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Chapter 6

Stein and real analytic manifolds

In Corollary 4.2.11 we saw that there will generally be significant restrictions on
the character of holomorphic functions on holomorphic manifolds. In Chapter 3 we
saw that there are domains in Cn (these are holomorphic manifolds, of course) for
which it is possible to find holomorphic functions satisfying finitely many algebraic
conditions. This raises the question of how one can distinguish between manifolds
with few holomorphic functions and those with many holomorphic functions. It is
this question we study in this chapter, adapting the methods of Chapter 3. The theory
we present in this chapter originated in the work of Stein [1951], building on work
of many, including [Behnke and Thullen 1934, Cartan 1931, Cartan and Thullen 1932,
Oka 1939], Indeed, it is difficult to ascribe the development of the theory of so-called
“Stein manifolds” to one person. All of this aside, a detailed presentation of the theory
is given by Grauert and Remmert [2004].

As with the material in the strongly related Chapter 3, the treatment in this chapter
is mostly holomorphic. In Section 6.4 we apply holomorphic techniques to prove
some important results concerning real analytic manifolds. In Section 6.5 we consider
embedding theorems in the cases of interest to us.

6.1 Various forms of convexity for holomorphic manifolds

In Chapter 3 we introduced various three principle forms of convexity, holomorphic
convexity, (weak and strong) pseudoconvexity, and Levi pseudoconvexity. These
notions can be extended to subsets of holomorphic manifolds, although just what
happens in these cases does not always mirror what happens in the case of subsets of
Cn. Moreover, the considerations on manifolds are interesting when one considers the
subset consisting of the entire manifold, and this is unlike the situation in Cn. In this
section we explore these concepts.

6.1.1 Holomorphic convexity on manifolds

The development of the notion of holomorphic convexity on manifolds proceeds
in a manner essentially identical with that of holomorphic convexity in Cn. Indeed,
much of the development is a mere repetition of the material from Section 3.1.2, just
reproduced for convenience to encapsulate the required minor changes of notation.
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The starting point is the following definition. We refer the reader to (4.9) for the
notation ‖·‖K used in the definition.

6.1.1 Definition (Holomorphically convex hull) If M is a holomorphic manifold and if
K ⊆ M, the holomorphically convex hull of K is the set

hconvM(K) = {z ∈ M | | f (z)| ≤ ‖ f ‖K for all f ∈ Chol(M)}.

A set K is called Chol(M)-convex if hconvM(K) = K. •

Let us give some elementary properties of the holomorphically convex hull.

6.1.2 Proposition (Properties of the holomorphically convex hull) Let M be a holomorphic
manifold and let K,L ⊆ M. Then the following statements hold:

(i) K ⊆ hconvM(K);
(ii) if K ⊆ L then hconvM(K) ⊆ hconvM(L);
(iii) hconvM(hconvM(K)) = hconvM(K);
(iv) hconvM(K) is a closed subset of M.

Proof (i) This is obvious.
(ii) This too is obvious.
(iii) By parts (i) and (ii) we have

hconvM(K) ⊆ hconvM(hconvM(K)).

To prove the opposite inclusion, let z < hconvM(K). Then there exists f ∈ Chol(M) such
that | f (z)| > ‖ f ‖K. This implies, however, that | f (z)| > | f (w)| for every w ∈ hconvM(K) (by
definition of hconvM(K)) and so | f (z)| > ‖ f ‖hconvM(K), showing that z < hconvM(hconvM(K)).

(iv) For f ∈ Chol(M) note that

C f , {z ∈ M | | f (z)| ≤ ‖ f ‖K}

is a closed subset of M. Moreover, one can see easily that

hconvM(K) = ∩ f∈Chol(M)C f ,

giving closedness of hconvM(K) in M. �

From the previous result, the holomorphically convex hull is always closed. The
situation where it is always compact is of interest to us.

6.1.3 Definition (Holomorphically convex manifold) A holomorphic manifold M is holo-
morphically convex if hconvM(K) is compact for every compact K ⊆ M. •

There are two principal examples of holomorphically convex manifolds.
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6.1.4 Examples (Holomorphically convex manifolds)
1. If Ω ⊆ Cn is a domain of holomorphy, it is also a holomorphic manifold, being

an open subset of the holomorphic manifold Cn. Moreover, it is holomorphically
convex by Theorem 3.5.1.

2. If M is a compact holomorphic manifold and if K ⊆ M is compact, then hconvM(K)
is closed by Proposition 6.1.2(iv) and so compact ([Runde 2005, Proposition 3.3.6]).
Thus compact holomorphic manifolds are holomorphically convex. •

Let us give some properties of holomorphically convex sets.

6.1.5 Proposition (Basic properties of holomorphically convex manifolds) For holomor-
phic manifolds M and N the following statements hold:

(i) if M and N are holomorphically convex, then so too is M × N;
(ii) if N is holomorphically convex and if Φ ∈ Chol(M; N) is proper, then M is holomorphically

convex;
(iii) if M is holomorphically convex and second countable, there exists a sequence (Kj)j∈Z>0 of

compact subsets of M with the following properties:

(a) hconvM(Kj) = Kj;
(b) Kj ⊆ int(Kj+1) for j ∈ Z>0;
(c) M = ∪j∈Z>0Kj.

Proof (i) Let K ⊆ M × N be compact and let L ⊆ M and M ⊆ N be compact subsets for
which K ⊆ L ×M. Note that if f ∈ Chol(M) then, f̂ (z,w) = f (z) defines f̂ ∈ Chol(M × N). If
(z,w) ∈ hconvM×N(L ×M) then

| f̂ (z,w)| = | f (z)| ≤ ‖ f ‖L.

Thus z ∈ hconvM(L) and so

hconvM×N(L ×M) ⊆ hconvM(L) × N.

Similarly,
hconvM×N(L ×M) ⊆ M × hconvN(M)

and so
hconvM×N(L ×M) ⊆ hconvM(L) × hconvN(M).

By hypothesis, the set on the right is compact. Since

hconvM×N(K) ⊆ hconvM×N(L ×M),

we have that hconvM×N(K) is a closed subset of a compact set, and so is compact.
(ii) Let K ⊆ M be compact so that Φ(K) ⊆ N is also compact [Runde 2005, Proposi-

tion 3.3.6]. We claim that hconvM(K) ⊆ Φ−1(hconvN(Φ(K))). Indeed, let z ∈ hconvM(K))
so that | f (z)| ≤ ‖ f ‖K for every f ∈ Chol(M). Note that Φ∗g ∈ Chol(M) for every
g ∈ Chol(N) by Proposition 1.2.2. Therefore, for every g ∈ Chol(N), |g ◦Φ(z)| ≤ ‖g ◦Φ‖Φ(K),
which means that Φ(z) ∈ hconvN(Φ(K)), as claimed. Now we have that hconvM(K) is
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a closed (by Proposition 6.1.2(iv)) subset of the compact (because Φ is proper) subset
Φ−1(hconvN(Φ(K))). Thus hconvM(K) is compact [Runde 2005, Proposition 3.3.6].

(iii) Let (L j) j∈Z>0 be a sequence of compact subsets of M such that L j ⊆ int(L j+1) and
M = ∪ j∈Z>0L j (using [Aliprantis and Border 2006, Lemma 2.76]). We let K1 = hconvM(L1).
Now suppose that we have defined K1, . . . ,Km with the desired properties. Choose Nm ≥ m
sufficiently large that Km ⊆ LNm and take Km+1 = hconvM(LNm). One readily verifies, using
Proposition 3.1.6, that the sequence (K j) j∈Z>0 has the asserted properties. �

In Section 3.1.2, at this point we presented some ideas concerning interpolation
and singular functions in holomorphically convex domains in Cn, Theorems 3.1.12
and 3.1.13, respectively. Note that these results do not translate to holomorphically
convex manifolds. For example, compact holomorphic manifolds are holomorphically
convex, but certainly there will be no general solution to the interpolation problem
for holomorphic functions. Also, the notion of a singular function on a holomorphic
manifold is problematic as we are working with boundaryless manifolds. Thus these
features of holomorphic convexity do not figure into our discussion here.

We can, however, give some properties of holomorphic convexity as it relates to
holomorphic differential geometry.

6.1.6 Proposition (Holomorphic convexity of submanifolds) If M and N are holomorphic
manifolds, then the following statements hold:

(i) if M is holomorphically convex and if S ⊆ M is a closed holomorphic submanifold, then
S is holomorphically convex;

(ii) if S1, . . . ,Sk ⊆ M are holomorphically convex holomorphic submanifolds for which
S = ∩k

j=1Sj is a holomorphic submanifold, then S is holomorphically convex;

(iii) if Φ : M → N is holomorphic, if S ⊆ M and T ⊆ N are holomorphically convex
submanifolds, and if S∩Φ−1(T) is a holomorphic submanifold of M, then S∩Φ−1(T) is
holomorphically convex.

Proof (i) By Proposition 6.1.5(ii) it suffices to show that the inclusion map of S in M is
proper. For this, it suffices to show that if K ⊆ M is compact then K ∩ S is compact in S. If
K ∩ S = ∅ this is clear. Otherwise, let (z j) j∈Z>0 be a sequence in K ∩ S. Since K is compact,
there is a convergent subsequence converging to z ∈ K by the Bolzano–Weierstrass Theo-
rem [Abraham, Marsden, and Ratiu 1988, Theorem 1.5.4]. Since S is closed, z ∈ S and so
K ∩ S is compact, again by the Bolzano–Weierstrass Theorem.

(ii) Let Mk be the k-fold Cartesian product of M with itself and let ιk : M → Mk be the
inclusion ιk(z) = (z, . . . , z). We first claim that

ιk(S) =
( k∏

j=1

S j

)
∩ ιk(M).

Indeed, if z ∈ S then z ∈ S j, j ∈ {1, . . . , k}. Thus ιk(z) ∈
∏k

j=1 S j, giving the inclusion “⊆.”

Conversely, if ιk(z) ∈
∏k

j=1 S j then z ∈ S j, j ∈ {1, . . . , k}, giving the inclusion “⊇.” Let us give

the set T ,
∏k

j=1 S j the holomorphic structure inherited from Mk, noting that this makes
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sense even if the submanifolds S1, . . . ,Sk are not closed (immersed submanifolds have
natural differential or holomorphic structures). We claim that ιk(S) is a closed submanifold
of T. First of all, it is a submanifold since ιk is an injective immersion and since S is a
submanifold by hypothesis. To check that it is closed, let (z j) j∈Z>0 be a sequence in S such
that the sequence (ιk(z j)) j∈Z>0 converges to (w1, . . . ,wk) ∈ T. First of all, since ιk(M) is closed
in Mk and since ιk(z j) ∈ ιk(M) for every j ∈ Z>0, we must have w1 = · · · = wk = w. Thus
the sequence (ιk(z j)) j∈Z>0 converges to ιk(w) ∈ T ∩ ιk(M) = ιk(S). Thus w ∈ S and ιk(S) is
a closed submanifold of T, as claimed. By part (i) and Proposition 6.1.5(i) it follows that
ιk(S) is holomorphically convex.

