall flesh out this vague observation more in . For nowwhat

we state the following result, known as the ∂̄-Poincaré Lemma or Dolbeault’s Lemma,
the latter name after Dolbeault [1956, 1957]. The result says that locally the Dolbeault
complex is exact.

4.6.12 Theorem (Dolbeault’s Lemma) If M is a holomorphic manifold and if α ∈ Γ∞(
∧k,l(T∗CM))

is ∂̄-closed, then, for each z ∈ M, there exists a neighbourhood U of z and β ∈ Γ∞(
∧k,l−1(T∗CM))

such that α|U = ∂̄(β|U).
Proof We begin by proving a generalisation of the Cauchy Integral Formula.

1 Lemma Let U ⊆ C be open, let z ∈ U, let r ∈ R>0 be such that D1(r, z) ⊆ U, and let f ∈ C∞(U;C).
Then

f(z) =
1

2πi

∫
bd(D1(z,r))

f(ζ)
ζ − z

dζ +
1

2πi

∫
D1(z,r)\{z}

∂f
∂ζ̄

(ζ)
dζ ∧ dζ̄
ζ − z

.

Proof Let ε ∈ (0, r). On D1(r, z) \ D1(ε, z) consider the (1, 0)-form α defined by

α(ζ) =
f (ζ)
ζ − z

dζ.

By Stokes Theorem, ∫
D1(r,z)\D1(ε,z)

dα =

∫
bd(D1(r,z))

α −

∫
bd(D1(ε,z))

α.

Substituting the specific expression for α we have∫
bd(D1(ε,z))

f (ζ)
ζ − z

dζ =

∫
bd(D1(r,z))

f (ζ)
ζ − z

dζ +

∫
D1(r,z)\D1(ε,z)

∂ f
∂ζ̄

(ζ)
dζ ∧ dζ̄
ζ − z

(4.27)

Using ζ = z + εeiθ for the first integral,∫
bd(D1(ε,z))

f (ζ)
ζ − z

dζ = i
∫ 2π

0
f (z + εeiθ) dθ.
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By the Dominated Convergence Theorem applied to the integral on the right,

lim
ε→0

∫
bd(D1(ε,z))

f (ζ)
ζ − z

dζ = 2πi f (z). (4.28)

Now let us consider the following integral:∫
D1(ε,z)\{z}

∂ f
∂ζ̄

(ζ)
dζ ∧ dζ̄
ζ − z

We first make the change of variable w = ζ − z so that the integral in question becomes∫
D1(ε,0)\{0}

∂ f
∂ζ̄

(z + w)
dw ∧ dw̄

w

A direct computation shows that

dw ∧ dw̄ = 2idx ∧ dy = 2irdr ∧ dθ.

Making the change to polar coordinates then gives∫
D1(ε,z)\{z}

∂ f
∂ζ̄

(ζ)
dζ ∧ dζ̄
ζ − z

= 2i
∫ ε

0

∫ 2π

0

∂ f
∂ζ̄

(z + reiθ)e−iθ drdθ.

Thus

lim
ε→0

∫
D1(ε,z)\{z}

∂ f
∂ζ̄

(ζ)
dζ ∧ dζ̄
ζ − z

= 0.

Substituting the preceding expression and (4.28) into (4.27) gives the lemma. H

Now we prove the theorem. We note that the result is local so we assume that M = U

is an open subset of Cn. First we consider the case of n = 1. Thus let U ⊆ C be an open
set and let D be an open disk with cl(D) ⊆ U. Let z0 ∈ D and let ε be small enough that
D1(2ε, z0) ⊆ D. Let α(z) = g(z)dz̄ be a smooth (0, 1)-form on U and note that ∂̄α = 0. Define

f (z) =
1

2πi

∫
D

g(ζ)
ζ − z

dζ ∧ dζ̄.

Let ψ ∈ C∞(U) be equal to the constant function with value 1 on D1(ε, z0) and 0 outside
D1(2ε, z0). Let g1 = ψg and g2 = (1 − ψ)g so g = g1 + g2. For z ∈ D1(ε, z0) define

f1(z) =
1

2πi

∫
D

g1(ζ)
ζ − z

dζ ∧ dζ̄

and

f2(z) =
1

2πi

∫
D

g2(ζ)
ζ − z

dζ ∧ dζ̄
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so that f (z) = f1(z) + f2(z). Using the fact that g2 vanishes on D1(ε, z0) and using holomor-
phicity of ζ 7→ 1

ζ−z , we have ∂ f2
∂z̄ = 0 on D1(ε, z0) . Also, using a change to polar coordinates

as in the proof of the lemma above,

∂ f1
∂z̄

(z) =
1

2πi
∂
∂z̄

∫
D

g1(ζ)
ζ − z

dζ ∧ dζ̄ =
1
π

∫
D

∂g1

∂z̄
(z + reiθ)dr ∧ dθ

=
1

2πi

∫
D

∂g1

∂z̄
(ζ)

dζ ∧ dζ̄
ζ − z

= g1(z),

using the lemma above since g1 vanishes bd(D). Thus

∂ f
∂z̄

(z) =
∂ f1
∂z̄

(z) +
∂ f2
∂z̄

(z) = g1(z) + g2(z) = g(z)

for z ∈ D1(ε, z0). Thus α = ∂̄ f on D. Thus we have the theorem for n = 1 and (k, l) = (0, 1).
Now we prove the theorem, in its local form, for general n. Thus we suppose that

M = U is an open subset of Cn and that D = D1 × · · · ×Dn is an open polydisk such that
cl(D) ⊆ U. We let α be a smooth (k, l)-form on U satisfying ∂̄α = 0. We will prove the
theorem in this case by induction on r, with r being the smallest nonnegative integer such
that the coordinate expression for α does not involve dz̄r+1, . . . ,dz̄n. For r = 0 the result
is vacuously true since we must have l ∈ Z>0, and so r being zero implies that α is zero.
Also, if the assertion holds r = n, then this is what we wish to prove.

So, we suppose that the theorem holds for r ∈ {0, 1, . . . ,m − 1} and suppose that

α = dz̄m
∧ ω + θ (4.29)

for ω ∈ Γ∞(
∧k,l−1(T∗CD)), θ ∈ Γ∞(

∧k,l(T∗CD)), and where the coordinate expressions for
both ω and θ do not involve dz̄m, . . . ,dz̄n. Let us write

ω =
∑

′

I∈nk

∑
′

J∈nl−1

ωI,JdzI
∧ dz̄J.

For the moment, let us fix increasing multi-indices I ∈ nk and J ∈ nl−1. Since ∂̄α = 0 we
have, by (4.29) and keeping in mind the attributes of ω and θ,

∂

∂z̄ jωI,J = 0, j ∈ {m + 1, . . . ,n}. (4.30)

Thus ω is a holomorphic function of zm+1, . . . , zn.
Define

ΩI,J(z) =
1

2πi

∫
Dm

1
ζ − zk

ωI,J(z1, . . . , zm−1, ζ, zm+1, . . . , zn)dζ ∧ dζ̄.

By our conclusions from the case n = 1 above we have

∂
∂z̄m ΩI,J = ωI,J
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in D. By differentiating the expression for ΩI,J under the integral sign and using (4.30) we
get

∂

∂z̄ j ΩI,J = 0, j ∈ {m + 1, . . . ,n}.

Now define
Ω =

∑
′

I∈nk

∑
′

J∈nl−1

ΩI,JdzI
∧ dz̄J.

A direct computation using the properties of ΩI,J above gives

∂̄Ω = dz̄m
∧ ω + θ′

on D′′, where θ′ does not involve dz̄m, . . . ,dz̄n in its coordinate expression. Therefore,
θ−θ′ = α− ∂̄Ω does not involve dz̄m, . . . ,dz̄n in its coordinate expression. By the induction
hypothesis, there exists β′ ∈ Γ∞(

∧k,l−1(T∗CD′)) such that

∂̄β′ = α − ∂̄Ω

in D′. The result follows by taking β = β′ + Ω. �

The theorem gives rise to a resolution of the module of germs of holomorphic
m-forms at z ∈ M, i.e., an exact sequence

0 // G hol
z,∧m(T∗CM)

// G∞
z,∧m,0(T∗CM)

∂̄ // G∞
z,∧m,1(T∗CM)

∂̄ ∂̄ // G∞
z,∧m,n(T∗CM)

// 0

(4.31)
of C-vector spaces, noting that there is a natural inclusion of G hol

z,∧m(T∗CM)
into the module

G∞
z,∧m,0(T∗CM)

.

4.6.4 Differential forms with power series coefficients

In this section we consider the cases of real analytic and holomorphic differential
forms in a little more detail by considering differential forms with power series coef-
ficients. In this case, we shall see that the classical Poincaré Lemma restricts nicely to
the real analytic and holomorphic cases. We do this by first considering an algebraic
setting for differential forms.

Let F be a field and let V be a finite-dimensional F-vector space. For k, l ∈ Z≥0 we
will find it illuminating to think of the vector space Sk(V∗)⊗

∧l(V∗) as being “differential
l-forms with coefficients being homogeneous polynomials of degree k.” To do this, we
first establish the relationship between Sk(V∗) and homogeneous polynomial functions.
Let Fk[V] denote the polynomial functions of degree k on V i.e., the F-valued functions
of the form

fA(x) = A(x, . . . , x), x ∈ V, A ∈ Tk(V∗).

With the identification of such functions with Sk(V∗) as in Proposition 4.4.7, let us
explicitly demonstrate the desired identification of Sk(V∗) ⊗

∧l(V∗) with differential
l-forms with polynomial coefficients of degree k.
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4.6.13 Proposition (Characterisation of Sk(V∗) ⊗
∧l(V∗)) Let k, l ∈ Z≥0. The map φk,l from

Sk(V∗) ⊗
∧l(V∗) to Fk[V] ⊗

∧l(V∗) defined by

φk,l(A ⊗ α)(x)(v1, . . . ,vl) = A(x, . . . , x)α(v1, . . . ,vl), x,v1, . . . ,vl ∈ V,

is a monomorphism of F-vector spaces.
Proof The map is clearly linear. To see that it is injective, suppose that

φk,l(α1 ⊗ A1 + · · · + αm ⊗ Am) = 0.

This means that

A1(x, . . . , x)α1(v1, . . . , vl) + · · · + Ak(x, . . . , x)αk(v1, . . . , vl) = 0

for every x, v1, . . . , vl ∈ V. Now let u1, . . . ,uk, v1, . . . , vl ∈ V. By Proposition 4.4.7 we have

A j(u1, . . . ,uk) =
1
k!

k∑
l=1

∑
{ j1,..., jl}⊆{1,...,k}

(−1)k−lA(u j1 + · · · + u jl , . . . ,u j1 + · · · + u jl).

We may then write

m∑
j=1

A j(u1, . . . ,uk)α j(v1, . . . , vl)

=

m∑
j=1

1
k!

k∑
l=1

∑
{ j1,..., jl}⊆{1,...,k}

(−1)k−lA(u j1 + · · · + u jl , . . . ,u j1 + · · · + u jl)α j(v1, . . . , vl).

The terms on the right vanish since A1 ⊗ α1 + · · · + Am ⊗ αm ∈ ker(φk,l), and so we have
A1 ⊗ α1 + · · · + Am ⊗ αm = 0, giving injectivity of φk,l. �

We can formally perform the usual operations we perform with differential forms
on these differential forms with polynomial coefficients. In particular, we will be
interested in the exterior derivative and wedge product. To this end, if f1 ⊗ α1 ∈

Fk1[V] ⊗
∧l1(V∗) and if f2 ⊗ α2 ∈ Fk2[V] ⊗

∧l2(V∗), then we define

( f1 ⊗ α1) ∧ ( f2 ⊗ α2) = ( f1 f2) ⊗ (α1 ∧ α2),

where f1 f2 denotes the usual product of functions, i.e.,

( f1 f2)(x, . . . , x) = f1(x, . . . , x) f2(x, . . . , x).

We can also define exterior differentiation as follows. If f ⊗ α ∈ Fk[V]⊗
∧l(V∗) then we

define dk,l( f ⊗ α) ∈ Fk−1[V] ⊗
∧l+1(V∗) by

dk,l( f ⊗ α)(x) · (v1, . . . , vl+1) =

l+1∑
j=1

(−1) j+1kA(v j, x, . . . , x)α(v1, . . . , v̂ j, . . . , vl+1),
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where A ∈ Sk(V∗) is such that

f (x) = A(x, . . . , x), x ∈ V.

A comparison with (4.22) shows that this definition agrees with the usual definition
if one takes the case F = R and thinks of V as being a differentiable manifold with
coordinates chosen according to a basis for V, cf. [Abraham, Marsden, and Ratiu 1988,
Corollary 6.4.2].

These operations translate into operations on Sk(V∗)⊗
∧l(V∗). To this end, if A1⊗α1 ∈

Sk1(V∗) ⊗
∧l1(V∗) and A2 ⊗ α2 ∈ Sk2(V∗) ⊗

∧l2(V∗), define

(A1 ⊗ α1) ∧ (A2 ⊗ α2) =
k1!k2!

(k1 + k2)!
(A1 � A2) ⊗ (α1 ∧ α2) ∈ Sk1+k2(V∗) ⊗

∧l1+l2(V∗).

For A ⊗ α ∈ Sk(V∗) ⊗
∧l(V∗), define δk,l(A ⊗ α) ∈ Sk−1(V∗) ⊗

∧l+1(V∗) by

(δk,l(A ⊗ α))(u1, . . . ,ur−1, v1, . . . , vl+1)

=

l+1∑
j=1

(−1) j+1kA(v j,u1, . . . ,ur−1)α(v1, . . . , v̂ j, . . . , vl+1),

with the understanding that S− j(V∗) = {0} for j ∈ Z>0.
The following result shows that these algebraic operations agree with their differ-

ential counterparts under the map φk,l.

4.6.14 Proposition (Wedge product and exterior derivative) For A ⊗ α ∈
∧l(V∗) ⊗ Sk(V∗),

A1 ⊗ α1 ∈
∧l1(V∗) ⊗ Sk1(V∗), and A2 ⊗ α2 ∈

∧l2(V∗) ⊗ Sk2(V∗), the following statements hold:
(i) φk1+k2,l1+l2((A1 ⊗ α1) ∧ (A2 ⊗ α2)) = (φk1,l1(A1 ⊗ α1)) ∧ (φk2,l2(A2 ⊗ α2));
(ii) φk−1,l+1 ◦δk,l(A ⊗ α) = dk,l ◦φk,l(A ⊗ α).

Proof (i) We have

(φk1,l1(A1 ⊗ α1)(x)) ∧ (φk2,l2(A2 ⊗ α2)(x)) = A1(x, . . . , x)A2(x, . . . , x)α1 ∧ α2

= (A1 ⊗ A2)(x, . . . , x)α1 ∧ α2

= Sym(A1 ⊗ A2)(x, . . . , x)α1 ∧ α2

=
k1!k2!

(k1 + k2)!
(A1 � A2)(x, . . . , x)α1 ∧ α2

= φk1+k2,l1+l2((α1 ⊗ A1) ∧ (α2 ⊗ A2))(x).

(ii) Let us first consider the case when l = 0. In this case we have

dk,0 ◦φk,0(A)(x) · v = kA(v, x, . . . , x) = φk−1,1 ◦δk,0(A)(x)(v),

so proving the result when l = 0.
For l > 0 we first prove a lemma.
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1 Lemma If f1 ⊗ α1 ∈ Fk1[V] ⊗
∧l1(V∗) and f2 ⊗ α2 ∈ Fk2[V] ⊗

∧l2(V∗), then

dk1+k2,l1+l2((f1 ⊗ α1) ∧ (f2 ⊗ α2))

= (dk1,l1(f1 ⊗ α1)) ∧ (f2 ⊗ α2) + (−1)l1(f1 ⊗ α1) ∧ (dk2,l2(f2 ⊗ α2)).

Proof Let A1 ∈ Sk1(V∗) and A2 ∈ Sk2(V∗) be such that

fa(x) = Aa(x, . . . , x), a ∈ {1, 2}, x ∈ V.

We compute

dk1+k2,l1+l2(( f1 ⊗ α1) ∧ ( f2 ⊗ α2))(x)(v1, . . . , vl1+l+2)
= dk1+k2,l1+l2(( f1 f2) ⊗ (α1 ∧ α2))(x)(v1, . . . , vl1+l2+1)

=

l1+l2+1∑
j=1

(−1) j+1 Symk1+k2
(A1 ⊗ A2)(v j, x, . . . , x)α1 ∧ α2(v1, . . . , v̂ j, . . . , vl1+l2+1)

=

l1+1∑
j=1

(−1) j+1k1A1(v j, x, . . . , x)α1(v1, . . . , v̂ j, . . . , vl1+1)A2(x, . . . , x)α2(vl1+2, . . . , vl1+l2+1)

+

l1+l2+1∑
j=l1+2

(−1) j+1A1(x, . . . , x)α1(v1, . . . , vl1)k2A2(v j, x, . . . , x)α(vl1+1, . . . , v̂ j, . . . , vl1+l2+1)

= (dk1,l1( f1 ⊗ α1)) ∧ ( f2 ⊗ α2)(x)(v1, . . . , vl1+l2+1)

+ (−1)l1( f1 ⊗ α1) ∧ (dk2,l2( f2 ⊗ α2))(x)(v1, . . . , vl1+l2+1),

as desired. H

We now note that an arbitrary element in image(φk,l) is a finite linear combination of
elements of the form fA ⊗ α for A ∈ Sk(V∗) and α ∈

∧l(V∗). By the lemma we can write
fA ⊗α = fA∧α, thinking of fA as an element of Fk[V]⊗

∧0(V∗). Using the fact that d0,lα = 0
by definition of d0,l, we have

dk,l ◦φk,l(A ⊗ α)(x) · (v1, . . . , vl+1) = (d0,0 fA ∧ α)(x)(v1, . . . , vl+1)

=
∑
σ

sign(σ)d0,0 fA(x)(vσ(1))α(vσ(2), . . . , vσ(l+1)),

where the sum is over all permutations σ of {1, . . . , l + 1}which satisfy

σ(2) < σ(3) < · · · < σ(l + 1).

This amounts to

dk,l ◦φk,l(A ⊗ α)(x) · (v1, . . . , vl+1) =

l+1∑
j=1

(−1) j+1d0,0 fA(x)(v j)α(v1, . . . , v̂ j, . . . , vl+1)

=

l+1∑
j=1

(−1) j+1kA(v j, x, . . . , x)α(v1, . . . , v̂ j, . . . , vl+1),
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where ·̂means the term is omitted from the argument. Thus

dk,l ◦φk,l(A ⊗ α)(x) · (v1, . . . , vl+1) = φk−1,l+1 ◦δk,l(A ⊗ α)(x)(v1, . . . , vl+1),

as desired. �

It is now relatively straightforward to extend the preceding discussion from differ-
ential forms with coefficients being homogeneous polynomial functions to differential
forms with coefficients being power series. We begin by denoting F[[V]] =

∏
∞

k=0 Fk[V],
which we call the formal power series on V. Intuitively, a formal power series con-
sists of linear combinations of homogeneous polynomial functions of all orders, just
like an infinite Taylor series, but we do not bother ourselves with convergence, the
setting here being purely algebraic. In this case, F[[V]] ⊗

∧l(V∗) is to be thought of as
differential l-forms with power series coefficients. The isomorphisms

φk,l : Sk(V∗) ⊗
∧l(V∗)→ Fk[V] ⊗

∧l(V∗)

extend component-wise over the direct product to give isomorphisms

φl :
∞∏

k=0

Sk(V∗) ⊗
∧l(V∗)→ F[[V]] ⊗

∧l(V∗).

Moreover, the maps

δk,l : Sk(V∗) ⊗
∧l(V∗)→ Sk−1(V∗) ⊗

∧l+1(V∗)

similarly extend component-wise to maps

δl :
∞∏

k=0

Sk(V∗) ⊗
∧l(V∗)→

∞∏
k=0

Sk(V∗) ⊗
∧l+1(V∗)

and so by composition to a map, which we denote by the same symbol,

δl : F[[V]] ⊗
∧l(V∗)→ F[[V]] ⊗

∧l+1(V∗).

We may now state our main result in this section.

4.6.15 Theorem (Formal Poincaré Lemma) For a field F and an n-dimensional F-vector space
V, the sequence

0 // F[[V]]
δ0 // F[[V]] ⊗ V∗

δ1 // F[[V]] ⊗
∧2(V∗)

δ2 // · · ·

· · ·
δn−1 // F[[V]] ⊗

∧n(V∗) // 0

is exact.
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Proof It suffices to show that the sequence

0 // Sk(V∗)
δk,0 // Sk−1(V∗) ⊗ V∗

δk−1,1 // Sk−2(V∗) ⊗
∧2(V∗)

δk−2,2 // · · ·

· · ·
δk−n+1,n−1 // Sk−n(V∗) ⊗

∧n(V∗) // 0

is exact for each k ∈ Z>0.
First of all, if f ⊗ α ∈ Fk ⊗

∧l(V∗), we compute

dk−1,l+1 ◦dk,l( f ⊗ α)(x)(v1, . . . , vl+2)

=

l+1∑
j=1

(−1) j+1
l+2∑
i=1

(−1)i+1A(vi, v j, x, . . . , x)α(v1, . . . , v̂r(i, j), . . . , v̂s(i, j), . . . , vl+2),

where

r(i, j) =

i, i < j,
j, i > j,

s(i, j) =

 j, i < j,
i, i > j.

Note that
A(vi, v j, x, . . . , x)α(v1, . . . , v̂r(i, j), . . . , v̂s(i, j), . . . , vl+2) = 0

since A is symmetric and α is skew-symmetric. Thus we have image(dk,l) ⊆ ker(dk−1,l+1).
For each k, l ∈ Z>0 we shall define a map Hk,l : Sk−1(V∗) ⊗

∧l+1(V∗) → Sk(V∗) ⊗
∧l(V∗)

with the property that Hk−1,l+1 ◦δk−1,l+1 +δk,l ◦Hk,l is the identity map on Sk−1(V∗)⊗
∧l+1(V∗).

For B ⊗ β ∈ Sk−1(V∗) ⊗
∧l+1(V∗) define

Hk,l(B ⊗ β)(u, . . . ,u, v1, . . . , vl) =
1

k + l
B(u, . . . ,u)β(u, v1, . . . , vl),

for u, v1, . . . , vl ∈ V, noting that this uniquely defines Hk,l(B ⊗ βB) ∈ Sk(V∗) ⊗
∧l(V∗) by

Proposition 4.4.7. Using the definition of δk,l we compute

δk,l ◦Hk,l(B ⊗ β)(u, . . . ,u, v1, . . . , vl+1)

=
1

k + l

( l+1∑
j=1

(−1) j+1(k − 1)B(v j,u, . . . ,u)β(u, v1, . . . , v̂ j, . . . , vl+1)

+

l+1∑
j=1

(−1) j+1B(u, . . . ,u)β(v j, v1, . . . , v̂ j, . . . , vl+1)
)
, (4.32)

for u, v1, . . . , vl+1 ∈ V. Using the definition of δk−1,l+1 we have

δk−1,l+1(B ⊗ β)(u, . . . ,u, v1, . . . , vl+2)

=

l+2∑
j=1

(−1) j+1(k − 1)B(v j,u, . . . ,u)β(v1, . . . , v̂ j, . . . , vl+2)
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for u, v1, . . . , vl+2 ∈ V. Therefore, using the definition of Hk−1,l+1,

Hk−1,l+1 ◦δk−1,l+1(B ⊗ β)(u, . . . ,u, v1, . . . , vl+1)

=
1

k + l

(
(k − 1)B(u, . . . ,u)β(v1, . . . , vl+1)

+

l+1∑
j=1

(−1) j(k − 1)B(v j,u, . . . ,u)β(u, v1, . . . , v̂ j, . . . , vl+1)
)

(4.33)

for u, v1, . . . , vl+1 ∈ V. Combining (4.32) and (4.33) we arrive at

(Hk−1,l+1 ◦δk−1,l+1 + δk,l ◦Hk,l)(B ⊗ β)(v1, . . . , vl+1,u, . . . ,u)

=
1

k + l

(
(k − 1)B(u, . . . ,u)β(v1, . . . , vk+1)

+

k+1∑
j=1

(−1) j+1B(u, . . . ,u)β(v j, v1, . . . , v̂ j, vl+1)
)

=
1

k + l

(
(k − 1)B(u, . . . ,u)β(v1, . . . , vl+1)

+ (l + 1)B(u, . . . ,u)β(v1, . . . , vl+1)
)

= B(u, . . . ,u)β(v1, . . . , vl+1)
= B ⊗ β(u, . . . ,u, v1, . . . , vl+1)

for u, v1, . . . , vl+1 ∈ V. By extending the above computations using linearity and by using
Proposition 4.4.7, it follows that Hk−1,l+1 ◦δk−1,l+1 + δk,l ◦Hk,l is the identity on Sk−1(V∗) ⊗∧l+1(V∗).

Now, if δk−1,l+1(B1⊗β1 + · · ·+Bm⊗βm) = 0 for β j⊗B j ∈ Sk−1(V∗)⊗
∧l+1(V∗), j ∈ {1, . . . ,m},

then we define A j ⊗ α j ∈ Sk(V∗) ⊗
∧l(V∗) by A j ⊗ α j = Hs,r(B j ⊗ β j), j ∈ {1, . . . ,m}. Then

δk,l

( m∑
j=1

A j ⊗ α j

)
= δk,l ◦Hk,l

( m∑
j=1

B j ⊗ β j

)
= (δk,l ◦Hk,l + Hk−1,l+1 ◦δk−1,l+1)

( m∑
j=1

B j ⊗ β j

)
=

m∑
j=1

B j ⊗ β j,

showing that image(δk,l) = ker(δk−1,l+1) as desired. �

The preceding algebraic constructions are certainly entertaining. But they also give
rise to the following important corollaries.

4.6.16 Corollary (The Poincaré Lemma in the real analytic case) Let M be a manifold of class
Cω. If α ∈ Γω(

∧l(T∗M)) is closed, then, for each x ∈ M, there exists a neighbourhood U of x
and β ∈ Γω(

∧l−1(T∗U)) such that α|U = dβ.
Proof Since the result is local, we let M be a neighbourhood of 0 ∈ Rn. Since α is real
analytic, in a neighbourhood of 0 we have the Taylor series expansion that we write in the
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general form

α(x) =

∞∑
k=0

mk∑
r=1

αkr(x)ωkr,

where αkr are homogeneous polynomial functions of degree k for each r ∈ {1, . . . ,mk} and
where ωkr are differential l-forms with constant coefficients, e.g., wedge products of the
coordinate one-forms. Using the mappings Hk,l from the proof of Theorem 4.6.15, define

Hl(α) =

∞∑
k=0

mr∑
r=1

Hk,l(αkr ⊗ ωkr).