Now let K ⊆ S be compact. We claim that

hconvS(K) ⊆ ι−1
k (hconvT(ιk(K))). (6.1)

Indeed, let z ∈ hconvS(K). Thus | f (z)| ≤ ‖ f ‖K for every f ∈ Chol(S). Thus | f ◦ ιk(z)| ≤
‖ f ◦ ιk‖ιk(S) for every f ∈ Chol(S). Since g|ιk(S) ∈ Chol(T) for every g ∈ Chol(T), this implies
that |g ◦ ιk(z)| ≤ ‖g‖ιk(S) for every g ∈ Chol(T). Therefore, ιk(z) ∈ hconvT(ιk(K)) and so
z ∈ ι−1

k (hconvT(ιk(K))), as claimed.
Since T is holomorphically convex by hypothesis, hconvT(ιk(K)) is compact in T. Thus

hconvT(ιk(K))∩ ιk(M) is compact in T, being the intersection of a compact set with a closed
set. Since

ι−1
k (hconvT(ιk(K))) = ι−1

k (hconvT(ιk(K)) ∩ ιk(M))

we have that ι−1
k (hconvT(ιk(K))) is compact, being the preimage of a compact set under a

map that is a homeomorphism onto its image. Thus, by (6.1), hconvS(K) is compact, being
a closed subset of a compact set.

(iii) Let K ⊆ S ∩Φ−1(T) be compact. We first claim that

hconvS∩Φ−1(T)(K) ⊆ hconvS(K) ∩Φ−1(hconvT(Φ(K))). (6.2)

Indeed, let z ∈ hconvS∩Φ−1(T)(K) so that | f (z)| ≤ ‖ f ‖K for every f ∈ Chol(S ∩ Φ−1(T)). Since
g|S ∩ Φ−1(T) ∈ Chol(S ∩ Φ−1(T)) for every g ∈ Chol(S), it follows that |g(z)| ≤ ‖g‖K for
every g ∈ Chol(S) and so z ∈ hconvS(K). Also note that Φ∗h|S ∩ Φ−1(T) ∈ Chol(S ∩ Φ−1(T))
for every h ∈ Chol(T). Thus |Φ∗h(z)| ≤ ‖Φ∗h‖K for every h ∈ Chol(T). Said otherwise,
Φ(z) ∈ hconvT(Φ(K)) and so z ∈ Φ−1(hconvT(Φ(K))). Thus (6.2) holds. All one needs to
note now is that the right-hand side of (6.2) is compact, being the intersection of a compact
set with a closed set, and so hconvS∩Φ−1(T)(K) is compact, being a closed subset of a compact
set. �

We close this section with a discussion of a class of holomorphically convex sets.

6.1.7 Definition (Holomorphic polyhedron) A subset P ⊆ M of a holomorphic manifold is
a holomorphic polyhedron of order m if there exist f1, . . . , fm ∈ Chol(M) such that P is a
union of some number of connected components of the set

{z ∈ M | | f j(z)| < 1, j ∈ {1, . . . ,m}}. •

We then have the following result, generalising Example 3.1.8–2.
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6.1.8 Proposition (Holomorphic polyhedron are sometimes holomorphically convex)
If M is a holomorphically convex holomorphic manifold and if P ⊆ M is a holomorphic
polyhedron, then P is holomorphically convex.

Proof Let f1, . . . , fk ∈ Chol(M) be such that P is a union of connected components of

U = {z ∈ M | | f j(z)| < 1, j ∈ {1, . . . , k}}.

Let K ⊆ P be compact and let r ∈ [0, 1) be such that | f j(z)| ≤ r for each j ∈ {1, . . . , k} and z ∈ K.
Thus | f j(z)| ≤ r for each j ∈ {1, . . . , k} and z ∈ hconvP(K) since f j|P ∈ Chol(P), j ∈ {1, . . . , k}.
Therefore,

hconvP(K) ⊆ {z ∈ M | | f j(z)| ≤ r}.

Thus hconvP(K) is a closed subset of the compact (because M is holomorphically convex)
set hconvM(K), and so is compact [Runde 2005, Proposition 3.3.6]. �

6.1.2 Plurisubharmonic functions on manifolds

The matter of defining plurisubharmonic functions on manifolds can take various
flavours. We shall try to flesh this out by starting with a slightly ungainly definition,
and showing that this definition is equivalent, in an appropriate sense, to a nicer
characterisation.

6.1.9 Definition (Plurisubharmonic function) A function u : M → [−∞,∞) on a holomor-
phic manifold M is plurisubharmonic if, for each z ∈ M, there exists a C-coordinate
chart (U, φ) about z such that u ◦φ is plurisubharmonic in the sense of Definition 3.2.5.
By Psh(M) we denote the set of plurisubharmonic functions on M. •

A consequence of Proposition 3.2.19 is that this definition is well-defined in the
sense that it will not be the case that a function can be verified to be plurisubharmonic
with respect to one choice of charts, but not with respect to another choice of charts.

Let us record the basic properties of plurisubharmonic functions inherited from
their definition. All of these properties follow from their corresponding assertions for
open subsets of Cn, along with the fact that the property of plurisubharmonicity is a
local one.

6.1.10 Proposition (Properties of plurisubharmonic functions on manifolds) If M is a
holomorphic manifold, the following statements hold:

(i) if (uj)j∈Z>0 is a sequence in Psh(M) such that uj+1(z) ≤ uj(z) for each j ∈ Z>0 and z ∈ M,
then the function u on M defined by u(z) = limj→∞ uj(z) is plurisubharmonic;

(ii) if (ua)a∈A is a family of functions in Psh(M) then the function u on M defined by

u(z) = sup{ua(z) | a ∈ A}

is plurisubharmonic if it is upper semicontinuous and everywhere finite;
(iii) if M is connected and if u is plurisubharmonic and has a global maximum in M, then u

is constant;
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(iv) if u1, . . . ,uk : M → [−∞,∞) are plurisubharmonic and if F: Rk
→ R is continuous,

convex, and nondecreasing in each component, and if we extend F to F̄ : ([−∞,∞))k
→

[−∞,∞) as in Theorem 3.2.2(vii), then the function

z 7→ F(u1(z), . . . ,uk(z))

is plurisubharmonic.

We can immediately see one of the ways in which the analysis of plurisubharmonic
functions differs on holomorphic manifolds as compared with open subsets of Cn.

6.1.11 Proposition (Plurisubharmonic functions on compact manifolds are locally con-
stant) If M is a compact holomorphic manifold and if u ∈ Psh(M), then u is locally constant.

Proof Since M is compact, there exists z0 ∈ M such that u(z) ≤ u(z0) for every
z ∈ M [Aliprantis and Border 2006, Theorem 2.43]. Let

C = {z ∈ M | u(z) = u(z0)},

noting that C is closed since C = u−1([u(z0),∞)) and since u is upper semicontinuous. By
Proposition 6.1.10(iii) it follows that for any z ∈ C there is a neighbourhood U of z on
which u takes the constant value u(z0). Thus C is open, and so u is constant on each of its
connected components. �

Note that this is property of being locally constant on compact manifolds is a
property shared between holomorphic and plurisubharmonic functions.

For functions with some regularity, one can use the Levi form to give a differential
characterisation of plurisubharmonic functions. Thus we need to define the Levi
form. It is possible to do so by making the definition in coordinates and noting by
Lemma 3.2.11 that this definition makes sense. However, it is interesting to make the
definition intrinsically. To do so, we first make the following observation.

6.1.12 Lemma (Reality of complex Hessian) If φ ∈ C2(M) is aR-valued function on a holomor-
phic manifold M, then i∂ ◦ ∂̄φ is a real form of bidegree (1, 1).

Proof We compute

∂ ◦ ∂̄φ = ∂̄ ◦ ∂̄φ = ∂̄ ◦∂φ̄ = −∂ ◦ ∂̄φ,

using Proposition 4.6.7, and this shows that i∂ ◦ ∂̄φ is real. The definitions of ∂ and ∂̄
ensure that it is also of bidegree (1, 1). �

By Proposition 4.1.22 the following definition makes sense.

6.1.13 Definition (Levi form) If M is a holomorphic manifold and if u ∈ C2(M), the Levi form
associated to u is the Hermitian form Lev(u) associated to the real bidegree (1, 1) form
1
2i∂ ◦ ∂̄u. •

In a C-chart (U, φ) with coordinates (z1, . . . , zn) we have

1
2i
∂ ◦ ∂̄u|U =

1
2i

n∑
j,k=1

∂2u
∂z j∂z̄k

dz j
∧ dz̄k.
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Referring to Proposition 4.1.23 we thus have

Lev(u)|U =
∂2u
∂z j∂z̄k

dz j
⊗ dz̄k, (6.3)

showing that the Levi form agrees with our definition in Cn from Definition 3.2.7. As
with open subsets of Cn, we shall be using plurisubharmonic functions to characterise
certain types of manifolds (as we shall see in the next section). It will be useful, there-
fore, to know that we can impose smoothness assumptions on our plurisubharmonic
functions without losing any information. For open subsets of Cn, this is the point
of Lemma 3.3.7. For manifolds, the issues are a little more subtle as Lemma 3.3.7 is
no longer true in general. For example, since plurisubharmonic functions on compact
manifolds are locally constant, one cannot expect on such manifolds to be able to
approximate such functions with functions for which the Levi form is strictly positive.

In order to state the appropriate approximation result, we shall need to have at hand
a notion of strict plurisubharmonicity. For functions of class C2, this is not problematic
since we can use the natural adaptation of Definition 3.2.16. For plurisubharmonic
functions that are merely continuous, the condition that they be strictly plurisubhar-
monic needs more care, however.

6.1.14 Definition (Strictly plurisubharmonic function) Let M be a holomorphic manifold,
let h be a continuous Hermitian metric on M, and let ε ∈ C0(M;R≥0).

(i) A continuous function u ∈ C0(M) is (h, ε)-plurisubharmonic if, for each z0 ∈ M,
there exists a neighbourhood U and a function φ ∈ C2(U) such that

(a) u − φ is plurisubharmonic on U and
(b) the eigenvalues of the linear map h] ◦Lev(φ)[(z0) exceed ε(z0).

(ii) A continuous function u ∈ C0(M) is strictly plurisubharmonic if it is (h, 0)-
plurisubharmonic.

(iii) The set of strictly plurisubharmonic functions is denoted by SPsh(M). •

One readily checks that this definition of strictly plurisubharmonic agrees with that
that Lev(u)(Zz) > 0 for all nonzero Zz ∈ T1,0M in the case that u is of class C2. Indeed,
one need only take φ = u in the definition in this case. In particular, the definition of
the notion of strictly plurisubharmonic is not dependent on the choice of Hermitian
metric h. The notion of (h, ε)-plurisubharmonic, however, does depend on h when ε is
nonzero.

With this notion of a strictly plurisubharmonic function, we can prove that continu-
ous strictly plurisubharmonic functions are approximated by smooth strictly plurisub-
harmonic functions. We state the result here, and also state it with proof as Theo-
rem GA2.7.1.5. The result is originally proved by Richberg [1968], but our proof in
Section GA2.7.1.3 follows the strategy of Greene and Wu [1979].
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6.1.15 Theorem (Approximation of continuous strictly plurisubharmonic functions) Let
M be a paracompact holomorphic manifold, let u ∈ SPsh(M)∩C0(M), and let ε ∈ C0(M;R>0).
Then there exists û : M→ R with the following properties:

(i) û ∈ SPsh(M) ∩ C∞(M);
(ii) u(x) ≤ û(x) ≤ u(x) + ε(x) for x ∈ M.