A moment’s consideration of the definition of Hk,l leads one to the formula

Hl(α)(x)(v1, . . . ,vl−1) =

∫ 1

0
tl−1β(tx)(x,v1, . . . ,vl−1),

which holds for v1, . . . ,vl−1 ∈ Rn. From this formula we see that Hl(α) is analytic. In the
proof of Theorem 4.6.15 we showed that Hl(α) satisfies α = dHl(α) in a neighbourhood of
0, and this gives the result. �

Thus, for each x ∈ M, we have an exact sequence

0 // R // C ω
x,M

d // G ω

x,∧1(T∗M)

d d // G ω
x,∧n(T∗M)

// 0 (4.34)

of R-vector spaces, where by “R” we mean the germs of functions that are constant in
a neighbourhood of x (this will be made more clear and put into some context when
we talk about the constant sheaf and its sheafification in Section GA2.1.1). In making
this translation, we are tacitly using Proposition 5.6.6 below, where the (more or less
obvious) correspondence between germs at a point and power series is established.

4.6.17 Corollary (The Poincaré Lemma in the holomorphic case) Let M be a holomorphic
manifold. If α ∈ Γhol(

∧l(T∗CM)) is ∂-closed, i.e., ∂α = 0, then, for each z ∈ M, there exists a
neighbourhood U of z and β ∈ Γhol(

∧l−1(T∗CU)) such that α|U = ∂β.
Proof The proof of Corollary 4.6.16 applies, replacing R with C. �

Thus, for each z ∈ M, we have an exact sequence

0 // C // C hol
z,M

∂ // G hol
z,∧1(T∗M)

∂ ∂ // G hol
z,∧n(T∗M)

// 0 (4.35)

of C-vector spaces, where by “C” we mean the germs of functions that are constant in
a neighbourhood of x (this will be made more clear and put into some context when
we talk about the constant sheaf and its sheafification in Section GA2.1.1).
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4.6.18 Remark (Connection to the usual proof of the Poincaré Lemma) We can see from
the proof of Corollary 4.6.16 that our proof of the Formal Poincaré Lemma is an
adaptation to the algebraic setting of one of the usual proofs of the lemma involving
the construction of a homotopy operator; see the proof of Theorem 4.6.3 above. •

4.7 Connections in vector bundles

In Section 4.3 we introduced the basic constructions associated with vector bundles.
In this section we introduce one of the important constructions with vector bundles,
namely connections in vector bundles. This is a venerable subject in differential
geometry, and we do not attempt to do it anything like full justice here. Rather, we
just provide the initial definitions and most elementary results. Readers interested
in a deeper treatment of the theory of connections can refer to the two volumes
of Kobayashi and Nomizu [1963].

As always, when we are talking about objects of class Chol, we assume all relevant
operations are over C. In order to allow us to simultaneously consider the real and
complex cases, we shall denote by TM the holomorphic tangent bundle of a holomor-
phic manifold M and by T∗M the dual bundle. That is, if M is a holomorphic manifold,
we denote TM = T1,0M and T∗M =

∧1,0(T∗CM).

4.7.1 The vertical lift for a vector bundle

Let r ∈ {∞, ω,hol} and let F = R if r ∈ {∞, ω} and let F = C if r = hol. Let π : E→ M
be a F-vector bundle of class Cr. The vertical subbundle of TE is VE = ker(Tπ). Denote
νE = πTE|VE. Note that the fibres of νE : VE→ E are the tangent spaces to the fibres of
π : E→ M thought of as F-submanifolds of E. Since these fibres are vector spaces, this
implies that the fibre VexE is naturally F-isomorphic to Ex. We shall talk about curves
in the fibre for both the real and complex settings. Specifically, for ex, fx ∈ Ex we have
the curve

F 3 t 7→ ex + t fx ∈ Ex.

The F-derivative of this map at t = 0 is an element of Ex ' VexE. With this in mind, we
define the vertical lift of fx at ex by

vlftex( fx) =
d
dt

∣∣∣∣
t=0

(ex + t fx) ∈ VexE.

The following result gives a useful characterisation of the vertical lift.

4.7.1 Proposition (Characterisation of vlft) Let r ∈ {∞, ω,hol} and letF = R if r ∈ {∞, ω} and
let F = C if r = hol. For an F-vector bundle π : E→ M of class Cr, the map vlft : π∗E→ VE
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defined by vlft(ex, fx) = vlftex(fx) is an isomorphism of F-vector bundles for which the diagram

π∗E vlft //

pr1
��

VE
νE
��

E E

commutes, where pr1 : π∗E → E is the restriction of the projection from E × E onto the first
factor to the submanifold π∗E ⊆ E × E.

Proof Let ex ∈ Ex. The restriction of the map vlft in the statement of the result to the fibre
of the vector bundle pr1 : π∗E→ E over ex is given by wx 7→ vlftvx(wx). We claim that this
map is surjective. Indeed, let Xex ∈ VexE. From our discussion preceding the statement
of the result, there exists fx ∈ Ex corresponding to Xex under the natural F-isomorphism
VexE ' Ex. Moreover, by definition of vlft, vlftex( fx) = Xex , giving the desired surjectivity.
Since the fibres in the top row of the diagram have the same dimension, the map vlft is a
fibrewise F-isomorphism. Moreover, the diagram is readily checked to commute, and so
the result follows. �

The preceding constructions can be further refined. Let us also denote

E ×π E = {(e, e′) ∈ E × E | π(e) = π(e′)}.

As a set, E×πE is the same asπ∗E. However, we wish to endow it with the structure of a
fibre bundle over M by the projectionπ×ππ : E×πE→ M defined byπ×ππ(e, e′) = π(e).
This fibre bundle is, in fact, an F-vector bundle, and the vector bundle operations are
given by

(ex, fx) + (e′x, f ′x) = (ex + e′x, fx + f ′x), a(ex, fx) = (aex, a fx).

Given the vector bundle structure, let us denote E ⊕ E = E ×π E and π ⊕ π = π ×π π.
This vector bundle is known as the Whitney sum of E with itself.

Let us also denote by νM : VE→ M the composition of the projections νE : VE→ E
and π : E → M. Note that the map vlft : E ⊕ E → VE defined by vlft(ex, fx) = vlftex( fx)
is an F-diffeomorphism (by Proposition 4.7.1) and that the diagram

E ⊕ E vlft //

π⊕π
��

VE
νM
��

M M

commutes. Therefore, the map vlft induces the vector bundle structure of E ⊕ E on
VE, rendering the latter bundle a vector bundle over M in a natural way.

4.7.2 Linear vector fields

In this section we develop the notion of a linear vector field on a vector bundle.
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4.7.2 Definition (Linear vector field) Let r ∈ {∞, ω,hol} and let F = R if r ∈ {∞, ω} and let
F = C if r = hol. Let π : E → M be an F-vector bundle of class Cr. A vector field
X ∈ Γr(TE) of class Cr is linear if

(i) X is π-projectable, i.e., there exists a vector field πX ∈ Γr(TM) such that
Texπ(X(ex)) = πX(x) for every x ∈ M and ex ∈ Ex, and

(ii) X is a vector bundle mapping for which the diagram

E X //

π
��

TE

Tπ
��

M
πX
// TM

commutes. •

Let us now provide a flow interpretation for linear vector fields. To do so, we note
that if X is a vector field of class Cr, r ∈ {∞, ω,hol}, then the notion of integral curves
extends from the usual notion for r ∈ {∞, ω} to a similar notion for r = hol [Ilyashenko
and Yakovenko 2008]. Thus we denote by t a point in F and by I a connected open
subset of F containing 0. An integral curve through x ∈ M is then a map γ : I → M of
class Cr with the property that γ′(t) = X(γ(t)) for every t ∈ I, where γ′(t) denotes the
F-derivative of γ, i.e., γ′(t) = TC

t γ · 1. We then use the usual notation ΦX
t to denote the

flow of X in both the real and complex settings. Thus t 7→ ΦX
t (x) is the integral curve

of X through x ∈ M. By Dom(X) we denote the set of points in F ×M for which ΦX
t (x)

makes sense.
The following property of linear vector fields explains their importance.

4.7.3 Proposition (Flows of linear vector fields) Let r ∈ {∞, ω,hol} and let F = R if r ∈
{∞, ω} and let F = C if r = hol. Let π : E → M be an F-vector bundle of class Cr.
If X ∈ Γr(TE) is a linear vector field projecting to πX, then ΦX

t |Ex : Ex → EΦπX
t (x) is an

isomorphism of F-vector spaces for every (t, x) ∈ Dom(πX).
Moreover, let I ⊆ F be a connected open set, letU ⊆ M be an open set, and let Φ : I×E|U→ E

be a Cr-map with the following properties:
(i) the map e 7→ Φ(t, e) is a Cr-diffeomorphism onto its image for every t ∈ I;
(ii) Φ(0, e) = e for every e ∈ E|U;
(iii) Φ(s + t, e) = Φ(s,Φ(t, e)) for every s, t ∈ F such that s, t, s + t ∈ I and e ∈ E|U;
(iv) for each t ∈ I, the map e 7→ Φ(t, e), when restricted to the fibre Ex, is an F-isomorphism

onto the fibre Ey, where y = π(Φ(t, e)) for some e ∈ Ex.

Then the vector field X ∈ Γr(E|U) defined by X(e) = d
dt

∣∣∣
t=0

Φ(t, e) is a linear vector field on E|U.
Proof By [Abraham, Marsden, and Ratiu 1988, Proposition 4.2.4] (and its easily derived
complex analogue) we have π ◦ΦX

t (e) = ΦπX
t ◦π(e) for (t, e) ∈ Dom(X). Thus ΦX

t (Ex) ⊆
EΦπX

t (x). We claim that ΦX
t (Ex) = EΦπX

t (x). Indeed, let f ∈ EΦπX
t (x). Then ΦX

−t( f ) ∈ Ex and so
ΦX

t (ΦX
−t( f )) = f , giving ΦX

t (Ex) = EΦπX
t (x), as claimed. Moreover, since ΦX

t |Ex is a local F-
diffeomorphism, we have that it is a surjective local F-diffeomorphism, and so a covering
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map. Since the fibres of E are simply connected, ΦX
t |Ex is a F-diffeomorphism [Lee 2004,

Corollary 11.24]. It remains to show that ΦX
t |Ex is an F-isomorphism. To prove this, let

ex, fx ∈ Ex and let t 7→ ΦX
t (ex) and t 7→ ΦX

t ( fx) be the corresponding integral curves. By our
arguments just above, for each t for which the flow is defined, the expression ΦX

t (ex)+ΦX
t ( fx)

makes sense since the summands are in the same fibre. Moreover, since X is π-projectable
and since π(ex) = π( fx),

Texπ(X(ex)) = T fxπ(X( fx)) = πX(x).

Therefore, since X is a vector bundle mapping over πX,

X(ΦX
t (ex)) + X(ΦX

t ( fx)) = X(ΦX
t (ex) + ΦX

t ( fx)).

Thus we compute

d
dt

(ΦX
t (ex) + ΦX

t ( fx)) =
d
dt

ΦX
t (ex) +

d
dt

ΦX
t ( fx) = X(ΦX

t (ex)) + X(ΦX
t ( fx))

= X(ΦX
t (ex) + ΦX

t ( fx)),

and we also have ΦX
0 (ex) + ΦX

0 ( fx) = ex + fx. Thus t 7→ ΦX
t (ex) + ΦX

t ( fx) is the integral curve
of X through ex + fx. One similarly shows that t 7→ aΦX

t (ex) is the integral curve through
aex. In particular, this gives the desired linearity of ΦX

t |Ex.
For the second assertion of the proposition, let Φ : I × E|U → E have the stated prop-

erties. By (iv) it follows that there exists a map Φ0 : I × U→ M such that
1. the map x 7→ Φ0(t, x) is a F-diffeomorphism onto its image for every t ∈ I;
2. Φ0(0, x) = x for every x ∈ U;
3. Φ0(s + t, x) = Φ0(s,Φ0(t, x)) for every s, t ∈ F such that s, t, s + t ∈ I and x ∈ U.

We then define X0(x) = d
dt

∣∣∣
t=0Φ0(0, x), and we note that ΦX0

t (x) = Φ0(t, x). Since π ◦ΦX
t (e) =

ΦX0
t ◦π(e), it follows from [Abraham, Marsden, and Ratiu 1988, Proposition 4.2.4] that X0

is π-related to X. It remains to show that X is a vector bundle mapping over X0. Let
ex, fx ∈ Ex and compute

X(ex + fx) =
d
dt

∣∣∣∣
t=0

ΦX
t (ex + fx) =

d
dt

∣∣∣∣
t=0

(ΦX
t (ex) + ΦX

t ( fx))

= X(ΦX
0 (ex)) + X(ΦX

0 ( fx)) = X(ex) + X( fx),

using the hypothesised linearity of ΦX
t |Ex. �

The way to read the preceding result is as follows: A vector field on a vector
bundle is a linear vector field if and only if its flow is comprised of local F-vector
bundle isomorphisms.

Let us give the coordinate form for a linear vector bundle.

4.7.4 Proposition (Coordinate form for linear vector fields) Let r ∈ {∞, ω,hol} and let
F = R if r ∈ {∞, ω} and let F = C if r = hol. Let π : E → M be an F-vector bundle of class
Cr. Let (V, ψ) be a F-vector bundle chart for E with (U, φ) the corresponding F-chart for M.
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Denote the coordinates in the chart by (xj,va) where j ∈ {1, . . . ,n} and a ∈ {1, . . . ,m}. If X is
a linear vector field of class Cr, then in coordinates we have

X =

n∑
j=1

Xj
0
∂

∂xj +

m∑
a,b=1

Ab
ava ∂

∂vb
,

for Cr-functions Xj
0, j ∈ {1, . . . ,n}, and Ab

a , a, b ∈ {1, . . . ,m}, on U.
Proof A general vector field X on E is given in coordinates by

X =

n∑
j=1

X j
0
∂

∂x j +

m∑
a=1

Xa
1
∂
∂va ,

for functions X j
0, j ∈ {1, . . . ,n}, and Xa

1, a ∈ {1, . . . ,m}, on V. Note that

Tπ(X) =

n∑
j=1

X j
0
∂

∂x j .

Since X is π-projectable, the functions X1
0, . . . ,X

n
0 do not depend on the fibre coordinates

v1, . . . , vm. Thus these are the components of the projected vector field πX. Since X is a
vector bundle mapping over πX, the functions X1

1, . . . ,X
m
1 must be linear functions of the

fibre coordinates v1, . . . , vm, and from this the result follows. �

4.7.3 Connections in a few different ways

The notion of a connection is often useful in making global constructions on man-
ifolds. In this section we provide a few characterisations of connections in vector
bundles.

The following is thus our initial definition.

4.7.5 Definition (Connection in a vector bundle) Let r ∈ {∞, ω,hol} and let F = R if
r ∈ {∞, ω} and let F = C if r = hol. Let π : E→ M be an F-vector bundle of class Cr. A
Cr-connection in E is an assignment to a vector field X ∈ Γr(TM) and a section ξ ∈ Γr(E)
a section ∇Xξ ∈ Γr(E), and the assignment has the following properties:

(i) the map (X, ξ) 7→ ∇Xξ is F-bilinear;
(ii) ∇ f Xξ = f∇Xξ for every X ∈ Γr(TM), ξ ∈ Γr(E), and f ∈ Cr(M);
(iii) ∇X( fξ) = f∇Xξ + (X f )ξ for every X ∈ Γr(TM), ξ ∈ Γr(E), and f ∈ Cr(M).

We call ∇Xξ the covariant derivative of ξ with respect to X. •

Let (V, ψ) be an F-vector bundle chart for π : E → M with (U, φ) the associated
F-chart for M. Let (e1, . . . , em) be the corresponding basis of sections for E|U. Then we
define Cr-functions Γb

ja : U → R, a, b ∈ {1, . . . ,m}, j ∈ {1, . . . ,n}, called the connection
coefficients, by

∇ ∂

∂xj
ea =

m∑
b=1

Γb
jaeb.
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Using the defining properties of connections, one directly verifies that, if X =
∑n

j=1 X j ∂
∂x j

and ξ =
∑m

a=1 ξ
aea, then

∇Xξ =

m∑
j=1

m∑
b=1

(∂ξb

∂x j +

m∑
a=1

Γb
jaξ

a
)
X jeb.

Thus the connection coefficients determine the connection in coordinates.
If∇ is a Cr-connection on E and if ξ ∈ Γr(E), then we define a section∇ξ ∈ Γr(T∗M⊗E)

by ∇ξ(X) = ∇Xξ. This definition makes sense by virtue of the second of the defining
properties of a connection, which ensures that the map X 7→ ∇Xξ is tensorial.

If ξ : M → E is a section on E, we denote by ξ∗VE the pull-back of the vertical
bundle to M by ξ. Note that if η : M→ ξ∗VE is a section of this pull-back bundle, then
η(x) ∈ Vξ(x)E ' Ex. Thus sections of ξ∗VE are naturally thought of as simply sections.
We shall make this identification implicitly below.

Next we make some constructions involving jet bundles. We will formally dis-
cuss jet bundles for vector bundles in Section 5.5. Let us provide, associated with a
connection ∇ on π : E→ M, a section of the bundle π1

0 : J1E→ E.

4.7.6 Lemma (Connections and sections of jet bundles) Let r ∈ {∞, ω,hol} and let F = R if
r ∈ {∞, ω} and let F = C if r = hol. Let ∇ be a Cr-connection on a F-vector bundle π : E→ M
of class Cr. Then there exists a unique Cr-section S∇ : E→ J1E satisfying

∇ξ(x) = j1ξ(x) − S∇(ξ(x)),

for every section ξ ∈ Γr(E), noting that j1ξ(x)−S∇(ξ(x)) ∈ T∗xM⊗Vξ(x)E and that Vξ(x)E ' Ex.
Proof The existence of the section S∇ is simply a matter of defining S∇(ex) = j1ξ(x)−∇ξ(x),
where ξ is any section satisfying ξ(x) = ex. We should verify that this definition is well-
defined. Let f ∈ Cr(M) be such that d f (x) = 0 (here, d stands for “d” if F = R and “dC” if
F = C. Then, for any section ξ,

∇ fξ(x) = f (x)∇ξ(x) + d f (x) ⊗ ξ(x) = d f (x) ⊗ ξ(x). (4.36)

Similarly,
j1( fξ)(x) = f (x) j1ξ(x) + d f (x) ⊗ ξ(x) = d f (x) ⊗ ξ(x). (4.37)

Thus, if ζ is a section vanishing at x, since Γr(E) is a locally free module (cf. the detailed
discussion in ), in a neighbourhood of x we can writewhat?

ζ = f1ξ1 + · · · + fnξn

for linearly independent (over Cr(M)) sections ξ1, . . . , ξn and for functions f1, . . . , fn which
vanish at x. By (4.36) and (4.37) we then have j1ζ(x) = ∇ζ(x). Now let ξ′ be a section such
that ξ′(x) = ξ(x) = ex and compute

( j1ξ(x) − ∇ξ(x)) − ( j1ξ′(x) − ∇ξ′(x)) = j1(ξ − ξ′)(x) − ∇(ξ − ξ′)(x).

Note that the section ζ = ξ − ξ′ vanishes at x, and so our computations above give
j1ζ(x) = ∇ζ(x), giving well-definedness of S∇.

It is clear that S∇ is uniquely determined from ∇ by the condition in the statement of
the result. �
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We now use the map S∇ as the basis for our further constructions. Let e1 ∈ J1E, let
e = π1

0(e1), and let x = π(e). Let ξ : M → E be a section satisfying j1ξ(x) = v1. Define
Le1 ∈ HomF(TxM; TeE) by Le1(vx) = Txξ(vx).

4.7.7 Lemma (Properties of Le1) Let e1 ∈ J1E, let e = π1
0(e1), and let x = π(e). The following

statements hold:
(i) Le1 is a well-defined linear injection;
(ii) Teπ ◦Le1 = idTxM;
(iii) image(Le1) is a complement to VeE in TeE.

Moreover, if e ∈ E and x = π(e), and if L: TxM → TeE is a linear map satisfying Teπ ◦L =
idTxM, then there exists a unique e1 ∈ (π1

0)−1(e) such that L = Le1 .
Proof (i) Suppose that ξ1, ξ2 : M → E satisfy j1ξ1(x) = j1ξ2(x) = e1. This means that, for
any curve γ : I → M of class Cr satisfying 0 ∈ int(I) (remember that I is an open subset
of F) and γ(0) = x it holds that d

ds

∣∣∣
s=0(ξ1 ◦γ)(s) = d

ds

∣∣∣
s=0(ξ2 ◦γ)(s). This immediately gives

Txξ1(vx) = Txξ2(vx) for every vx ∈ TxM. Thus the definition of Le1 is independent of the
choice of local section ξ. Linearity of Le1 is now obvious. To see that Le1 is injective note
that π ◦ξ = idM and so Tξ(x)π ◦Txξ = idTxM. Thus Le1 possesses a left-inverse and so is
injective.

(ii) This was proved as part of the proof of the previous assertion.
(iii) Suppose that ue ∈ image(Le1) ∩ VeE. Let ue ∈ image(Le1) write ue = Le1(vx) for

vx ∈ TxM. Then let γ : I → M be a curve of class Cr satisfying 0 ∈ int(I) and γ′(0) = vx. If
ξ : M→ E is a section satisfying j1ξ(x) = e1, then this means that ue = d

ds

∣∣∣
s=0(ξ ◦γ)(s). Since

ue is vertical we have Teπ(ue) = 0. This in turn means that

0 =
d
ds

∣∣∣∣
s=0

(π ◦ξ ◦γ)(s) =
d
ds

∣∣∣∣
s=0
γ(s) = vx.

This means, therefore, that ue = 0. This gives image(Le1)∩VeE = {0}. This part of the result
then follows from a dimension count.

For the last assertion, let (V, ψ) be an F-vector bundle chart with (U, φ) be the corre-
sponding F-chart for M. Denote the coordinates for E by (x j, va), j ∈ {1, . . . ,n}, a ∈ {1, . . . ,m}.
Suppose that φ(x) = 0 and that ψ(e) = (0,v). An arbitrary linear map between TxX and TeE
will have the coordinate representation

L =

n∑
j,k=1

A j
kdxk

⊗
∂

∂x j +

n∑
j=1

m∑
a=1

Ba
jdx j
⊗

∂
∂va .

The condition that Teπ ◦L = idTxM is readily seen to imply that A j
k = δ

j
k, j, k ∈ {1, . . . ,n}.

Now, if we define a local section ξ on U with local representative

ξ(x) = (x,Bx)

where B is the m × n matrix with components Ba
j , j ∈ {1, . . . ,n}, a ∈ {1, . . . ,m}, then it is

immediate that if we take e1 = j1ξ(x) we have L = Le1 . This gives the existence assertion.
For uniqueness suppose that Le1 = Le2 and let ξ1 and ξ2 be local sections such that Le1 = Txξ1
and Le2 = Txξ2. This means that j1ξ1(x) = j1ξ2(x) and so e1 = e2, as desired. �
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Now, associated with S∇, we define an endomorphism PH
∇

of TE by

PH
∇

(ue) = LS∇(e) ◦Teπ(ue), ue ∈ TeE.

The following assertions are more or less obvious.

4.7.8 Lemma (Properties of the horizontal projection) Let r ∈ {∞, ω,hol} and let F = R if
r ∈ {∞, ω} and let F = C if r = hol. Let ∇ be a Cr-connection on the F-vector bundle π : E→
M of class Cr and let S∇ : E → J1E be the corresponding Cr-section. The endomorphism
PH
∇
∈ Γr(T∗E ⊗ TE) has the following properties:

(i) ker(PH
∇

) = VE;
(ii) TE = ker(PH

∇
) ⊕ image(PH

∇
).

Proof (i) It is clear that VE ⊆ ker(PH
∇

). For the opposite inclusion, suppose that PH
∇

(ue) = 0.
Since LS∇(e) is injective this implies that Teπ(ue) = 0 whence ue is vertical.

(ii) Since Teπ is surjective it follows that image(PH
∇

(e)) = image(LS∇(e)) which is comple-
mentary to VeE by Lemma 4.7.7. �

The endomorphism PH
∇

is called the horizontal projection associated with the
connection S∇ and the endomorphism PV

∇
= idTE −PH

∇
is called the vertical projection.

It is easy to see that PV
∇

is a projection onto VE and PH
∇

is a projection onto a subbundle,
denoted by HE, that is complimentary to VE. For ex ∈ Ex, note that HexE is naturally
isomorphic to TxM and VexE is isomorphic to Ex. For HexE, we note that the restriction
of Texπ to HexE is the desired isomorphism with TxM. For VexE, we note that this
subspace is the tangent space to the fibre Ex, and so is naturally isomorphic to Ex

without having to say more.
We will have need of the coordinate expressions for the horizontal and vertical

projections. Let (V, ψ) be an F-vector bundle chart for E with (U, φ) the corresponding
F-chart for M, and denote the corresponding coordinates for E by (x j, va), j ∈ {1, . . . ,n},
a ∈ {1, . . . ,m}. Parsing the above constructions, one can show that

PH
∇

=

n∑
j,k=1

δ j
kdxk
⊗
∂

∂x j +

n∑
j=1

m∑
a,b=1

Γa
jbv

bdx j
⊗

∂
∂va ,

PV
∇

=

m∑
a,b=1

δa
bdvb

⊗
∂
∂va −

n∑
j=1

m∑
a,b=1

Γa
jbv

bdx j
⊗

∂
∂va .

4.7.4 Tensor products of connections

Connections on a vector bundle lead to extensions to many of the standard algebraic
constructions. Some of these are straightforward. For example, if ∇1 and ∇2 are
connections on F-vector bundles π1 : E2 → |manM and π2 : E2 → M, then there is a
naturally induced connection ∇1

⊕ ∇
2 on E1 ⊕ E2 defined by

(∇1
⊕ ∇

2)X(ξ1 ⊕ ξ2) = (∇1
Xξ1) ⊕ (∇2

Xξ2).
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In this section we focus on connections in tensor products of vector bundles which
themselves have connections.