Moreover, if h is a continuous Hermitian metric on M and if u additionally has the property
that Lev(u) − h ≥ 0, then û can be chosen so that

(iii) Lev(û) − (1 − ε)h ≥ 0.

Let us close this section by defining the plurisubharmonic convex hull. We shall
explore its relationship with the holomorphically convex hull in Proposition 6.3.10.

6.1.16 Definition (Plurisubharmonic convex hull) If M is a holomorphic manifold and if
K ⊆ M, the plurisubharmonic convex hull of K is the set

pconvM(K) = {z ∈ M | u(z) ≤ sup
K

u for all u ∈ Psh(M) ∩ C0(M)}.

A set K is called Psh(M)-convex if pconvM(K) = K. •

6.1.3 Pseudoconvexity on manifolds

Having at hand the notion of plurisubharmonic functions on manifolds, the various
notions of pseudoconvexity carry over directly from the versions in Cn. We begin by
giving the natural adaptation of the notion of an exhaustion function.

6.1.17 Definition (Exhaustion function) A function u : M→ [−∞,∞) is an exhaustion func-
tion if the sublevel set u−1((−∞, α)) is a relatively compact subset of M for every α ∈ R. •

With this, we have the following notions of pseudoconvexity.

6.1.18 Definition (Weak and strong pseudoconvexity) A holomorphic manifold M is
weakly pseudoconvex (resp. strongly pseudoconvex) if there exists a smooth plurisub-
harmonic (resp. strictly plurisubharmonic) exhaustion function on M. •

As with holomorphic convexity, there are two basic classes of pseudoconvex man-
ifolds.

6.1.19 Examples (Pseudoconvex manifolds)
1. If Ω ⊆ Cn is a domain of holomorphy, it is strongly pseudoconvex by Theorem 3.3.8.
2. If M is a compact holomorphic manifold then it is weakly pseudoconvex. Indeed,

by Proposition 6.1.11, plurisubharmonic functions on M are locally constant and
the Levi form of all such functions is zero. Note that this also shows that M is not
strongly pseudoconvex. •

Let us consider some elementary properties of pseudoconvex manifolds.
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6.1.20 Proposition (Basic properties of pseudoconvex manifolds) For holomorphic mani-
folds M and N the following statements hold:

(i) if M and N are weakly (resp. strongly) pseudoconvex, then so too is M × N;
(ii) if M is weakly pseudoconvex and if there exists a smooth, strictly plurisubharmonic,

nonnegative-valued function on M, then M is strongly pseudoconvex.
Proof (i) Let u ∈ Psh(Ω) ∩ C∞(M) and v ∈ Psh(∆) ∩ C∞(N) be exhaustion functions. Let
û : M × N→ R and v̂ : M × N→ R be defined by

û(z,w) = u(z), v̂(z,w) = v(w).

We claim that both û and v̂ are plurisubharmonic. To see this for û, let pr1 : M × N → M
be the projection onto the first factor, which is a holomorphic map. By Proposition 3.2.19
and the fact that plurisubharmonicity is a local property, it follows that û = u ◦ pr1 is
plurisubharmonic. Similarly, v̂ is plurisubharmonic. Now define

σ(z,w) = max{u(z), v(w)} = max{û(z,w), v̂(z,w)}.

The function σ is continuous (obvious) and plurisubharmonic (by Proposition 6.1.10(ii)).
Since

σ−1((−∞, α)) ⊆ u−1((−∞, α)) × v−1((−∞, α)),

it follows that σ is also an exhaustion function. Note that if u and v are strictly plurisub-
harmonic, then so too is σ.

(ii) Let u ∈ Psh(M) ∩ C∞(M) be an exhaustion function and let v be a smooth strictly
plurisubharmonic R≥0-valued function. We claim that u + v is a strictly plurisubharmonic
exhaustion function. Clearly u + v is strictly plurisubharmonic since Lev(u + v) = Lev(u) +
Lev(v). To see that u + v is an exhaustion function, let α ∈ R and note that

(u + v)−1((−∞, α)) = {z ∈ M | u(z) + v(z) < α} ⊆ {z ∈ M | u(z) < α},

giving relative compactness of (u+v)−1((−∞, α)) since u−1((−∞, α)) is relatively compact.�

Let us now give some results indicating how pseudoconvexity interacts with sub-
manifolds.

6.1.21 Proposition (Pseudoconvexity of submanifolds) If M and N are holomorphic mani-
folds, then the following statements hold:

(i) if M is weakly (resp. strongly) pseudoconvex and if S ⊆ M is a closed holomorphic
submanifold, then S is weakly (resp. strongly) pseudoconvex;

(ii) if S1, . . . ,Sk ⊆ M are weakly (resp. strongly) pseudoconvex holomorphic submanifolds
for which S = ∩k

j=1Sj is a holomorphic submanifold, then S is weakly (resp. strongly)
pseudoconvex;

(iii) if Φ : M → N is holomorphic, if S ⊆ M and T ⊆ N are weakly (resp. strongly)
pseudoconvex submanifolds, and if S∩Φ−1(T) is a holomorphic submanifold of M, then
S ∩Φ−1(T) is weakly (resp. strongly) pseudoconvex;
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(iv) if M is weakly (resp. strongly) pseudoconvex and if u ∈ Psh(M) ∩ C∞(M), then
u−1([−∞, α)) is weakly (resp. strongly) pseudoconvex for every α ∈ R.

Proof (i) Let u be a smooth, plurisubharmonic exhaustion function. Then u|S is smooth
since S is closed. By Lemma 3.2.11 it follows that u|S is plurisubharmonic (and is strictly
plurisubharmonic if u is). To show that u|S is an exhaustion function, let α ∈ R and note
that

(u|S)−1((−∞, α)) = {z ∈ S | u(z) < α} ⊆ {z ∈ M | u(z) < α}

so that (u|S)−1((−∞, α)) is relatively compact in M. Since S is closed, cl((u|S)−1((−∞, α)) ⊆ S
giving relative compactness of (u|S)−1((−∞, α)) in S.

(ii) Here we make use of a lemma.

1 Lemma Let θ ∈ C∞(R) be such that supp(θ) ⊆ [−1, 1] and such that∫
R
θ(x) dx = 1,

∫
R

xθ(x) dx = 0.

For c ∈ Rk
>0 define Mc : Rk

→ R by

Mc(x) =

∫
Rk

max{x1 + y1, . . . , xk + yk}

k∏
j=1

θ
(yj

cj

)
dλ(y).

Then the following statements hold:
(i) Mc is smooth, convex, and nondecreasing in all variables;
(ii) max{x1, . . . , xk} ≤Mc(x) ≤ max{x1 + c1, . . . , xk + ck} for all x ∈ Rk;
(iii) if xj + cj ≤ max{x1 − c1, . . . , x̂j − ĉj, xk − ck} for some j ∈ {1, . . . ,k}, then Mc(x) = Mĉj(x̂j),

where x̂j = (x1, . . . , x̂j, . . . , xk) and ĉj = (c1, . . . , ĉj, . . . , ck), and where ·̂ means the term is
omitted from the list;

(iv) Mc(x + (a, . . . , a)) = Mc(x) + a for all a ∈ R;
(v) if u1, . . . ,uk ∈ Psh(M) ∩ C2(M) satisfy Lev(uj)(Zz) − h(Zz,Zz) ≥ 0 for every Zz ∈ T1,0M,

then the function
z 7→Mc(u1(z), . . . ,uk(z)) , u(z)

is plurisubharmonic and has the property that Lev(u)(Zz) − h(Zz,Zz) ≥ 0 for every Zz ∈

T1,0M.

Proof (i) We have

Mc(x) =

∫
Rk

max{y1, . . . , yk}

k∏
j=1

θ
( y j−x j

c j

)
dλ(y).

using a change of variable, and the smoothness of Mc follows by standard theorems on
dependence of integrals on parameters. Convexity and the nondecreasing property of Mc
follow from the same properties for the function

x 7→ max{x1, . . . , xk}.
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(ii) Note that the support of the function y 7→ θ( y
c j

) is contained in [−c j, c j]. Thus

Mc(x) =

∫
Dk(c,0)

max{x1 + y1, . . . , xk + yk}

k∏
j=1

θ
( y j

c j

)
dλ(y)

For y ∈ Dk(c, 0) we have

max{x1, . . . , xk} ≤ max{x1 + y1, . . . , xk + yk} ≤ max{x1 + c1, . . . , xk + ck}.

This, along with the fact that ∫
Dk(c,0)

k∏
j=1

θ
( y j

c j

)
dλ(y) = 1

gives this part of the result.
(iii) If

x j + c j ≤ max{x1 − c1, . . . , x̂ j − ĉ j, xk − ck}

then, for y ∈ Dk(c, 0),

x j + y j ≤ x j + c j ≤ xl − cl ≤ xl + yl, l ∈ {1, . . . , ĵ, . . . , k},

and so
max{x1 + y1, . . . , xk + yk} = max{x1 + y1, . . . , x̂ j + ŷ j, . . . , xk + yk}.

This means that the integrand in the definition of Mc is independent of y j except through
the dependence of θ(y j), and the result follows since

∫
R θ(x) dx = 1.

(iv) This follows since

max{x1 + a, . . . , xk + a} = max{x1, . . . , xk} + a

for all x ∈ Rk and a ∈ R.
(v) Plurisubharmonicity of u follows from Proposition 6.1.10(iv) and part (i). Also let

z0 ∈ M and let (U, φ) be aC-chart for M about z0 such that φ(z0) = 0. Let h : U→ Cn×n be the
matrix of components of the Hermitian metric h in these coordinates (which we think of
as itself defining a Hermitian inner product h(z) on Cn for each z ∈ U) and, for j ∈ {1, . . . , k}
and ε ∈ R>0, define a function û j,ε on U by

û j,ε(z) = u j(z) − h(z)(φ(z), φ(z)) + ε‖φ(z)‖2.

Then, using the first part of the proof of this part of the lemma, we have that

z 7→Mc(u1,ε(z), . . . ,uk,ε(z))

is plurisubharmonic. By part (iv) we have

Mc(u1,ε(z), . . . ,uk,ε(z)) = Mc(u1(z), . . . ,uk(z)) − h(z)(φ(z), φ(z)) + ε‖φ(z)‖2.
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Since the function on the left is plurisubharmonic, we can apply Proposition 6.1.10(i) in
the limit as ε→ 0 to deduce that the function

z 7→Mc(u1(z), . . . ,uk(z)) − h(z)(φ(z), φ(z))

is plurisubharmonic. It follows from Proposition 3.2.12 and (6.3) that its Levi form is
nonnegative evaluated on any vector field Z ∈ Γ∞(T1,0U). But this Levi form is precisely
Lev(u)(Z) − h(Z,Z), which gives the result. H

Now let u j be a smooth plurisubharmonic exhaustion function on S j, j ∈ {1, . . . , k} so
that, as in the previous part of the proof, u j|S is also a smooth plurisubharmonic exhaustion
function (and is strictly plurisubharmonic if u j is) for each j ∈ {1, . . . , k}. Then, using the
construction of the lemma above, the function

u : z 7→M(1,...,1)(u1(z), . . . ,uk(z))

is smooth and plurisubharmonic on S. Moreover, if each of the functions u1, . . . ,uk is
strictly plurisubharmonic, then so too is u. These fact follow from part (v) of the lemma
above. It remains to show that u is an exhaustion function. Let α ∈ R and, using part (ii)
from the previously cited lemma, compute

u−1((−∞, α)) = {z ∈ S | M(1,...,1)(u1(z), . . . ,uk(z)) < α}
⊆ {z ∈ S | max{u1(z), . . . ,u j(z)} < α}

⊆ ∩
j
j=1 {z ∈ S | u j(z) < α}.