The main result is the following.

4.7.9 Proposition (Feasibility of the tensor product of two connections) Let r ∈
{∞, ω,hol} and let F = R if r ∈ {∞, ω} and let F = C if r = hol. Let π1 : E1 → M and
π2 : E2 → M be F vector bundles of class Cr and let ∇1 and ∇2 be Cr-connections in E1 and
E2, respectively. Then there exists a unique Cr-connection ∇1

⊗ ∇
2 on E1 ⊗ E2 satisfying

(∇1
⊗ ∇

2)X(ξ1 ⊗ ξ2) = (∇1
Xξ1) ⊗ ξ2 + ξ1 ⊗ (∇Xξ2) (4.38)

for ξa ∈ Γr(Ea), a ∈ {1, 2}, and X ∈ Γr(TM).
Proof The existence assertion comes from the condition (4.38), since any section of E1⊗E2
is a �

4.7.5 Affine connections and the Levi-Civita connection

The following result further characterises pseudo-Riemannian affine connections.

4.7.10 Proposition Let (M,g) be a pseudo-Riemannian manifold and let ∇ be an affine connection
on M. The following are equivalent:

(i) ∇ is a pseudo-Riemannian affine connection;
(ii) τc(t1, t2) is an isometry for every curve c : [a, b]→M of class C2 and a < t1 < t2 < b.

Proof Suppose that ∇ is a pseudo-Riemannian affine connection. Let c : [a, b] → M be a
curve of class C2 with a < t1 < t2 < b. Let u, v ∈ Tc(t1)M and let X and Y be the vector fields
along c obtained by parallel translating u and v along c, respectively. We then have

d
dt

g(X(t),Y(t)) = (∇c′(t)g)(X(t),Y(t)) + g(∇c′(t)X(t),Y(t)) + g(X(t),∇c′(t)Y(t)) = 0

since X and Y are parallel along c and since ∇ is pseudo-Riemannian. This shows in
particular that gc(t1)(u, v) = g(τc(t1, t2)·u, τc(t1, t2)·v). In other words, τc(t1, t2) is an isometry.

Now suppose that τc(t1, t2) is an isometry for every curve c : [a, b] → M of class C2

curve and a < t1 < t2 < b. Let x ∈M and let u, v,w ∈ TxM. Let c : (−ε, ε)→M be a curve of
class C2 such that c(0) = x and c′(0) = w. Let X and Y be the vector fields along c obtained
by parallel translation of u and v, respectively. We then have

0 =
d
dt

g(X(t),Y(t)) = (∇c′(t)g)(X(t),Y(t))

where we have used the fact that parallel translation consists of isometries and that X and
Y are parallel along c. Evaluating this expression at t = 0 gives (∇wg)(u, v) = 0. As x and
u, v,w ∈ TxM are arbitrary, the result follows. �

The following important theorem asserts that pseudo-Riemannian metrics exist.
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4.7.11 Theorem (The Fundamental Theorem of Riemannian Geometry) If (M,g) is a

pseudo-Riemannian manifold then there exists a unique affine connection
G

∇ on M such that

(i)
G

∇ is a pseudo-Riemannian affine connection, and

(ii)
G

∇ is torsion-free.

The affine connection
G

∇ is called the Levi-Civita affine connection associated with (M,g).

Proof First we establish existence. We define
G

∇ by asking that for vector fields X, Y, and
Z on M we have

g(
G

∇XY,Z) =
1
2

(
L X(g(Y,Z)) + L Y(g(Z,X)) −L Z(g(X,Y))+

g([X,Y],Z) − g([X,Z],Y) − g([Y,Z],X)
)
. (4.39)

To ensure that this definition make sense one must verify that it is linear with respect to
multiplication by functions in the second argument. Thus, for f ∈ C∞(M) we must verify
that

g(
G

∇XY, f Z) = f g(
G

∇XY,Z)

using the relation (4.39). This is straightforwardly done using the derivation properties
of the Lie bracket. We must also ensure that (4.39) does define an affine connection. This

consists of checking that
G

∇ satisfies the defining properties of an affine connection. The
property is obvious. To check let f ∈ C∞(M) and then verify thatwhat

what

g(
G

∇ f XY,Z) = g( f
G

∇XY,Z)

which one does easily by using the derivation properties of the Lie derivative. In a similar
manner one may show that

g(
G

∇X f Y,Z) = g( f
G

∇XY + (L X f )Y,Z).

One also needs to verify that
G

∇ so defined is torsion-free. It is straightforward to see that
indeed

g(
G

∇XY −
G

∇YX,Z) = g([X,Y],Z)

which means that
G

∇ is torsion-free. Finally, one needs to show that
G

∇ is a pseudo-
Riemannian affine connection. To verify this one can use (4.39) to show that

L X(g(Y,Z)) = g(
G

∇XY,Z) + g(Y,
G

∇XZ).

From the derivation properties of
G

∇ one then sees that this implies that
G

∇X(Y,Z) = 0 for all

vector fields X, Y, and Z. That is,
G

∇ is pseudo-Riemannian. This establishes the existence

of
G

∇.
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Now we show that conditions (i) and (ii) uniquely define
G

∇. So suppose that ∇ is an
affine connection satisfying these conditions. Then, for vector fields X, Y, and Z one has

L X(g(Y,Z)) = g(∇XY,Z) + g(Y,∇XZ)
L Y(g(Z,X)) = g(∇YZ,X) + g(Z,∇YX)
L Z(g(X,Y)) = g(∇ZX,Y) + g(X,∇ZY).

Now add the first two equations add subtract from this the third to get

L X(g(Y,Z)) + L Y(g(Z,X)) −L Z(g(X,Y)) =

g(∇XY,Z) + g(∇YX,Z) + g([X,Z],Y) + g([Y,Z],X).

In arriving at this formula we have used the relation∇XY−∇YX = [X,Y] as∇ is torsion-free.
Now we use the same relation to note that ∇YX = ∇XY − [X,Y] to obtain

2g(∇XY,Z) = L X(g(Y,Z)) + L Y(g(Z,X)) −L Z(g(X,Y))+
g([X,Y],Z) − g([X,Z],Y) − g([Y,Z],X).

Thus ∇ satisfies (4.39). �

The formula (4.39) is called the Koszul formula.
From the proof we may obtain an expression for the Christoffel symbols of the

Levi-Civita affine connection:

Γi
jk =

1
2

gil
(∂gl j

∂xk
+
∂glk

∂x j −
∂g jk

∂xl

)
for the Christoffel symbols.

4.8 Correspondence between holomorphic manifolds and
complex structures

In Proposition 4.5.8 we saw that any holomorphic manifold possesses a natural
almost complex structure. In this section we shall explore the converse relationship,
holomorphic structures on manifolds with almost complex structures.

4.8.1 The Nijenhuis tensor

In this section we recall a construction of Nijenhuis [1951] on the structure of
(1, 1)-tensor fields.

4.8.1 Definition (Nijenhuis tensor) Let M be a smooth manifold. The Nijenhuis tensor of a
(1, 1)-tensor field A on M is the (1, 2) tensor field given by

NA(X,Y) = [AX,AY] + A2[X,Y] − A[AX,Y] − A[X,AY]. •

Of course, we should verify that this is indeed a tensor.
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4.8.2 Lemma (The Nijenhuis tensor is well-defined) The mapping (X,Y) 7→ NA(X,Y) is
C∞(M)-bilinear.

Proof We let f , g ∈ C∞(M) and X,Y ∈ Γ∞(TM) and compute

NA( f X, gY) = [ f AX, gAY] + A2([ f X, gY]) − A([ f AX, gY]) − A([ f X, gAY])
= f g[AX,AY] + f (L AXg)AY − g(L AY f )AX+

f gA2[X,Y] + f (L Xg)A2(Y) − g(L Y f )A2(X)−

f gA([AX,Y]) − f (L AXg)AY + g(L Y f )A2(X)−

f gA([X,AY]) − f (L Xg)A2(Y) + g(L AY f )AX
= f gNA(X,Y),

as desired. �

Let us give the local representation of the Nijenhuis tensor. Let (U, φ) be a chart
for M with coordinates (x1, . . . , xn). A straightforward computation gives the local
representative of NA as

NA|U =

n∑
i, j,k,l=1

(
Al

i

∂Ak
j

∂xl
− Al

j

∂Ak
i

∂xl
+ Ak

l

∂Al
i

∂x j − Ak
l

∂Al
j

∂xi

) ∂
∂xk
⊗ dxi

⊗ dx j. (4.40)

The definition of the Nijenhuis tensor does not make immediately apparent its
usefulness, so let us describe a typical generic problem that comes up in the study of
(1, 1)-tensor fields, and how it relates to the Nijenhuis tensor.

The study of deformations of geometric structures was instigated by Cartan [1955].
For our purposes, let us say that a (1, 1)-tensor field A on a smooth manifold M is
0-deformable if, for each x ∈ M, there is a chart (U, φ) around x with φ(x) = 0 and such
that, for each x ∈ φ(U), there exists P(x) ∈ GL(n;R) such that

A(x) = P(x) ◦A(0) ◦P−1(x).

We say that A is integrable if, for every x ∈ M there is a chart (U, φ) around x for
which the matrix function of the components of A, x 7→ A(x), is constant. Clearly, if
A is integrable then it is 0-deformable. The converse is not generally true. For certain
classes of 0-deformable (1, 1)-tensor fields, one can show that integrability is implied
by the vanishing of the Nijenhuis tensor NA. This is often related to the Jordan form of
A(0) (see [Kobayashi 1962] and [Lehmann-Lejeune 1966]). However, it is not true that
a 0-deformable (1, 1)-tensor field is always integrable if its Nijenhuis tensor vanishes
(see [Kobayashi 1962]).

4.8.2 Equivalent characterisations of complex structures

In this section we consider various conditions equivalent to an almost complex
structure being a complex structure. The equivalence of many of the conditions we
give is proved in a more or less straightforward manner, but one implication is proved
using the difficult results of Section 6.2.
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To state our main result in this section, we first note that if J is an almost complex
structure on a smooth manifold M, the tangent bundle constructions of TCM, T1,0M,
and T0,1M can be made fibrewise from the constructions of Section 4.1.1. In like man-
ner, the differential form constructions of

∧k,l(T∗CM) can be made fibrewise following
Section 4.1.4. We still have the decomposition∧m(T∗CM) =

⊕
k,l

k+l=m

∧k,l(T∗CM),

as this is purely an algebraic construction. That is, the algebraic structures associated
with vector spaces with linear complex structures all can be adapted to manifolds with
an almost complex structure. What fails are the differential constructions involving
the Lie bracket and the exterior derivative. Specifically, Lemmata 4.5.21 and 4.6.5 do
not generally hold for manifolds with an almost complex structure. However, we can
still define the operators ∂ and ∂̄, thanks to the following lemma.

4.8.3 Lemma (The complex exterior derivative on manifolds with an almost complex
structure) If M is a smooth manifold with an almost complex structure J, then

dC(Γ∞(
∧k,l(T∗CM)))

⊆ Γ∞(
∧k−1,l+2(T∗CM)) ⊕ Γ∞(

∧k,l+1(T∗CM)) ⊕ Γ∞(
∧k+1,l(T∗CM)) ⊕ Γ∞(

∧k+2,l−1(T∗CM)).

Proof Since
∧1(T∗CM) =

∧1,0(T∗CM) ⊕
∧0,1(T∗CM) the result holds when k = l = 0. Since∧2(T∗CM) =

∧2,0(T∗CM) ⊕
∧1,0(T∗CM) ⊕

∧0,1(T∗CM) ⊕
∧0,2(T∗CM),

the result also holds for (k, l) = (1, 0) and (k, l) = (0, 1). Since Γ∞(
∧k,l(T∗CM)) is locally

generated by Γ∞(
∧0,0(T∗CM)), Γ∞(

∧1,0(T∗CM)), and Γ∞(
∧0,1(T∗CM)), and since the result is

local, the result follows from the cases proved and Proposition 4.6.4(v). �

Thus we can define ∂ and ∂̄ applied to Γ∞(
∧k,l(T∗CM)) as the (k + 1, l)- and (k, l + 1)-

components of dC.
With this development, we have the following summary of equivalent characteri-

sations of complex structures.

4.8.4 Theorem (Equivalent characterisations of complex structures) If M is a smooth
manifold with an almost complex structure J, the following statements are equivalent:

(i) [Z1,Z2]C ∈ Γ∞(T1,0M) for every Z1,Z2 ∈ Γ∞(T1,0M);
(ii) [Z1,Z2]C ∈ Γ∞(T0,1M) for every Z1,Z2 ∈ Γ∞(T0,1M);

(iii) dC(Γ∞(
∧1,0(T∗CM))) ⊆ Γ∞(

∧2,0(T∗CM)) ⊕ Γ∞(
∧1,1(T∗CM));

(iv) dC(Γ∞(
∧0,1(T∗CM))) ⊆ Γ∞(

∧1,1(T∗CM)) ⊕ Γ∞(
∧0,2(T∗CM));

(v) dC(Γ∞(
∧k,l(T∗CM))) ⊆ Γ∞(

∧k,l+1(T∗CM)) ⊕ Γ∞(
∧k+1,l(T∗CM)) for k, l ∈ Z>0;

(vi) dC = ∂ + ∂̄;
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(vii) NJ = 0;
(viii) J is a complex structure.

Proof (i)⇐⇒ (ii) By Proposition 4.1.5, a section of T1,0TCM has the form

Z = 1 ⊗ X − i ⊗ J(X)

and a section of T0,1TCM has the form

Z = 1 ⊗ X + i ⊗ J(X)

for a smooth (real) vector field X on M. As in the proof of Lemma 4.5.21, the condition
that the Lie bracket [Z1,Z2]C of two such T1,0M-vector fields be a T1,0M-valued vector field
is that

JC([Z1,Z2]C) − i[Z1,Z2]C = 0.

The corresponding condition that the Lie bracket [Z1,Z2]C of two T0,1M-vector fields be a
T0,1M-valued vector field is that

JC([Z1,Z2]C) + i[Z1,Z2]C = 0.

As each of these conditions is equivalent to the conjugate of the other, this part of the proof
follows.

(i)⇐⇒ (iv) For α ∈ Γ∞(
∧0,1(T∗CM)) and Z1,Z2 ∈ Γ∞(T1,0M) we have, using (4.25),

dC(Z1,Z2) = L Z1(α(Z2)) −L Z2(α(Z1)) − α([Z1,Z2]) = −α([Z1,Z2]).

Note that (i) is equivalent to the right-hand side vanishing for every α, Z1, and Z2, while (iv)
is equivalent to the left-hand side vanishing for every α, Z1, and Z2.

(iii) ⇐⇒ (iv) Using Proposition 4.1.15(iii) and Proposition 4.6.4(iv), these conditions
are easily seen to be conjugate to one another.

(iii,iv) =⇒ (v) As in our proof of Lemma 4.8.3, this follows since Γ∞(
∧k,l(T∗CM)) is

locally generated by Γ∞(
∧0,0(T∗CM)), Γ∞(

∧1,0(T∗CM)), and Γ∞(
∧0,1(T∗CM)).

(v) =⇒ (iii,iv) This is clear.
(v)⇐⇒ (vi) This follows by definition of ∂ and ∂̄ and Lemma 4.8.3.
(i)⇐⇒ (vii) Consider sections

Za = 1 ⊗ Xa − i ⊗ J(Xa), a ∈ {1, 2},

of T1,0M, where X1 and X2 are smooth vector fields on M. The computation from the proof
of Lemma 4.5.21 of the formula

JC([Z1,Z2]C) − i[Z1,Z2]C = −1 ⊗ J ◦NJ(X1,X2)) + i ⊗NJ(X1,X2)

is valid for almost complex structures. Thus NJ = 0 if and only if

[Z1,Z2]C ∈ Γ∞((ker(JC − i idTCM))) = Γ∞(T1,0M).

(viii) =⇒ (vii) This follows from (4.40) since the components of J in a C-chart are
constant.



28/02/20144.8 Correspondence between holomorphic manifolds and complex structures121

(vi) =⇒ (viii) In the above we have shown that the first seven conditions in the theorem
are equivalent and that they are implied by the eighth. The remaining implication is
difficult, and the proof we give relies on the constructions and results of Section 6.2. We
will assume without mention these constructions and results, acknowledging that this
presupposition will only be realised after a great deal of effort from the reader.

Let us first do some preliminary constructions to justify our use of the results of
Section 6.2 for almost complex structures. As in Section 6.2.1 we let h be a Hermitian
metric on M that is compatible with the almost complex structure J. Also as in Section 6.2.1
we use an orthonormal local basis (ω1, . . . , ωn) for

∧1,0(T∗CM), so that we define ∂ f
∂ω j and

∂ f
∂ω̄ j , j ∈ {1, . . . ,n}, by

dC f =

n∑
j=1

( ∂ f
∂ω jω

j +
∂ f
∂ω̄ j ω̄

j
)
.

Next note that the condition dC = ∂ + ∂̄ implies that

∂ ◦∂ = 0, ∂̄ ◦ ∂̄ = 0, ∂ ◦ ∂̄ + ∂̄ ◦∂ = 0.

If one now goes through the constructions and arguments of Section 6.2, one sees that
these properties of ∂ and ∂̄ are the only ones used. Thus all existence and regularity results
for the partial differential equation ∂̄u = f from that section can be applied to the case
when ∂ and ∂̄ are defined for an almost complex structure for which condition (vi) holds.

Next, the result is local so we assume that M is a neighbourhood of 0 ∈ Cn. We denote
Euclidean coordinates for M by (x, y) ∈ R2n and denote z = x + iy ∈ Cn. By a linear change
of coordinates, we can without loss of generality suppose that( ∂

∂x1
(0), . . . ,

∂
∂xn (0),

∂

∂y1
(0), . . . ,

∂
∂yn (0)

)
is a J(0)-adapted basis for T0M. Letψ ∈ C∞(M) be given byψ(x, y) = ‖x‖2 +‖y‖2. We readily
verify that 1

2i∂ ◦ ∂̄ψ(0) is positive-definite since J(0) is the canonical complex structure on
Cn. We can assume, possibly after shrinking M, that φ is “strictly plurisubharmonic” on
M, i.e., strictly plurisubharmonic after the natural adaptation of those words to almost
complex manifolds. Let us take r ∈ R>0 such that B2n(r, 0) ⊆ M and, moreover, redefine M
to be this ball. Then

(x, y) 7→
1

r2 − ψ(x, y)

is a plurisubharmonic exhaustion function on M, cf. the proof of Proposition 6.1.21(iv). As
in the proof of Theorem 6.2.13 we can thus choose ϕ to be a convex increasing function
of the right-hand side of the preceding equation such that, if f ∈ L2

loc(
∧0,1(T∗CM)) satisfies

∂̄ f = 0, then there exists u ∈ L2
loc(M;C) satisfying ∂̄u = f and ‖u‖ϕ ≤ ‖ f ‖ϕ.

Now, keeping in mind that M has been assumed to be a ball of radius r about the
origin in Cn, let ζ1, . . . , ζn be linear C-valued functions on M for which dCζ j(0) = ω j(0),
j ∈ {1, . . . ,n}. For ε ∈ (0, 1), by δε : Cn

→ Cn denote the mapping δε(x, y) = (εx, εy). We
then have the almost complex structure Jε = δ∗εJ on M, and δ∗εω

1, . . . , δ∗εω
n generate the

subbundle of forms of type (1, 0) for this almost complex structure. Let ∂ε and ∂̄ε denote
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the differential operators associated with the almost complex structures Jε. Since

1
2i
∂ε ◦ ∂̄εψ(0) =

1
2iε2∂ε ◦ ∂̄εψ(0),

we can sift through the arguments to see that the function ϕ above has the property that,
for every ε ∈ (0, 1), if f ∈ L2

loc(
∧0,1(T∗CM)) satisfies ∂̄ε f = 0, then there exists u ∈ L2

loc(M;C)
satisfying ∂̄εu = f and ‖u‖ϕ ≤ ‖ f ‖ϕ.

Let us prove a simple lemma that we shall call upon a couple of times in the remainder
of the proof.

1 Lemma The form dCζj
− ε−1δ∗εω

j and all of its derivatives converge uniformly to zero as ε→ 0.
Proof Let j ∈ {1, . . . ,n} and k ∈ {1, . . . , 2n}, and note that

δ∗εω
j(x, y) · ek = ω j(T(x,y)δε · ek) = εω j(εx, εy) · ek.

From this and the fact that dCζ j(0) = ω j(0) we conclude that dCζ j
− ε−1δ∗εω

j converges
uniformly to zero as claimed. For the corresponding statement for the derivatives of this
form, note that all derivatives of ζ j are zero, and, for I ∈ Z2n

≥0,

DI(ε−1δ∗εω
j)(x, y) = ε|I|DIω j(εx, εy).

From this the lemma follows. H

Now we give a few technical lemmata that will be important for us.

2 Lemma Let U ⊆ Cn be open, let f ∈ L2(U;C) have compact support, and suppose that ∂f
∂ω̄j ∈

L2(U;C), j ∈ {1, . . . ,n}. Then f ∈ H1(U;C) and, moreover, if K ⊆ U is compact, then there exists
C ∈ R>0 such that ∑

|I|≤1

‖DIf‖2 ≤ C
(
‖f‖2 +

n∑
j=1

∥∥∥∥ ∂f
∂ω̄j

∥∥∥∥2

2

)
for every f ∈ L2(U;C) for which supp(f) ⊆ K.
Proof Let δ j be the formal adjoint, with respect to the integral using the Lebesgue measure
on Cn, of ∂

∂ω̄ j . We first suppose that f ∈ D(U;C). Computations like those used for
Sublemma 3 from the proof of Lemma 6.2.11 give∥∥∥∥ ∂ f

∂ω j

∥∥∥∥2

2
=

∥∥∥∥ ∂ f
∂ω̄ j

∥∥∥∥2

2
+

∫
U

((
δ j ◦

∂

∂ω̄ j − δ̄ j ◦
∂

∂ω j

)
f (x, y)

)
f̄ (x, y) dλ(x, y). (4.41)

One can verify, cf. Lemmata 6.2.6 and 6.2.7, that the operator

δ j ◦
∂

∂ω̄ j − δ̄ j ◦
∂

∂ω j

is of order (not necessarily homogeneous order) one. Note that any linear partial differen-
tial operator of homogeneous order one is a linear combination of the operators ∂

∂ω j and
∂
∂ω̄ j , j ∈ {1, . . . ,n}. In particular, if |I| = 1 then

DI f =

n∑
j=1

c j
I

∂ f
∂ω j +

n∑
j=1

d j
I
∂

∂ω̄ j
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for c j
I , d

j
I ∈ C∞(U;C), j ∈ {1, . . . ,n}. Thus one obtains an estimate

‖DI f ‖22 ≤ CI,1

n∑
j=1

∥∥∥∥ ∂ f
∂ω j

∥∥∥∥2

2
+ CI,2

n∑
j=1

∥∥∥∥ ∂ f
∂ω̄ j

∥∥∥∥2

2
.

for suitable CI,1,CI,2 ∈ R>0. We also write

δ j ◦
∂

∂ω̄ j − δ̄ j ◦
∂

∂ω j f =
∑
|I|≤1

αIDI f

for αI ∈ C∞(U;C). If we apply (4.41) and the Cauchy–Schwarz inequality we then have

∑
|I|=1

‖DI f ‖22 ≤ C′
( n∑

j=1

∥∥∥∥ ∂ f
∂ω̄ j

∥∥∥∥2

2
+ ‖ f ‖2

∑
|I|≤1

‖DI f ‖2
)

for some suitable C′ ∈ R>0. The inequality ( b
√

2
− a)2

≥ 0 gives b2

2 + a2
≥
√

2ab ≥ ab, and this
gives

C′‖ f ‖2‖DI f ‖2 ≤ C′2‖ f ‖22 +
1
2
‖DI f ‖22.

Thus we have ∑
|I|=1

‖DI f ‖22 ≤ C′
∥∥∥∥ ∂ f
∂ω̄ j

∥∥∥∥2

2
+ (n + 1)C′2‖ f ‖22 +

1
2

∑
|I|≤1

‖DI f ‖22.

This gives the inequality of the lemma when f ∈]sD(U;C).
In the general case, we let ρ ∈ C∞(Rn) be a nonnegative-valued function with support

in Bn(1, 0) and define ρε(x) = ε−nρ(ε−1x). As we showed in the proof of Proposition E.2.16,

lim
ε→0

∥∥∥∥∂(ρε ∗ f )
∂ω̄ j − ρε ∗

∂ f
∂ω̄ j

∥∥∥∥
2

= 0.

Using this fact, we can apply the inequality of the lemma to the smooth compactly sup-
ported function ρε ∗ f − ρδ ∗ f gives that DI(ρε ∗ f ) converges in L2, and this proves that
DI f ∈ L2(U;C) for |I| ≤ 1. H

The following lemma is essential for us.

3 Lemma Let U ⊆ Cn and let f ∈ L2
loc(U;C) satisfy ∂f

∂ω̄j ∈ Hq
loc(U;C), j ∈ {1, . . . ,n}, for some

q ∈ Z>0. Then f ∈ Hq+1
loc (U;C). Moreover, if K ⊆ U is compact and if V ⊆ U is a neighbourhood

of K, then there exists C ∈ R>0 such that

∑
|I|≤q+1

∫
K
‖DIf(x,y)‖2 dλ(x,y)

≤ C
(∑
|I|≤q

n∑
j=1

∫
V

∥∥∥∥DI
( ∂f
∂ω̄j

)
(x,y)

∥∥∥∥2
dλ(x,y) +

∫
V

|f(x, z)|2 dλ(x,y)
)
.
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Proof This is proved using the previous lemma along the lines of the corresponding part
of Theorem 6.2.14. H

Taking q = 2n we have

∑
|I|≤1

∫
K
‖DI f (x, y)‖2 dλ(x, y)

≤ C
(∑
|I|≤q

n∑
j=1

∫
V

∥∥∥∥DI
( ∂ f
∂ω̄ j

)
(x, y)

∥∥∥∥2
dλ(x, y) +

∫
V

| f (x, z)|2 dλ(x, y)
)
. (4.42)

Now we can conclude the proof. For each ε ∈ (0, 1) and j ∈ {1, . . . ,n}, we can find ζ j
ε

such that ∂̄εζ
j
ε = ∂̄εζ j and such that ‖ζ j

ε‖ϕ ≤ ‖∂̄εζ
j
‖ϕ. This last inequality, along with the

lemma above, allow us to conclude that limε→0‖ζ
j
ε‖ϕ = 0. Applying the projection onto∧0,1(T∗CM) to the conclusion of Lemma 1, we have

lim
ε→0
‖DI(∂̄εζ j)‖2 = 0

for any I ∈ Zn
≥0. We can then apply (4.42) with f = ζ

j
ε to conclude that

lim
ε→0
‖DIζ

j
ε‖2 = 0

for |I| = 1. Thus, if we define z j
ε = ζ j

− ζ
j
ε, we see that dCz1

ε(0), . . . ,dCzn
ε (0) are linearly

independent for ε sufficiently small. Moreover, since ∂̄εz
j
ε = 0 it follows that, for fixed ε,

(x, y) 7→ z j(x, y) , z j
ε(ε
−1x, ε−1y)

satisfies ∂̄z j = 0. Thus the functions z1, . . . , zn are holomorphic functions in a neighbour-
hood of 0 for which ∂z1, . . . , ∂zn are linearly independent. These are, thus, holomorphic
coordinates for M. �

One can see from the proof of the theorem that the equivalence of the first seven
conditions is proved more or less easily, and that the difficult part of the proof is that
these conditions imply the eighth. This was first proved by Newlander and Nirenberg
[1957] and the proof given above is that of Kohn [1963].