Since the sets u−1
j ((−∞, α)), j ∈ {1, . . . , k}, are relatively compact and since S is a closed

submanifold, it follows that u−1((−∞, α)) is also relatively compact, as desired.
(iii) Let u and v be smooth plurisubharmonic exhaustion functions on S and T, re-

spectively. We claim that u + Φ∗v is a smooth plurisubharmonic exhaustion function on
S ∩Φ−1(T). Under the existing hypothesis that S ∩Φ−1(T) is a holomorphic submanifold,
it follows that u + Φ∗v is smooth on S ∩ Φ−1(T) (this is standard) and plurisubharmonic
(by Lemma 3.2.11 and locality of plurisubharmonicity). Moreover, it u and v are strictly
plurisubharmonic, then so too is u + Φ∗v (again by Lemma 3.2.11).

It remains to show that u+Φ∗v is an exhaustion function. Letα ∈ R. Let K1 ⊆ S∩Φ−1(T)
be a compact set such that u(z) > α for all z ∈ (S ∩ Φ−1(T)) \ K1, this being possible by
Lemma 3.3.2 and the fact that u is an exhaustion function. Let K2 ⊆ S ∩ Φ−1(T) be such
that v ◦Φ(z) > α for all z ∈ (S ∩ Φ−1(T)) \ K2. This is possible because Φ maps compact
sets onto compact sets and is surjective onto T, and since v is an exhaustion function. Let
K = K1 ∪ K2. Then u(z) + Φ∗v(z) > α for all z ∈ (S ∩ Φ−1(T)) \ K. Another application
of Lemma 3.3.2 allows us to conclude that since u + Φ∗v is an exhaustion function on
S ∩Φ−1(T).

(iv) Let v be a plurisubharmonic (resp. strictly plurisubharmonic) exhaustion function.
Without loss of generality, suppose that α is such that u−1((−∞, α)) , ∅. In this case we
claim that the function

σ(z) = v(z) +
1

α − u(z)
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is a smooth plurisubharmonic (resp. strictly plurisubharmonic) exhaustion function on
u−1((−∞, α)). The smoothness of σ is clear. If (U, φ) is a C-chart for M with coordinates
(z1, . . . , zn), then we compute

∂2(σ ◦φ−1)
∂z j∂z̄k

(z) =
∂2(v ◦φ−1)
∂z j∂z̄k

(z)

+
2

(α − u ◦φ−1(z))3

∂(u ◦φ−1)
∂z j (z)

∂(u ◦φ−1)
∂z̄k

(z) +
1

(α − u ◦φ−1(z))2

∂2(u ◦φ−1)
∂z j∂z̄k

(z),

from which we deduce that Lev(σ)(Zz) > 0 for nonzero Zz ∈ T1,0M. Thus σ is strictly
plurisubharmonic.

It remains to show that σ is an exhaustion function. Let β ∈ R. Let K′ ⊆ M be such
that v(z) > β for all z ∈ M \ K′, this being possible by Lemma 3.3.2 and the fact that v is
an exhaustion function. Let C ⊆ u−1((−∞, α)) be such that 1

α−u(z) > β for all z ∈ C. Let
K = K′ ∩ C so that K is compact and σ(z) > β for all z ∈ (u−1((−∞, α))) \ K since 1

α−u(z) > 0
for all z ∈ u−1((−∞, α)). By Lemma 3.3.2 we conclude that σ is an exhaustion function. �

6.1.4 Connections between holomorphic convexity and pseudoconvexity

We close this section by considering connections between the two forms of convex-
ity we have introduced.

6.1.22 Theorem (Holomorphically convex manifolds are weakly pseudoconvex) If M is
a holomorphically convex holomorphic manifold, then it is weakly pseudoconvex.

Proof By Proposition 6.1.5(iii) let (K j) j∈Z>0 be a sequence of compact subsets of M such
that

1. hconvM(K j) = K j,
2. K j ⊆ int(K j+1) for j ∈ Z>0, and
3. M = ∪ j∈Z>0K j.

Denote L j = K j+2 \ int(K j+1), j ∈ Z>0. For w ∈ L j let fw, j ∈ Chol(M) be such that | fw, j(w)| >
‖ fw, j‖K j , this being possible since w < K j and since hconv(K j) = K j. By rescaling we can
suppose that ‖ fw, j‖K j < 1 and | fw, j(w)| > 1. Let Uw, j be a neighbourhood of w such that

| fw, j(z)| > 1 for all z ∈ Uw, j. Since L j is compact, let w1, . . . ,wk j be such that L j ⊆ ∪
k j

l=1Uwl, j.
Then, for all z ∈ L j we have

max{| fwl, j(z)| | l ∈ {1, . . . , k j}} > 1

and for all z ∈ K j we have

| fwl, j(z)| < 1, l ∈ {1, . . . , k j}.

Now choose m j ∈ Z>0 sufficiently large that

k j∑
l=1

| fwl, j(z)|2m j ≥ j, z ∈ L j
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and
k j∑

l=1

| fwl, j(z)|2m j ≤
1
2 j , z ∈ K j.

Now let

u(z) =

∞∑
j=1

k j∑
l=1

| fwl, j(z)|2m j , z ∈ M.

Clearly this series converges uniformly on compact subsets of M and so converges to
a continuous function. We moreover claim that this function is real analytic and is a
plurisubharmonic exhaustion function.

To see that u is real analytic, we use the following lemma.

1 Lemma If (fj)j∈Z>0 is a sequence of holomorphic functions on a holomorphic manifold M for which
the series

∑
∞

j=1|fj|
2 converges uniformly on compact sets, then the limit function is real analytic and

plurisubharmonic.

Proof Let (U, φ) be a C-chart for M for which φ(U) is a ball in Cn with centre 0. Denote
B = φ(U). Define F j : B ×B→ C by

F j(z,w) = f j ◦φ
−1(z) f j ◦φ−1(w).

We compute
∂F j

∂z̄ j (z,w) =
∂( f j ◦φ−1)

∂z̄ j (z) f j ◦φ−1(w) = 0

and
∂F j

∂w̄ j (z,w) = f j ◦φ
−1(z)

∂( f j ◦φ−1)

∂w̄ j (w) = 0

for every j ∈ {1, . . . ,n} and (z,w) ∈ B × B. Thus F j is holomorphic on B × B. We claim
that

∑
∞

j=1 F j converges uniformly on compact subsets of B × B. Indeed, let K ⊆ B × B be
compact and let ε ∈ R>0. Let K′ ⊆ M be a compact set sufficiently large that φ−1(K) ⊆ K′

and let N ∈ Z>0 be sufficiently large that

l∑
j=k+1

| f j(z)|2 < ε

for z ∈ K′, this being possible since uniformly convergent sequences of continuous func-
tions on compact sets are Cauchy in the ∞-norm. Then, using the Cauchy–Schwarz
inequality,

∣∣∣∣ l∑
j=k+1

F j(z,w)
∣∣∣∣ ≤ l∑

j=k+1

| f j ◦φ
−1(z)|| f j ◦φ−1(w)|

≤

( l∑
j=k+1

| f j ◦φ
−1(z)|2

)1/2( l∑
j=k+1

| f j ◦φ−1(w)|2
)1/2
≤ ε
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for k, l ≥ N with l > k. By completeness of the space of continuous functions on a compact
set in the∞-norm ([Hewitt and Stromberg 1975, Theorem 7.9]), we conclude that we have
the desired uniform convergence on compact sets. Therefore, by , F ,

∑
∞

j=1 F j converges to what

a holomorphic function on B×B. Therefore, the restriction of F to the closed submanifold

D = {(z,w) ∈ B ×B | z = w}

is real analytic. But we have

∞∑
j=1

| f j ◦φ
−1(z)|2 = F(z, z),

showing that the local representative of
∑
∞

j=1| f j|
2 is real analytic, as desired.

To verify that f ,
∑
∞

j=1| f j|
2 is plurisubharmonic we directly compute

Lev( f )|U =

∞∑
j=1

n∑
r,s=1

∂ f j

∂zr

∂ f j

∂z̄s dzr
⊗ dz̄s

for any C-chart (U, φ). From this we see that

Lev( f )(Zz) =

∞∑
j=1

|Zz f j|
2
≥ 0,

giving plurisubharmonicity. H

Finally, we show that u constructed before the lemma is an exhaustion function. Let
α ∈ R and let N ∈ Z>0 be the least integer such that N ≥ α. Then, for every j ≥ N,
u(z) ≥ j ≥ α for every z ∈ L j. Therefore,

u−1((−∞, α)) ⊆ ∩ j≥N(M \ L j) = M \ ∪ j≥NL j ⊆ KN+2.

Thus u−1((−∞, α)) is relatively compact, as desired. �

Note that the theorem does not say that a holomorphically convex manifold is
strongly pseudoconvex; indeed this is false since compact holomorphic manifolds are
holomorphically convex (by Example 6.1.4–2), but not strongly pseudoconvex (by
Proposition 6.1.11). We shall see that the property of a holomorphic manifold being
strongly pseudoconvex is equivalent to its being a Stein manifold (Section 6.3.2).

Moreover, the converse of Theorem 6.1.22 does not hold.

6.1.23 Example (A weakly pseudoconvex manifold that is not holomorphically convex)
Define f 1, f 2 ∈ Chol(C2;C2) by

f 1(z1, z2) = (z1 + 1, eiθ1z2), f 2(z1, z2) = (z1 + i, eiθ2z2)

for some θ1, θ2 ∈ R. Note that each of these maps is a diffeomorphism of the holomor-
phic manifoldC2. Let Γ be the group of holomorphic diffeomorphisms generated by f 1
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and f 2, and let M = C2/Γ be the orbit space and let π : C2
→ M be the canonical projec-

tion. For (z1, z2) ∈ C2, π−1(π(z1, z2)) is a countable union of discrete points possessing
disjoint neighbourhoods that are mapped diffeomorphically to one another by ele-
ments of Γ. Thus each of these neighbourhoods is mapped by π onto a neighbourhood
of π(z1, z2), and in this way M acquires a holomorphic atlas.

We claim that M is weakly pseudoconvex. Indeed, note that the function û : C2
→ R

defined by û(z1, z2) = |z2|
2 is plurisubharmonic and Γ-invariant. Thus there exists a

unique function u : M→ R such that û = π∗u. By Lemma 3.2.11 we have

Lev(û)(Zz) = Lev(u)(Tzπ(Zz)).

Since Tzπ is surjective, we conclude that u is also plurisubharmonic. We can also show
that u is an exhaustion function. Indeed, let α ∈ R and note that

u−1((−∞, α)) = {π(z1, z2) ∈ M | u ◦π(z1, z2) ∈ (−∞, α)}

= π(û−1((−∞, α))).

Continuity of π and relative compactness of û−1((−∞, α)) ensure that u−1((−∞, α)) is
also relatively compact. Thus we conclude that M is indeed weakly pseudoconvex.

Let us now consider whether M is holomorphically convex. Let us first consider
the character of holomorphic functions on M. Such holomorphic functions are in one-
to-one correspondence with Γ-invariant holomorphic functions on C2. Let us suppose
that f̂ ∈ Chol(C2) is Γ-invariant and consider the function z1 7→ f̂ (z1, z2) for z2 ∈ C fixed.
The image of this function is evidently contained in

f̂ ({z1 ∈ C | Re(z1), Im(z1) ∈ [0, 1]} × D1(0, |z2|)).

As this latter set is bounded, the function z1 7→ f̂ (z1, z2) is constant for each z2 ∈ C, i.e., f̂
is independent of z1. From this we conclude that holomorphic functions on M are in
one-to-one correspondence with functions f̂ on C for which

f̂ (eiθ1z2) = f̂ (eiθ2z2) = f̂ (z2)

for every z2 ∈ C. If either θ1 or θ2 are irrational, this implies that f̂ is constant on circles
with centre at 0. By the polar coordinate form of the Cauchy–Riemann equations,

∂Re( f )
∂r

=
1
r
∂ Im( f )
∂θ

,
∂ Im( f )
∂r

= −
1
r
∂Re( f )
∂θ

,

it follows that f̂ is constant if θ1 or θ2 is irrational. Moreover, if θ1 and θ2 are rational
and if their least common denominator is k ∈ Z>0, then any convergent power series
of the form

∑
∞

j=0 a jz
jk
2 is easily verified to be a Γ-invariant holomorphic function.

We claim that M is holomorphically convex if and only if θ1 and θ2 are rational.
First of all if one of θ1 and θ2 are irrational, the only holomorphic functions on M are
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constant functions. Therefore, for any compact K ⊆ M, hconvM(K) = M and, since M is
not compact (the function π(z1, z2) 7→ |z2|

2 is an unbounded continuous function on M),
it follows that M is not holomorphically convex. Conversely, suppose thatθ1 andθ2 are
rational with least common denominator k ∈ Z>0. Let K ⊆ M be compact and suppose
that hconvM(K) is not compact. Then L̂ = π−1(hconvM(K)) is a closed set projecting
to hconvM(K). Since π(L̂) is not compact, it must be unbounded. Let us consider
the Γ-invariant holomorphic function f̂ (z1, z2) = zk

2 on C2. Since L̂ is unbounded, f̂ is
unbounded on L̂. Thus the induced function f ∈ Chol(M) is unbounded on hconvM(K).
This, however, contradicts the fact that | f (π(z1, z2))| ≤ ‖ f ‖K for π(z1, z2) ∈ hconvM(K).
Therefore, hconvM(K) is compact and so M is holomorphically convex.

In any event, by taking θ1 and θ2 irrational, we have an example of a holomorphic
manifold that is weakly pseudoconvex but not holomorphically convex. •

6.2 Hörmander’s solution to the ∂-problem on manifolds

In this section we present the solution of Hörmander [1965] to the ∂̄-problem.
Hörmander makes great use of the solution of the ∂̄-problem and the techniques
associated with the solution to investigate many problems of interest in complex
analysis and complex differential geometry. We shall use the existence theorems for
the ∂̄-problem that we prove in this section to solve the Levi problem on manifolds in
Section 6.3.2.

6.2.1 Formulation of ∂-problem and its solution method

Let M be a holomorphic manifold and let u ∈ Γ∞(
∧r,s(T∗CM)) and f ∈

Γ∞(∧r,s+1(T∗CM)). The ∂̄-problem on manifolds asks when the condition that ∂̄ f = 0 is
sufficient for the existence of solutions to the equation ∂̄u = f (the condition is clearly
necessary). This is an example of an overdetermined system of partial differential
equations, and so the question is whether the obvious integrability condition ∂̄ f = 0 is
sufficient for the existence of solutions. In the real analytic category, such problems can
be studied locally using formal methods built around the Cartan–Kähler theory [e.g.,
Goldschmidt 1967]. In the smooth case and when one wants global solutions, these
local methods do not give the required existence theorems, and other methods must
be employed. The solution of the ∂̄-problem by Hörmander [1965] uses Hilbert space
techniques. Specifically, the problem is first studied when the data u and f are differ-
ential forms with coefficients in appropriately defined L2-spaces. In this section we
give the machinery required to formulate the problem in this way.

We let M be a second countable holomorphic manifold. To define the appropriate
L2-spaces requires a Hermitian inner product on the tangent spaces of M. We thus let h
be a smooth Hermitian metric on M, the existence of which is proved in Theorem 4.9.2.



28/02/2014 6.2 Hörmander’s solution to the ∂-problem on manifolds 19

Locally in a C-chart (U, φ) we write

h|U =

n∑
j,k=1

h jkdz j
⊗ dz̄k

for smooth functions h jk ∈ C∞(U;C) satisfying hkj = h̄ jk, j, k ∈ {1, . . . ,n}, cf. Proposi-
tion 4.1.23. Let h jk

∈ C∞(U;C), j, k ∈ {1, . . . ,n}, be defined by

n∑
k=1

h jkhkl = δ j
l , j, l ∈ {1, . . . ,n}.

We can then define an inner product on the fibres of
∧1,0(T∗CM) by

〈α, β〉|U =

n∑
j,k=1

h jkα jβ̄k,

if

α|U =

n∑
j=1

α jdz j, β|U =

n∑
j=1

β jdz j.

It will be convenient to use local bases other than the coordinates bases, bases that are
orthonormal with respect to h. Thus, in a chart (U, φ) we let (ω1, . . . , ωn) be a basis of∧1,0(T∗CM) that is orthonormal with respect to the inner product induced by h; this
can be done via the usual Gram–Schmidt procedure. The inner product can be easily
extended to differential forms of general bidegree. Thus we let α, β ∈ Γ∞(

∧r,s(T∗CM))
and write

α =
∑

′

I∈nr

∑
′

J∈ns

αI,Jω
I
∧ ω̄J, β =

∑
I∈nr

∑
J∈ns

βI,Jω
I
∧ ω̄J,

where, as usual,
∑
′ denotes sum over multi-indices that are increasing and where

ωI = ωi1 ∧ · · · ∧ ωir , ω̄J = ω̄ j1 ∧ · · · ∧ ω̄ js .

We then define
〈α, β〉 =

∑
′

I∈nr

∑
′

J∈ns

αI,Jβ̄I,J.

It is a straightforward verification, using the change of basis formula, that this defini-
tion of the inner product is independent of the orthonormal basis. In the usual manner,
we denote ‖α‖ =

√
〈α, α〉.

We now define a sequence of functions that will be useful in our constructions.



20 6 Stein and real analytic manifolds 28/02/2014

6.2.1 Lemma (A sequence of cutoff functions) Let M be a second countable holomorphic
manifold. There exists a sequence (χj)j∈Z of smooth functions with the following properties:

(i) χj has compact support for each j ∈ Z>0;
(ii) χj(z) ∈ [0, 1] for all z ∈ M;
(iii) for any compact set K ⊆ M, there exists N ∈ Z>0 such that χj(z) = 1 for all z ∈ K and

j ≥ N.
Moreover, given such a sequence (χj)j∈Z>0 , there exists a Hermitian metric h on M such that
‖∂̄χj(z)‖ ≤ 1 for all j ∈ Z>0 and z ∈ M.

Proof By [Aliprantis and Border 2006, Lemma 2.76] we let (K j) j∈Z>0 be a sequence of
compact subsets of M such that K j ⊆ int(K j), j ∈ Z>0, and such that M = ∪∞j=1K j. Using
the discussion in [Abraham, Marsden, and Ratiu 1988, §5.5], let χ j ∈ C∞(M) be such that
χ j(z) ∈ [0, 1], χ j(z) = 1 for z ∈ K j and χ j(z) = 0 for z ∈ M \ int(K j+1). This sequence clearly
has the desired properties.

Now let h′ be an arbitrary Hermitian metric. For each j ∈ Z>0, the one-form ∂̄χ j is
nonzero on at most int(K j+1) \ K j. Thus there exists m ∈ C∞(M;R>0) such that

‖∂̄χ j(z)‖′ ≤ m(z), z ∈ M, j ∈ Z>0,

where ‖·‖′ denotes the norm induced by h′. By taking h = m2h′ we see that h has the
desired property. �

6.2.2 Notation (Standing constructions) For the remainder of this section we assume that
a sequence (χ j) j∈Z>0 of smooth functions and a Hermitian metric h have been chosen
satisfying the condition of the lemma. Along with this construction comes the compact
exhaustion (K j) j∈Z>0 used to define the sequence (χ j) j∈Z>0 . We let µ be the volume form
induced by the Hermitian metric. Precisely, we define µ = 1

n!ω
n, where ω is the two-

form of bidegree (1, 1) given by ω(X,Y) = h(J(X),Y). The integral with respect to µ we
denote by

∫
M

dµ(z). •

Now we introduce the function spaces we use. By L2
loc(

∧r,s(T∗CM)) we denote the
set of maps α : M→

∧r,s(T∗CM) with the property that, if we write α in a C-chart (U, φ)
as

α|U =
∑

′

I∈nr

∑
′

J∈ns

αI,JdzI
∧ dz̄J,

the coefficients αI,J are measurable and with the property that∫
K
‖α(z)‖2 dµ(z) < ∞

for every compact K ⊆ M. Next suppose that ϕ ∈ C∞(M) and let L2
ϕ(

∧r,s(T∗CM)) be the
set of maps α : M→

∧r,s(T∗CM) with the property that, if we write α in a C-chart (U, φ)
as

α|U =
∑

′

I∈nr

∑
′

J∈ns

αI,JdzI
∧ dz̄J,
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the coefficients αI,J are measurable and with the property that

‖α‖ϕ ,
(∫

M
‖α(z)‖2e−ϕ(z)dµ(z)

)1/2
< ∞.

we also denote

〈α, β〉ϕ =

∫
M
〈α(z), β(z)〉e−ϕ(z)dµ(z).

The choice of the weight ϕ will come up as a technical device rather near the end of
the proof.

We wish to define the operator ∂̄ on L2
ϕ(

∧r,s(T∗CM)). To do this we denote by
D(

∧r,s(T∗CM)) (borrowing notation from the theory of distributions) the set of smooth
forms of bidegree (r, s) with compact support.

6.2.3 Lemma (Density of smooth compactly supported forms) The subspace
D(

∧r,s(T∗CM)) is dense in L2
ϕ(

∧r,s(T∗CM)). Moreover,

∂̄ : D(
∧r,s(T∗CM))→ D(

∧r,s+1(T∗CM))

is a closable linear operator in the L2
ϕ-topology.