4.9 Why is there not a chapter on Kähler geometry?

An important notion in holomorphic differential geometry is that of a Kähler man-
ifold. We shall not have much to say about Kähler manifolds in this book, and in this
section we say a few words about what we are not talking about.

4.9.1 Definitions and main structural results

Let us introduce the main player.
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4.9.1 Definition (Hermitian metric) A Hermitian metric on a holomorphic manifold M is a
section h ∈ Γ∞(CM ⊗ S2(T∗M)) for which h(z) is a Hermitian inner product on TzM. •

Let us note that Hermitian metrics exist.

4.9.2 Theorem (Holomorphic manifolds possess Hermitian metrics) If M is a paracompact
holomorphic manifold, then there exists a Hermitian metric on M.

Proof Let ((Ua, φ))a∈A be an atlas of holomorphic charts. Since M is paracompact, for each
a ∈ A let ρa ∈ C∞(M) be such that image(ρa) ⊆ [0, 1] and supp(ρa) ⊆ Ua, a ∈ A, and such
that (supp(ρa))a∈A is locally finite and

∑
a∈A ρa = 1 [Abraham, Marsden, and Ratiu 1988,

Theorem 5.5.12]. For a ∈ A define ha ∈ Γ∞(CM ⊗ S2(T∗M)) by

ha(z) =

φ∗a(H|φa(Ua))(z), z ∈ Ua,

0, otherwise,

whereH is the canonical Hermitian metric onCn. Then define h =
∑

a∈A ha, this sum making
sense since it is locally finite. Moreover, since the set of Hermitian inner products on a
vector space is convex (as can easily be verified), and since h(z) is a convex combination of
Hermitian inner products, it follows that h(z) is a Hermitian inner product. �

Now, given a Hermitian metric h on a holomorphic manifold M, we follow the
constructions of Section 4.1.5 and write h = g − iω for a Riemannian metric g and an
exterior two-formω of bidegree (1, 1). Additional requirements are specified to ensure
that h is a Kähler metric.

4.9.3 Definition (Kähler metric) A Hermitian metric h = g− iω on a holomorphic manifold
M is a Kähler metric if dω = 0. •

The requirement that ω be closed has a few equivalent characterisations.

4.9.4 Theorem (Characterisations of Kähler metrics) For a Hermitian metric h = g − iω on
a holomorphic manifold M, the following statements are equivalent:

(i) dω = 0;
(ii) ∇J = 0;
(iii) ∇ω = 0.

In the above, J is the canonical almost complex structure on M and ∇ is the Levi-Civita
connection associated to g.

Proof We first assemble a few technical lemmata.

1 Lemma If h = g − iω is a Hermitian metric on a holomorphic manifold M then

g(∇XY,Z) =
1
2

dω(X,Y,Z) −
1
2

dω(X, JY, JZ)

for every X,Y,Z ∈ Γ∞(TM), where ∇ is the Levi-Civita connection associated with g.
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Proof By the formula of [Palais 1954] we have

dω(X0,X1,X2) = L X0(ω(X1,X2)) −L X1(ω(X0,X2)) + L X2(ω(X0,X1))
− ω([X0,X1],X2) + ω([X0,X2],X1) − ω([X1,X2],X0).

Using Proposition 4.1.18 we may rewrite this as

dω(X0,X1,X2) = L X0(g(JX1,X2)) −L X1(g(JX0,X2)) + L X2(g(JX0,X1))
− g(J[X0,X1],X2) + g(J[X0,X2],X1) − g(J[X1,X2],X0) = 0. (4.43)

We shall also make use of the identity

dω(X0, JX1, JX2) = L X0(g(JX1,X2)) −L JX1(g(X0,X2)) + L JX2(g(X0,X1))
− g([X0, JX1],X2) + g([X0, JX2]),X1) − g(J[JX1, JX2],X0). (4.44)

Since ∇ is the Levi-Civita connection for g we have

L X0(g(X1,X2)) = g(∇X0X1,X2) + g(X1,∇X0X2).

By cyclically permuting this identity and using the fact that ∇ is torsion free, one may
easily arrive at the formula

g(∇X0X1,X2) =
1
2

(L X0(g(X1,X2)) + L X1(g(X0,X2)) −L X2(g(X0,X1))

+ g([X0,X1],X2) + g([X2,X0],X1) − g([X1,X2],X0)). (4.45)

Now for X,Y,Z ∈ Γ∞(TM) we compute

g((∇X J)Y,Z) = g(∇X(JY),Z) − g(J(∇XY),Z)
= g(∇X(JY),Z) + g(∇XY, JZ)

=
1
2

(L X(g(JY,Z)) + L JY(g(X,Z)) −L Z(g(X, JY))

+ g([X, JY],Z) + g([Z,X], JY) − g([JY,Z],X)
+ L X(g(Y, JZ)) + L Y(g(X, JZ)) −L JZ(g(X,Y))
+ g([X,Y], JZ) + g([JZ,X],Y) − g([Y, JZ],X))

=
1
2

(L Y(g(X, JZ)) −L Z(g(X, JY)) + L X(g(JY,Z))

− dω(X, JY, JZ) − g([X, JY],Z) + g([X, JZ],Y) + g([JY, JZ], JX)
+ g([X, JY],Z) + g([Z,X], JY) − g([JY,Z],X)
+ g([X,Y], JZ) + g([JZ,X],Y) − g([Y, JZ],X))

=
1
2

(L Y(g(X, JZ)) −L Z(g(X, JY)) + L X(g(JY,Z))

− dω(X, JY, JZ) + g([JY, JZ], JX) + g(J[X,Z],Y) − g(J[JY,Z], JX)
− g(J[X,Y],Z) − g(J[Y, JZ], JX) − g([Y,Z], JX) − g(J[Y,Z],X)

=
1
2

(dω(X,Y,Z) − dω(X, JY, JZ) + g(NJ(Y,Z), JX)).

Here we have made use of the relations (4.43), (4.44), and (4.45). We have also repeatedly
used Proposition 4.1.18. The result follows since NJ = 0. H
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2 Lemma An almost complex structure J on a manifold M is a complex structure if and only if there
exists a torsion-free affine connection ∇ on M such that ∇J = 0.

Proof Let J be an almost complex structure on M. We may first suppose that M possesses
some torsion free affine connection ∇̃ (see [Lang 1995]). Given such an affine connection,
let us define a (1, 2) tensor field Q on M by

Q(X,Y) =
1
4

(∇̃JY J)X +
1
4

J((∇̃Y J)X) +
1
2

J((∇̃X J)Y).

As Q is a (1, 2) tensor field,
∇XY = ∇̃XY −Q(X,Y)

defines another affine connection on M. We first claim that∇J = 0. We note that 0 = ∇̃X J2 =
(∇̃X J)J + J(∇̃X J) from which we arrive at

J((∇̃X J)JY) = (∇̃X J)Y. (4.46)

Now for X,Y ∈ Γ∞(TM) we compute

(∇X J)Y = ∇X(JY) − J(∇XY)

= ∇̃X(JY) − J(∇̃XY) −Q(X, JY) + JQ(X,Y)

= (∇̃X J)Y +
1
4

(∇̃Y J)X −
1
4

J((∇̃JY J)X) −
1
2

J((∇̃X J)JY)

+
1
4

J((∇̃JY J)X) −
1
4

(∇̃Y J)X −
1
2

(∇̃X J)Y

=
1
2

(∇̃X J)Y −
1
2

J((∇̃X J)JY).

Substitution of (4.46) shows that ∇J = 0. Next we show that NJ = 4T where T is the torsion
tensor of ∇. We have

NJ(X,Y) = [JX, JY] − [X,Y] − J([JX,Y]) − J([X, JY])
= ∇JX JY − ∇JY JX − ∇XY + ∇YX
− J(∇JXY − ∇Y JX) − J(∇X JY − ∇JYX)

= (∇JX J)Y + J((∇Y J)X) − (∇JY J)X − J((∇X J)Y)
= 4(Q(X,Y) −Q(Y,X)) = 4T(X,Y).

We have repeatedly used here the derivation properties of ∇.
To summarise the above, given an almost complex structure on M we have constructed

an affine connection ∇ such that ∇J = 0 and NJ = 4T. Now suppose that J is a complex
structure. Then by Theorem 4.8.4 NJ = 0 and so T = 0 and ∇ as constructed above is a
torsion free affine connection on M with ∇J = 0. Now suppose that there exists a torsion
free affine connection∇ such that∇J = 0. Following through the above computations with
∇̃ = ∇ and Q = 0 shows that NJ = 0 since ∇ is torsion free. Thus J is a complex structure
by Theorem 4.8.4. H
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3 Lemma If ∇ is a torsion-free affine connection on M then dα = (−1)k(k + 1) Alt(∇α) for α ∈
Γ∞(

∧k(T∗M)).

Proof We proceed by induction on k. For k = 0 the result follows since ∇X = L X

on C∞(M). Now assume the lemma true for k = l − 1 and let α ∈ Γ∞(
∧l(T∗M)). For

X0,X1, . . . ,Xl ∈ Γ∞(TM) we compute

dα(X0,X1, . . . ,Xl) = (X0 dα)(X1, . . . ,Xl)
= (L X0α)(X1, . . . ,Xl) − (d(X0 α))(X1, . . . ,Xl)

= L X0(α(X1, . . . ,Xl)) −
l∑

i=1

α(X1, . . . , [X0,Xi], . . . ,Xl)

− (−1)l−1l(Alt(∇(X0 α)))(X1, . . . ,Xl)

= L X0(α(X1, . . . ,Xl)) −
l∑

i=1

α(X1, . . . ,∇X0Xi, . . . ,Xl)

+

l∑
i=1

α(X1, . . . ,∇XiX0, . . . ,Xl) + (−1)ll(Alt(∇(X0 α)))(X1, . . . ,Xl).

(4.47)

Here we have used Cartan’s formula, the derivation property of L X0 , the induction
hypothesis, and the fact that ∇ is torsion free so that [X,Y] = ∇XY−∇YX. Observe that the
first two terms in (4.47) combine to give

L X0(α(X1, . . . ,Xl)) −
l∑

i=1

α(X1, . . . ,∇X0Xi, . . . ,Xl) = (∇X0α)(X1, . . . ,Xl). (4.48)

Let us simplify the last term in (4.47). We compute

(X0 α)(X1, . . . ,Xl−1) = α(X0,X1, . . . ,Xl−1).

If we covariantly differentiate both sides with respect to Xl ∈ Γ∞(TM) we get

(∇Xl(X0 α))(X1, . . . ,Xl−1) +

l−1∑
i=1

(X0 α)(X1, . . . ,∇XlXi, . . . ,Xl−1)

= (∇Xlα)(X0,X1, . . . ,Xl−1) + α(∇XlX0,X1, . . . ,Xl−1)

+

l−1∑
i=1

α(X0,X1, . . . ,∇XlXi, . . . ,Xl−1).

This then gives

(∇(X0 α))(X1, . . . ,Xl) = (∇α)(X0,X1, . . . ,Xl) + α(∇XlX0,X1, . . . ,Xl−1).
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Therefore,

(−1)ll(Alt(∇(X0 α)))(X1, . . . ,Xl)

=
(−1)l

(l − 1)!

∑
σ∈Sl

(signσ)(∇α)(X0,Xσ(1), . . . ,Xσ(l))

+
(−1)l

(l − 1)!

∑
σ∈Sl

(signσ)α(∇Xσ(l)X0,Xσ(1), . . . ,Xσ(l−1)). (4.49)

Substituting (4.48) and (4.49) into (4.47) gives

dα(X0, . . . ,Xl) = ∇α(X1, . . . ,Xl,X0) +

l∑
i=1

α(X1, . . . ,∇XiX0, . . . ,Xl)

+
(−1)l

(l − 1)!

∑
σ∈Sl

(signσ)(∇α)(X0,Xσ(1), . . . ,Xσ(l))

+
(−1)l

(l − 1)!