Proof Let us abbreviate

L2
ϕ(M; r, s) = L2

ϕ(
∧r,s(T∗CM)),

D(M; r, s) = D(
∧r,s(T∗CM)).

Let (χ j) j∈Z>0 be the sequence of smooth functions from Notation 6.2.2. We claim that if
α ∈ L2

ϕ(M; r, s) then the sequence (χ jα) j∈Z>0 converges to α in the L2
ϕ-norm. Indeed, the

sequence (y j) j∈Z>0 in R≥0 defined by

y j =

∫
M\K j+1

‖χ j(z)α(z)‖2e−ϕ(z) dµ(z)

is a decreasing sequence. Moreover, by the Dominated Convergence Theorem, the se-
quence (y j) j∈Z>0 converges to 0. Thus, for ε ∈ R>0, let N ∈ Z>0 be sufficiently large that
y j < ε2 for j ≥ N. We then have

‖α − χ jα‖
2
ϕ = y j < ε

2,

giving the desired convergence.
Now we approximate compactly supported forms in L2

ϕ(M; r, s) by elements of
D(M; r, s). Let K ⊆ M be compact and let α ∈ L2

ϕ(M; r, s) have support in K. For z ∈ K
let (Uz, φz) be a C-chart for M about z. By the usual regularisation procedure (e.g., using
convolution [e.g., Kecs 1982]) in the chart codomain, there is a neighbourhood Vz ⊆ Uz
and sequence (βz, j) j∈Z>0 of smooth forms of bidegree (r, s) with compact support in Uz such
that

lim
j→∞

∫
M
‖βz, j(ζ) − χVz(ζ)α(ζ)‖2e−ϕ(ζ) dµ(ζ) = 0,
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with χVz being the characteristic function of Vz. By compactness let z1, . . . , zk ∈ K be such
that K ⊆ ∪k

l=1Vzl . Let (ρ1, . . . , ρk, ρk+1) be a partition of unity subordinate to the open cover
(Vz1 , . . . ,Vzk ,M \K) [Abraham, Marsden, and Ratiu 1988, Theorem 5.5.12]. Let ε ∈ R>0 and
choose N ∈ Z>0 sufficiently large that∫

M
‖βzl, j(ζ) − χVzl

(ζ)α(ζ)‖2e−ϕ(ζ) dµ(ζ) <
ε2

k
, j ≥ N, l ∈ {1, . . . ,N}.

This implies that∫
M
‖ρl(ζ)βzl, j(ζ) − ρl(ζ)χVzl

(ζ)α(ζ)‖2e−ϕ(ζ) dµ(ζ) <
ε2

k
, j ≥ N, l ∈ {1, . . . ,N},

since ρl(ζ) ∈ [0, 1], l ∈ {1, . . . , k}, z ∈ M. Let

β j(ζ) =

k∑
l=1

ρl(ζ)βzl, j(ζ), j ∈ Z>0, ζ ∈ M,

noting that this sum makes sense for every ζ ∈ M. Also note that

k∑
l=1

ρl(ζ)χVzl
(ζ)α(ζ) =

k∑
l=1

ρl(ζ)α(ζ) = α(ζ), ζ ∈ M.

Thus ∫
M
‖β j(ζ) − α(ζ)‖2e−ϕ(ζ) dµ(ζ) < ε2, j ≥ N.

Since β j has compact support for each j ∈ Z>0, we get the desired approximation of forms
in L2

ϕ(M; r, s) by forms in D(M; r, s).
Next let α ∈ L2

ϕ(M; r, s) be arbitrary and let ε ∈ R>0. From the first paragraph of the
proof, let N ∈ Z>0 be sufficiently large that ‖α − χ jα‖ϕ <

ε
2 for j ≥ N. From the second

paragraph of the proof let β ∈ D(M; r, s) be such that ‖χ jα−β‖ϕ <
ε
2 . The triangle inequality

then gives ‖α − β‖ < ε which proves the first part of the lemma.
For the second part of the proof we will show that ∂̄ restricted to D(M; r, s) is closable

in L2
ϕ(M; r, s). Thus we will show that for any sequence (β j) j∈Z>0 in D(M; r, s) converging

to 0 in L2
ϕ(M; r, s) and for which (∂̄β j) j∈Z>0 converges to α ∈ L2

ϕ(M; r, s + 1) in the L2
ϕ-norm,

it holds that α = 0, cf. Proposition E.1.4. As above, since α ∈ L2
ϕ(M; r, s), for ε ∈ R>0

there exists a compact set K such that ‖χM\Kα‖ϕ < ε. Now let U1, . . . ,Uk be coordinate
neighbourhoods whose images under the corresponding C-chart maps φ1, . . . , φk are balls
centred at 0 ∈ Cn. Let (ρ1, . . . , ρk+1) be a smooth partition of unity subordinate to the
open cover (U1, . . . ,Uk,M \ K). Since the functions ρl, l ∈ {1, . . . , k}, are bounded, we easily
deduce that each of the sequences (ρlβ j) j∈Z>0 , l ∈ {1, . . . , k}, converges to zero in L2

ϕ(Ul; r, s).
Similarly, (ρl∂̄β j) j∈Z>0 converges to ρlα in L2

ϕ(Ul; r, s + 1) for l ∈ {1, . . . , k}. If we think of ∂̄
as being defined on D ′(Ul; r, s) (the latter being distributions on Ul acting on test functions
that are smooth compactly supported (r, s)-forms), the fact that (ρl∂̄β j) j∈Z>0 converges to
ρlα in L2

ϕ(Ul; r, s) means that (ρl∂̄β j) j∈Z>0 converges to ρlα in D ′(Ul; r, s + 1) [Renardy and
Rogers 1993, Remark 6.15]. Note that

ρl∂̄β j = ∂̄(ρlβ j) − ∂̄ρl ∧ β j.



28/02/2014 6.2 Hörmander’s solution to the ∂-problem on manifolds 23

Since differentiation of distributions and multiplication by smooth functions are continu-
ous operations on distributions, it follows that (∂̄(ρlβ j)) j∈Z>0 converges to 0 in D ′(Ul; r, s+1).
Since multiplication by smooth functions is a continuous operation on distributions, so is
wedge product. Thus (∂̄ρl ∧ β j) j∈Z>0 converges to 0 in D ′(Ul; r, s + 1). Thus (ρl∂̄β j) j∈Z>0 con-
verges to 0 in D ′(U;R). Since the Lp-spaces are injectively included is the corresponding
distribution spaces [Renardy and Rogers 1993, Lemma 6.16], this means that ρlα is 0 in
L2
ϕ(Ul; r, s + 1). Therefore, for any ε ∈ R>0,

‖α‖ϕ ≤
k+1∑
l=1

‖ρlα‖ϕ < ε,

since the functions ρl, l ∈ {1, . . . , k + 1}, take values in [0, 1]. Thus ∂̄ is closable in L2
ϕ(M; r, s)

as claimed. �

From the lemma, we can extend ∂̄ from the subspace of compactly supported forms
to unique closed linear maps

T : L2
ϕ(

∧r,s(T∗CM))→ L2
ϕ(

∧r,s+1(T∗CM)) (6.4)

and
S : L2

ϕ(
∧r,s+1(T∗CM))→ L2

ϕ(
∧r,s+2(T∗CM)) (6.5)

with dense domains containing D(
∧r,s(T∗CM)). The ∂̄-problem in L2 then becomes to

show that image(T) = ker(S), noting that the inclusion image(T) ⊆ ker(S) is obvious.
We do this by first establishing a few general Hilbert space results.

6.2.2 General Hilbert space inequalities

In this section we translate the solution of the ∂̄-problem in L2 into the establishment
of an estimate, namely that of the following lemma.

6.2.4 Lemma (A general Hilbert space estimate) Let H and G beC-Hilbert spaces, let T: H→
G be a closed linear map defined on a dense subset dom(T) of H, and let F ⊆ G be a closed
subspace for which image(T) ⊆ F. Then image(T) = F if and only if there exists C ∈ R>0

such that ‖f‖G ≤ C‖T∗(f)‖H for all f ∈ F ∩ dom(T∗).
Moreover, if this equality is satisfied, then, for each g ∈ F and u ∈ H such that T(u) = g,

we have ‖u‖H ≤ ‖g‖G.
Proof First suppose that there exists C ∈ R>0 such that ‖ f ‖G ≤ C‖T∗( f )‖H for all f ∈
F ∩ dom(T∗). Let g ∈ F and let f ∈ dom(T∗). Let us write f = f1 + f2 for f1 ∈ F and f2 ∈ F⊥

(the orthogonal complement of F). We then have

|〈g, f 〉G| = |〈g, f1〉|G ≤ ‖g‖G‖ f1‖G ≤ ‖g‖G‖ f ‖G ≤ C‖g‖G‖T∗( f )‖H,

using the Cauchy–Schwartz inequality and the hypotheses of the lemma. This shows that
the linear map from image(T∗) toC defined by T∗( f ) 7→ 〈g, f 〉G on image(T∗) is bounded by
C‖g‖G, and moreover is C-antilinear. Let P : H → image(T∗) be the orthogonal projection
and consider the map from H to C defined by v 7→ 〈g, f 〉G, where f ∈ dom(T∗) is such that
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P(v) = T∗( f ). By the Riesz Representation Theorem, let u ∈ H be such that 〈u, v〉H = 〈g, f 〉G
for every v ∈ H and where P(v) = T∗( f ). We then have 〈u,T∗( f )〉H = 〈g, f 〉G for every
f ∈ dom(T∗). Thus 〈T(u), f 〉G = 〈g, f 〉G for every f ∈ dom(T∗) since T∗∗ = T [Reed and
Simon 1980, Theorem VIII.1]. Thus T(u)− g ∈ dom(T∗)⊥ and so T(u)− g = 0 again by [Reed
and Simon 1980, Theorem VIII.1].

For the converse, suppose that image(T) = F. We will first show that the set

B = { f ∈ F ∩ dom(T∗) | ‖T∗( f )‖H ≤ 1}

is bounded. For this it is sufficient to show that the function f 7→ 〈 f , g〉 on B is bounded
for every g ∈ G. Write g = g1 + g2 for g1 ∈ F and g2 ∈ F⊥. Let u ∈ H be such that T(u) = g1.
Then, for f ∈ B,

|〈 f , g〉G| = |〈 f , g1〉G| = |〈T∗( f ),u〉H| ≤ ‖u‖H

since T∗∗ = T [Reed and Simon 1980, Theorem VIII.1]. Thus B is indeed bounded. Then
there exists C ∈ R>0 such that B ⊆ B(C, 0). Now let f ∈ F ∩ dom(T∗) so that f

‖T∗( f )‖H
∈ B ⊆

B(C, 0) and so ‖ f ‖G ≤ C‖T∗( f )‖H, as desired.
For the final assertion, note that

T(u) = g ⇐⇒ 〈u,T∗( f )〉H = 〈g, f 〉G, f ∈ dom(T∗).

We also showed that |〈u,T∗( f )〉H| ≤ C‖g‖G‖T∗( f )‖H. By the Hahn–Banach Theo-
rem [Kreyszig 1978, Theorem 4.2-1] applied to the map

image(T∗) 3 T∗( f ) 7→ 〈u,T∗( f )〉H2 ∈ C,

we extend this map to all of H by requiring it to be zero on image(T∗)⊥, and note that the
resulting map is bounded by C‖g‖G. This resulting map, however, is simply the element
of H∗ defined by u under the Riesz Representation Theorem. Thus ‖u‖H ≤ C‖g‖G. �

Our solution of the ∂̄-problem in L2 will consist of showing that the estimate of the
lemma holds for T = ∂̄ in strongly pseudoconvex manifolds. To do so, we shall use
the operator S defined by (6.5) and establish instead the estimate

‖ f ‖2ϕ ≤ C2(‖T∗( f )‖2ϕ + ‖S( f )‖2ϕ),

which gives the estimate of Lemma 6.2.4 when the subspace F of the lemma is taken
to be ker(S).

Some of the important consequences of the solution of the ∂̄-problem will rely on
another general Hilbert space estimate that we now give.

6.2.5 Lemma (Another general Hilbert space estimate) Let H and G be C-Hilbert spaces,
let T: H → G be a closed linear map defined on a dense subset dom(T) of H, and let F ⊆ G
be a closed subspace for which image(T) ⊆ F. Suppose that there exists C ∈ R>0 such that
‖f‖G ≤ C‖T∗(f)‖H for all f ∈ F ∩ dom(T∗). Then, for v ∈ ker(T)⊥, there exists f ∈ dom(T∗)
such that v = T∗(f) and such that ‖f‖G ≤ C‖v‖H.
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Proof We have
v ∈ ker(T)⊥ = (image(T∗)⊥)⊥ = cl(image(T∗))

using the fact that the orthogonal complement of the orthogonal complement of a subspace
is the closure of the subspace, cf. [Kreyszig 1978, Lemma3.3-6]. Also, using Theorem E.1.8,

F ⊇ image(T) =⇒ F⊥ ⊆ image(T)⊥ = ker(T∗).

Thus, if we write g ∈ dom(T∗) as g = g1 + g2 for g1 ∈ F and g2 ∈ F⊥, we have T∗( f ) =
T∗( f1), i.e., image(T∗) = T∗(F∩dom(T∗)). The condition ‖ f ‖G ≤ C‖T∗( f )‖H, f ∈ F∩dom(T∗),
implies that T∗(F ∩ dom(T∗)) is closed [Kato 1980, Theorem IV.5.2]. Thus, if v ∈ ker(T)⊥ =
cl(image(T∗)) there exists f ∈ F ∩ dom(T∗) such that v = T∗( f ). The lemma now follows
directly from the hypotheses. �

These general results involve the adjoint operator T∗, and so we need to say a few
things about this operator.

6.2.3 Estimates for ∂ and its adjoint

The results of Section 6.2.2 illustrate that one needs to understand the adjoint of
T. In this section we undertake to understand those facets of this adjoint that will be
important, as well as some similar elementary facets of the operator S.

First we give a local coordinate expression for S and T∗. In order to do so, it is
convenient to exploit notation associated with an h-orthonormal local basis ω1, . . . , ωn

for
∧1,0(T∗CM). In particular, for a C-chart (U, φ) and for f ∈ C∞(U;C), we define ∂ f

∂ω j

and ∂ f
∂ω̄ j , j ∈ {1, . . . ,n}, by

dC f =

n∑
j=1

( ∂ f
∂ω jω

j +
∂ f
∂ω̄ j ω̄

j
)
.

The exact expressions for ∂ f
∂ω j and ∂ f

∂ω̄ j are easily determined by the change of basis
formula. To wit, if ω j =

∑n
k=1ω

j
kdzk, then

∂ f
∂ω j =

n∑
k=1

νk
j

∂ f
∂zk

,
∂ f
∂ω̄ j =

n∑
k=1

ν̄k
j

∂ f
∂z̄k

, j ∈ {1, . . . ,n},

where
∑n

l=1ω
j
lν

l
k = δ j

k. Note that if u ∈ Γ∞(
∧r,s(T∗CM)) is locally given by

u =
∑

′

I∈ns

∑
′

J∈nr

uI,Jω
I
∧ ω̄J,

then we can locally write

∂̄u|U = (−1)r
∑

′

I∈ns

∑
′

J∈nr

n∑
j=1

∂uI,J

∂ω̄ j ω
I
∧ ω̄ j

∧ ω̄J +
∑

′

I∈ns

∑
′

J∈nr

αI,JuI,J,
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where αI,J ∈ Γ∞(
∧r,s+1(T∗CM)). For f ∈ Γ∞(

∧r,s+1(T∗CM)), let us abbreviate

A( f ) = (−1)r
∑

′

I∈ns

∑
′

J∈nr

n∑
j=1

∂uI,J

∂ω̄ j ω
I
∧ ω̄ j

∧ ω̄J. (6.6)

The following lemma then gives an estimate for the operator S.

6.2.6 Lemma (An estimate for S(f)) Let (U, φ) be a C-chart for M and let K ⊆ U be a compact
set. Then there exists C1 ∈ R>0 such that, for any f ∈ D(

∧r,s+1(T∗CM)) with support contained
in K, ‖S(f) −A(f)‖ ≤ C1‖f‖. Moreover,

‖A(f)(z)‖2 =
∑

′

I∈nr

∑
′

J∈ns+1

n∑
j=1

∣∣∣∣∂fI,J

∂ω̄j (z)
∣∣∣∣2 −∑

′

I∈nr

∑
′

J∈ns

n∑
j,k=1

∂fI,jJ

∂ω̄k
(z)
∂fI,kJ

∂ω̄j (z).

Proof For j, k ∈ {1, . . . ,n} and J,K ∈ ns, define

ε
jJ
kK =

sign
(

jJ
kK

)
, j < J, k < K, { j} ∪ J = {k} ∪ K,

0, otherwise.

One then directly verifies that

‖A( f )(z)‖2 =
∑

′

I∈nr

∑
′

J,K∈ns+1

n∑
j,k=1

∂ fI,J
∂ω̄ j (z)

∂ fI,K
∂ω̄k

(z)ε jJ
kK.

Let us examine this expression. First consider terms in the sum with j = k. For the
corresponding term to be nonzero, we must have k = j and j < J. Thus the terms for which
j = k sum to ∑

′

I∈nr

∑
′

J∈ns+1

∑
j<J

∣∣∣∣∂ fI,J
∂ω̄ j (z)

∣∣∣∣2. (6.7)

Now we consider terms in the sum for which j , k. In order for ε jJ
kK to be nonzero, we

must have j ∈ K, k ∈ J, and J \ {k} = K \ { j} , L. One readily verifies that ε jJ
lLε

lL
kK = ε

jJ
kK for

every j, k, l, J, K, and L. Thus, for the particular j, k, l, J, K, and L given the assumptions
we are making, we have

ε
jJ
kK = ε

jJ
jkLε

jkL
kjLε

kjL
kK = −ε

jJ
jkLε

kjL
kK = −εJ

kLε
jL
K .

This gives the terms corresponding to j , k to be

−

∑
′

I∈nr

∑
′

L∈ns

n∑
j,k=1
j,k

∂ fI,kL

∂ω̄ j (z)
∂ fI, jL
∂ω̄k

(z). (6.8)

Now note that by taking j = k in the inner sum of the preceding expression we get∑
′

I∈nr

∑
′

L∈ns

∣∣∣∣∂ fI, jL
∂ω̄ j (z)

∣∣∣∣2 =
∑

′

I∈nr

∑
′

J∈ns+1

j∈J

∣∣∣∣∂ fI,J
∂ω̄ j (z)

∣∣∣∣2. (6.9)
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Combining (6.7) and (6.8), and using the equality (6.9), we arrive at the formula of the
lemma. �

Now we arrive at a similar estimate for T∗. We do so by also providing a local form
for T∗. To do this, we use the notation

δ j(g) = eϕ
∂(e−ϕg)
∂ω j , j ∈ {1, . . . ,n},

where g is, for the sake of generality, a distribution defined on a C-chart domain U.
With this notation in hand we define

B( f ) = (−1)r−1
∑

′

I∈nr

∑
′

J∈ns

n∑
j=1

δ j( fI, jJ)ωI
∧ ω̄J, (6.10)

for f ∈ dom(T∗) with support in the chart domain U given by

f =
∑
I∈nr

∑
J∈ns+1

fI,Jω
I
∧ ω̄J.

With this notation we have the following lemma.

6.2.7 Lemma (A local expression and an estimate for T∗) If f ∈ dom(T∗) has support in a
C-chart domain U for M, then T∗(f) = B(f) + β(f), where β is a differential operator of order
zero, i.e., β(f) is an expression linear in f and involving no derivatives of f. Moreover β is
independent of ϕ.

Consequently, if K ⊆ U is compact then there exists C2 ∈ R>0 such that ‖T∗(f) − B(f)‖ ≤
C2‖f‖ for f ∈ D(

∧r,s+1(T∗CM)) having compact support contained in K.
Proof Let

u =
∑

′

I∈nr

∑
′

J∈ns

uI,Jω
I
∧ ω̄J

∈ D(
∧r,s(T∗CU))

and
f =

∑
′

I∈nr

∑
′

J∈ns+1

fI,JωI
∧ ω̄J

∈ L2
ϕ(

∧r,s(T∗CU)).

If f ∈ dom(T∗) then we have∫
U

∑
′

I∈nr

∑
′

J∈ns

(T∗( f ))I,J(z)uI,J(z)e−ϕ(z) dµ(z) = 〈T∗( f ),u〉ϕ = 〈 f ,T(u)〉ϕ

= (−1)r
∫
U

∑
′

I∈nr

∑
′

J∈ns

n∑
j=1

fI, jJ(z)
∂uI,J

∂ω̄ j (z)e−ϕ(z) dµ(z)

+

∫
U

∑
′

I∈nr

∑
′

J∈ns+1

〈 f (z), αI,J(z)〉uI,J(z)e−ϕ(z) dµ(z)

= (−1)r−1
∫
U

∑
′

I∈nr

∑
′

J∈ns

n∑
j=1

∂(e−ϕ fI, jJ)

∂ω j (z)uI,J(z) dµ(z)

+

∫
U

∑
′

I∈nr

∑
′

J∈ns+1

〈 f (z), αI,J(z)〉uI,J(z)e−ϕ(z) dµ(z),
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using the distributional derivative. Here the terms αI,J depend on u, but not on the
derivatives of u. Matching coefficients gives

(T∗( f ))I,J = (−1)r−1
n∑

j=1

eϕ
∂(e−ϕ fI, jJ)

∂ω j + β( f ),

as asserted in the first part of the lemma.
The second assertion of the lemma follows immediately from the first. �

We will also need a technical lemma regarding dom(T∗).

6.2.8 Lemma If χ ∈ D(M;R) and if f ∈ dom(T∗), then χf ∈ dom(T∗).
Proof For u ∈ dim(T) we compute

〈χ f ,T(u)〉ϕ = 〈 f , χT(u)〉ϕ = 〈 f ,T(χu)〉ϕ + 〈 f , χT(u) − T(χu)〉ϕ
= 〈χT∗( f ),u〉ϕ − 〈 f , ∂̄χ ∧ u)〉ϕ.