∑
σ∈Sl

(signσ)α(∇Xσ(l)X0,Xσ(1), . . . ,Xσ(l−1)). (4.50)

One may readily verify that since α is alternating in all arguments that

1
(l − 1)!

∑
σ∈Sl
σ(l)=i

(signσ)α(∇XiX0,Xσ(1), . . . ,Xσ(l−1)) = (−1)i+lα(∇XiX0,X1, . . . , X̂i, . . . ,Xl)

whereˆmeans the term is omitted. Therefore, we compute

(−1)l

(l − 1)!

∑
σ∈Sl

(signσ)α(∇Xσ(l)X0,Xσ(1), . . . ,Xσ(l−1))

=
(−1)l

(l − 1)!

l∑
i=1

∑
σ∈Sl
σ(l)=i

(signσ)α(∇XiX0,Xσ(1), . . . ,Xσ(l−1))

=

l∑
i=1

(−1)iα(∇X1X0,X1, . . . , X̂i, . . . ,Xl)

= −

l∑
i=1

α(X1, . . . ,∇XiX0, . . . ,Xl).

Thus the second and fourth terms in (4.50) cancel. Since ∇α is alternating in the first l
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entries we may see that

(−1)l(l + 1) Alt(∇α)(X0, . . . ,Xl) =
(−1)l

l!

∑
σ∈Sl+1

(signσ)(∇α)(Xσ(0), . . . ,Xσ(l))

=
(−1)l

l!

l∑
i=0

∑
σ∈Sl+1
σ(l)=i

(signσ)(∇α)(Xσ(0), . . . ,Xσ(l−1),Xi)

=

l∑
i=0

(−1)i(∇α)(X0, . . . , X̂i, . . . ,Xl−1,Xi). (4.51)

Similarly we compute

(−1)l

(l − 1)!

∑
σ∈Sl

(signσ)(∇α)(X0,Xσ(1), . . . ,Xσ(l))

=

l∑
i=1

(−1)i(∇α)(X0,X1, . . . , X̂i, . . . ,Xl−1,Xi). (4.52)

Combining (4.51) and (4.52) we see that the first and third terms of (4.50) are exactly

(−1)l(l + 1)(Alt(∇α))(X0, . . . ,Xl)

which is the lemma. H

It is now straightforward to prove the theorem.
(i) =⇒ (ii) Suppose that h is a Kähler metric so that dω = 0. By Lemma 1 this implies

that ∇J = 0.
(ii) =⇒ (iii) Since ω[ = −g ◦ J, the fact that ∇J = 0 and ∇g = 0 implies that ∇ω = 0.
(iii) =⇒ (i) By Lemma 3, if ∇ω = 0 we have dω = 0. �

The preceding establishes what we mean by a Kähler manifold: it is a Hermitian
manifold with an additional integrability condition. Cases where this integrability
condition is satisfied are interesting and are extensively studied in algebraic geome-
try [Griffiths and Harris 1978]. However, the condition is quite non-generic, and is
seldom met in situations having to do with applications. Thus it is not one that we
will pursue in our treatment that we intend to be broadly applicable.

4.9.2 A simple example of a Kähler manifold

We consider CP1, which we showed in Example 4.2.2–4 is Cω-diffeomorphic to S2.
In this section we examine the structure of CP1 by working explicitly with S2, and
understand its holomorphic geometry by relating it to the geometry of R3.

We denote by G the Euclidean inner product on R3 which we also regard as a
Riemannian metric on R3 by the identification of the tangent spaces of the manifold R3
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withR3 in the usual way; that is, TxR3
' R3. We define a two-formω and a Riemannian

metric g on S2 by

ωx(u,v) = G(x,u × v), gx(u,v) = G(u,v),

where × is the usual vector cross-product and where we think of TxS2 as a subspace
of R3 for x ∈ S2. Using the fact that u × v is orthogonal to x for every u,v ∈ TxS2 we
conclude that ω is nondegenerate. Clearly dω = 0 and so ω is a symplectic form. Let
us define a (1, 1)-tensor field J on S2 by J = ω] ◦ g[. First we obtain an explicit formula
for J.

4.9.5 Lemma Jx(v) = −x × v for x ∈ S2 and v ∈ TxS2.
Proof We identify T∗xS2 with TxS2 using g, i.e., we write the pairing of T∗xS2 with TxS2

using the Euclidean inner product. With this identification, we may easily verify that

ω[x(v) = x × v, g[x(v) = v

by checking that
G(ω[x(v),u) = ωx(v,u), G(g[x(v),u) = gx(v,u)

for every u ∈ TxS2.
We claim that

ω]x(v) = −x × v.

Indeed, if ω] is so defined, we have

ω]x ◦ω
[
x(v) = ω]x(x × v) = −x × (x × v).

We now invoke the vector product identity

a × (b × c) = (a · c)b − (a · b)c (4.53)

to show thatω]x ◦ω[x(v) = v thus showing that our proposed formula forω]x is correct. Now
we compute

Jx(v) = ω]x ◦ g[x(v) = ω]x(v) = −x × v,

as claimed. �

Note that J is an almost complex structure. Indeed,

Jx ◦ Jx(v) = −Jx(x × v) = −x × (x × v) = −v,

using Example 4.53 and the fact that ‖x‖ = 1. We claim that J is the complex structure
on S2 if we think of S2 as a holomorphic manifold as in Example 4.2.2–4. We do this
by showing that the local representative of J is the canonical complex structure in local
coordinates. To do this, recall that we cover S2 with charts (U+, φ+) and (U−, φ−) given
by

U+ = S2
\ {(0, 0, 1)}, U− = S2

\ {(0, 0,−1)}
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and
φ+(x1, x2, x3) =

x1

1 − x3
+ i

x2

1 − x3
, φ−(x1, x2, x3) =

x1

1 + x3
− i

x2

1 + x3
;

note that we have changed the notation from Example 4.2.2–3 to ensure the overlap
map is holomorphic. Let us denote coordinates for the charts (U+, φ+) and (U−, φ−) by
z+ and z−, respectively. One then determines that, for (x1, x2, x3) ∈ U+, we have

(x1, x2, x3) =
(2 Re(z+)
|z+|

2 + 1
,

2 Im(z+)
|z+|

2 + 1
,
|z+|

2
− 1

|z+|
2 + 1

)
if z+ = φ+(x1, x2, x3) and, for (x1, x2, x3) ∈ U−, we have

(x1, x2, x3) =
(2 Re(z−)
|z−|2 + 1

,−
2 Im(z−)
|z−|2 + 1

,
1 − |z−|2

|z−|2 + 1

)
if z− = φ−(x1, x2, x3).

Let us recall a few elementary facts about one-dimensional C-vector spaces.

4.9.6 Lemma Let V and V′ be two-dimensional R-vector spaces with linear complex structures J′

and J′ and compatible inner products g and g′, let ω and ω′ be the corresponding fundamental
forms, and let (e1, e2) and let (e′1, e

′

2) be J-adapted orthonormal bases for V and V′, respectively.
For a nonzero linear map A: V→ V′, the following statements are equivalent:

(i) A ∈ HomC(V; V′);
(ii) the matrix representative of A with respect to the bases (e1, e2) and (e′1, e

′

2) has the form[
a b
−b a

]
for some a, b ∈ R;

(iii) the following conditions hold:
(a) g′(A(e1),A(e2)) = 0;
(b) g′(A(e1),A(e1)) = g′(A(e2),A(e2));
(c) A∗ω′ = αω for α ∈ R>0.

Proof (i) =⇒ (ii) Since (e1, e2) are J-adapted, e2 = J(e1), and similarly e′2 = J′(e′1). We thus
have A(e1) = ae′1 − be′2 for some a, b ∈ R. We also have

A(e2) = A ◦ J(e1) = J′ ◦A(e1) = aJ′(e′1) − bJ′(e′2) = ae′2 + be′1,

from which the desired form of the matrix representative follows.
(ii) =⇒ (iii) The given matrix representative implies that

A(e1) = ae′1 − be′2, A(e2) = be′1 + ae′2.

Direct computation, using the fact that (e′1, e
′

2) are g′-orthogonal, shows that the first two
assertions hold. Using the fact that ω(u, v) = g(J(u), v) and similarly for ω′, we can also
show that ω′(A(u),A(v)) = (a2 + b2)ω(u, v), giving the final desired conclusion.
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(iii) =⇒ (ii) Let us write A(e1) = ae′1 − be′2 for a, b ∈ R. Since A(e2) is orthogonal to A(e1)
we must have A(e2) = λ(be′1 + ae′2) for some λ ∈ R. The condition that A(e1) and A(e2) have
the same length implies that λ = ±1. We now directly compute

ω′(A(e1),A(e2)) = λ(a2 + b2),

which gives λ = 1 upon noting that, by hypothesis, we have

λ(a2 + b2) = ω′(A(e1),A(e2)) = αω(e1, e2) = α > 0.

(ii) =⇒ (i) Using the given form of the matrix representative of A, we compute

J′ ◦A(e1) = J′(ae′1 − be′2) = ae′2 + be′1

and
J′ ◦A(e2) = J′(be′1 + ae′2) = be′2 − ae′1.

We also compute
A ◦ J(e1) = A(e2) = be′1 + ae′2

and
A ◦ J(e2) = −A(e1) = −ae′1 + be′2,

and we indeed see that J′ ◦A = A ◦ J. �

We now wish to verify the following formula, which shows that the almost complex
structure J is indeed the complex structure on S2 induced by the holomorphic atlas
((U+, φ+), (U−, φ−)).

4.9.7 Lemma The formulae

Txφ+(Jx(v)) = iTxφ+(v), x ∈ U+, v ∈ TxS2,

and
Txφ−(Jx(v)) = iTxφ−(v), x ∈ U−, v ∈ TxS2,

hold.
Proof We consider the mappings

ψ+ : C→ R3

z+ 7→

(2 Re(z+)
|z+|

2 + 1
,

2 Im(z+)
|z+|

2 + 1
,
|z+|

2
− 1

|z+|
2 + 1

)
and

ψ− : C→ R3

z− 7→
(2 Re(z−)
|z−|2 + 1

,−
2 Im(z−)
|z−|2 + 1

,
1 − |z−|2

|z−|2 + 1

)
,

i.e., the inverses ofφ+ andφ−, respectively. Note thatψ+ andψ− are diffeomorphisms onto
U+ and U−, respectively. In particular, Tz+ψ+ and Tz−ψ− are isomorphisms onto Tψ+(z+)ψ+

and Tψ−(z−)ψi, respectively. Note that the inner product on each of these latter tangent
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spaces are the restrictions of the Euclidean inner product G. Let us write z+ = x+ + iy+

and z− = x− + iy− and denote by ∂ψ+

∂x+
and ∂ψ+

∂y+
the vectors of partial derivatives of ψ+ and

similarly ∂ψ−
∂x−

and ∂ψ−
∂y−

. We can then compute

∥∥∥∥∂ψ+

∂x+
(z+)

∥∥∥∥2
=

∥∥∥∥∂ψ+

∂y+
(z+)

∥∥∥∥2
=

4
(1 + |z+|

2)2 , G
(∂ψ+

∂x+
(z+),

∂ψ+

∂y+
(z+)

)
= 0

and ∥∥∥∥∂ψ−∂x−
(z−)

∥∥∥∥2
=

∥∥∥∥∂ψ−∂y−
(z−)

∥∥∥∥2
=

4
(1 + |z−|2)2 , G

(∂ψ−
∂x−

(z−),
∂ψ−
∂y−

(z−)
)

= 0.

The proof will now follow from the implication (iii) =⇒ (i) from Lemma 4.9.6 if we can
show that ψ∗+ω and ψ∗

−
ω are positive multiples of the standard volume form of C ' R2.

Since ψ∗+ω and ψ∗
−
ω are each equal multiples of the standard volume form, since the

multiple is nowhere zero by virtue of the ψ+ and ψ− being diffeomorphisms, and since C
is connected, it suffices to show that ψ∗+ω and ψ∗

−
ω are a positive multiples of the standard

volume form at a single point in C. Thus let consider the point (0, 0,−1) ∈ U+ for which
φ+(0, 0,−1) = 0. Let (e1, e2) be the standard basis for T0C ' R2. A direct computation gives
T0ψ+(e1) = 2e1 and T0ψ+(e2) = 2e2, where by slight abuse we let (e1, e2, e3) be the standard
basis for T(0,0,−1)R3 so that (e2, e2) are a basis for T(0,0,−1)S2. From this we directly compute

ω(0,0,−1)(T0ψ+(e1),T0ψ+(e2)) = g(0,0,−1)(J(0,0,−1) ◦T0ψ+(e1),T0ψ+(e2))
= g(0,0,−1)(2e2, 2e2) = 4,

using the fact that
J(0,0,−1)(e1) = −(0, 0,−1) × (1, 0, 0) = e2.

Since the standard volume form acting on the pair (e1, e2) is equal to 1, it follows that
ψ∗+ω(0) is 4 times the standard volume form. An entirely similar argument applied to the
point (0, 0, 1) gives the same conclusion for ψ∗

−
ω, and so the lemma follows. �

Note that S2 is automatically a Kähler manifold since, if we define the Hermitian
metric h = g + iω on S2, we have dω = 0. According to Theorem 4.9.4, it follows that J
and ω are parallel with respect to the Levi-Civita connected associated with the round
Riemannian metric on S2.
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