This last expression is continuous in u and so there exists u′ ∈ L2(M; r, s) such that 〈u′,u〉 =
〈χ f ,T(u)〉 for every u ∈ dom(T). This is the definition for χ f to be in dom(T∗) and,
moreover, gives T∗(χ f ) = v. �

6.2.4 Reduction to smooth compactly supported forms

In this section we show that it is possible to verify the estimate of Lemma 6.2.4
for the operator T by establishing it for smooth compactly supported forms. We do
this by proving a density result that will be an essential part of establishing our main
estimate.

6.2.9 Lemma (Density of smooth compactly supported forms in dom(T∗)∩dom(S)) The
subspace D(

∧r,s+1(T∗CM)) is dense in dom(T∗) ∩ dom(S) with respect to the norm

f 7→ ‖f‖ϕ + ‖T∗(f)‖ϕ + ‖S(f)‖ϕ.

Proof We shall abbreviate

L2
ϕ(M; r, s) = L2

ϕ(
∧r,s(T∗CM)),

D(M; r, s) = D(
∧r,s(T∗CM)).

Using Proposition 4.6.7(v), the definition of S, and the standing assumptions of Nota-
tion 6.2.2, we have

‖S(χ j f )(z)−χ j(z)S( f )(z)‖ = ‖∂̄χ j(z)∧ f (z)‖ ≤ ‖ f (z)‖, f ∈ dom(S), j ∈ Z>0, z ∈ M. (6.11)

Now we perform a similar estimate for T∗, but this will require a little effort. Us-
ing the computation from the proof of Lemma 6.2.8, the definition of the adjoint T∗,
Proposition 4.6.7(v), and the standing assumptions of Notation 6.2.2, we have

〈T∗(χ j f ) − χ jT∗( f ),u〉ϕ = −〈 f , ∂̄χ j ∧ u〉ϕ, f ∈ dom(T∗), u ∈ D(M; r, s), j ∈ Z>0.
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Using the explicit expression for 〈·, ·〉ϕ this gives

|〈T∗(χ j f ) − χ jT∗( f ),u〉|ϕ ≤
∫

M
‖ f (z)‖ ‖u(z)‖e−ϕ(z) dµ(z). (6.12)

Let us abbreviate v(z) = T∗(χ j f )(z) − χ j(z)T∗( f )(z). We claim that ‖v(z)‖ ≤ ‖ f (z)‖ for almost
every z ∈ M. Suppose otherwise so that

A = {z ∈ M | ‖v(z)‖ > ‖ f (z)‖}

has positive measure. Let U be a relatively compact open set such that U ∩ A has positive
measure. Note that L2

ϕ(U; r, s) ⊆ L1
ϕ(U; r; s) since U has finite measure. Thus

C , max
{∫

U

‖v(z)‖e−ϕ(z) dµ(z),
∫
U

‖ f (z)‖e−ϕ(z) dµ(z)
}
< ∞.

Let K ⊆ U∩A be compact and such that µ(K) > 0. Let U1, . . . ,Uk ⊆ U cover K, be such that
cl(U j) ⊆ U, j ∈ Z>0, and be such that

µ(∪k
j=1U j) − µ(K) <

ε
2C
.

Define u ∈ D(U; r, s) as follows. We require that ‖u(z)‖ ∈ [0, 1] for all z ∈ U. For z ∈ K we
require that ‖u(z)‖ = 1 and that ū be collinear with v(z). And, for z ∈ U \ ∪k

j=1 cl(U j), we
require that u(z) = 0. For u so defined and for z ∈ K,

〈v(z),u(z)〉 = ‖v(z)‖ ‖u(z)‖ = ‖v(z)‖ > ‖ f (z)‖ ‖u(z)‖.

Thus ∫
K
〈v(z),u(z)〉e−ϕ(z) dµ(z) >

∫
K
‖ f (z)‖ ‖u(z)‖e−ϕ(z) dµ(z).

We also have ∣∣∣∣∫
U\K
〈v(z),u(z)〉e−ϕ(z) dµ(z)

∣∣∣∣ ≤ ∫
U\K
|〈v(z),u(z)〉|e−ϕ(z) dµ(z)

≤

∫
U\K
‖v(z)‖ ‖u(z)‖e−ϕ(z) dµ(z) <

ε
2

and ∫
U\K
‖ f (z)‖ ‖u(z)‖e−ϕ(z) dµ(z) <

ε
2
.

Thus∫
U\K
‖ f (z)‖ ‖u(z)‖e−ϕ(z) dµ(z) −

∫
U\K
〈v(z),u(z)〉e−ϕ(z) dµ(z)

≤

∣∣∣∣∫
U\K
‖ f (z)‖ ‖u(z)‖e−ϕ(z) dµ(z) −

∫
U\K
〈v(z),u(z)〉e−ϕ(z) dµ(z)

∣∣∣∣ < ε.
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Now take ε ∈ R>0 sufficiently small that

ε <

∫
K
〈v(z),u(z)〉e−ϕ(z) dµ(z) −

∫
K
‖ f (z)‖ ‖u(z)‖e−ϕ(z) dµ(z),

this being possible since the expression on the right does not depend on our choice of
cover U1, . . . ,Uk for K. Now, extending u to be defined on M by requiring that it be zero
off U, we have∫

M\K
‖ f (z)‖ ‖u(z)‖e−ϕ(z) dµ(z) −

∫
M\K
〈v(z),u(z)〉e−ϕ(z) dµ(z)

<

∫
K
〈v(z),u(z)〉e−ϕ(z) dµ(z) −

∫
K
‖ f (z)‖ ‖u(z)‖e−ϕ(z) dµ(z).

Upon rearrangement this contradicts (6.12) and so we indeed have

‖T∗(χ j f )(z) − χ j(z)T∗( f )(z)‖ ≤ ‖ f (z)‖, j ∈ Z>0, f ∈ dom(T), (6.13)

for almost every z ∈ M.
Now let f ∈ dom(T∗) ∩ dom(S). The bounds (6.11) and (6.13) allow us to use the

Dominated Convergence Theorem to assert that

lim
j→∞
‖S(χ j f ) − χ jS( f )‖ϕ = 0, lim

j→∞
‖T∗(χ j f ) − χ jT∗( f )‖ϕ = 0.

Thus the sequence (χ j f ) j∈Z>0 converges to f in the norm from the statement of the lemma.
It, therefore, suffices to show that D(M; r, s+1) is dense in the subspace of dom(T∗)∩dom(S)
consisting of compactly supported forms.

We do this first for forms with compact support in a C-chart domain U. Thus we let
f ∈ dom(T∗) ∩ dom(S) have compact support in U. We let ρ ∈ C∞(Rn) be a nonnegative-
valued function with support in Bn(1, 0) and define ρε(x) = ε−nρ(ε−1x). As we showed in
the proof of Proposition E.2.16,

lim
ε→0
‖S(ρε ∗ f ) − ρε ∗ S( f )‖ϕ = 0.

Therefore,
lim
ε→0

S(ρε ∗ f ) = lim
ε→0

ρε ∗ S( f ) = S( f ) (6.14)

in the appropriate L2
ϕ-spaces, using the usual convergence arguments for convolu-

tions [Kecs 1982]. Taking into account Lemma 6.2.7, we can also apply the constructions
from the proof of Proposition E.2.16 for T∗. Specifically, we have

lim
ε→0
‖T∗(ρε ∗ f ) − ρε ∗ (T∗( f ))‖ϕ = 0.

Thus
lim
ε→0

T∗(ρε ∗ f ) = lim
ε→0

ρε ∗ T∗( f ) = T∗( f ), (6.15)

the limits being taken in L2
ϕ-spaces. Combining equations (6.14) and (6.15) with the usual

limit limε→0 ρε∗ f = f (again in L2
ϕ), we have the density of D(U; r, s+1) in dom(T∗)∩dom(S)

in the norm of the statement of the lemma.
Now, to complete the proof of the lemma, we can use the partition of unity argument

from the proof of Lemma 6.2.3 to show that D(M; r, s + 1) is dense in the subspace of
L2
ϕ(M; r, s + 1) consisting of compactly supported forms. �
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6.2.5 A useful estimate

In this section we prove two technical lemmata—one local and a similar global
lemma—that will allow us to easily establish the estimate of Lemma 6.2.4 for the
∂̄-problem.

In the course of the construction, we will require the local representation of the
Levi form in our orthonormal basis (ω1, . . . , ωn) in a C-chart (U, φ). To do so, let us
introduce local structure constants, i.e., smooth functions c j

kl, j, k, l ∈ {1, . . . ,n}, on U

given by

∂̄ω j =

n∑
k,l=1

c j
klω

k
∧ ω̄l, j ∈ {1, . . . ,n}.

For g ∈ C∞(U;C) let us also denote

g jk =
∂2g

∂ω j∂ω̄k
+

n∑
l=1

c̄l
jk

∂g
∂ω̄l

.

With this notation, we have the following result.

6.2.10 Lemma (A local representation for the Levi form) If g ∈ C2(M) then, in a C-chart
(U, φ) for M and in an orthonormal basis (ω1, . . . , ωn) for

∧1,0(T∗CM), we have

Lev(g) =

n∑
j,k=1

gjkω
j
∧ ω̄k.

Proof This is a direct computation using Lev(g) = ∂ ◦ ∂̄g and the definition of g jk. �

Let us denote by λ ∈ C0(M) the smallest eigenvalue of the endomorphism
h] ◦Lev(ϕ)[ of TCM. The local lemma is the following.

6.2.11 Lemma (A local estimate) If (U, φ) is a C-chart for M, if (ω1, . . . , ωn) is an orthonormal
basis for

∧1,0(T∗CU), if ϕ ∈ C∞(M), and if λ is the smallest eigenvalue function as defined
above, and if K ⊆ U is compact, then there exists C3 ∈ R>0 such that∫

U

∑
′

I∈nr

∑
′

J∈ns+1

|fI,J(z)|2λ(z)e−ϕ(z) dµ(z) +
1
2

∫
U

∑
′

I∈nr

∑
′

J∈ns+1

n∑
j=1

∣∣∣∣∂fI,J

∂ω̄j (z)
∣∣∣∣2e−ϕ(z) dµ(z)

≤ 2(‖T∗(f)‖2ϕ + ‖S(f)‖2ϕ + C3‖f‖2ϕ)

for every f ∈ D(
∧r,s+1(T∗CU)) with support contained in K.

Proof From Lemmata 6.2.6 and 6.2.7 there exists C1,C2 ∈ R>0 such that

‖S( f ) − A( f )‖ϕ ≤ C1‖ f ‖ϕ, ‖T∗( f ) − B( f )‖ϕ ≤ C2‖ f ‖ϕ

for every f satisfying the conditions of the lemma, and where A and B are as given by (6.6)
and (6.10), respectively. Thus

‖A( f )‖ϕ ≤ ‖A( f ) − S( f )‖ϕ + ‖S( f )‖ϕ ≤ ‖S( f )‖ϕ + C1‖ f ‖ϕ.
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Squaring both sides of this inequality and using the fact that 2(a2 + b2) ≥ (a2 + b2 + 2ab) for
a, b ∈ R≥0, we get

‖A( f )‖2ϕ ≤ 2(‖S( f )‖2ϕ + C2
1‖ f ‖2ϕ).

A similar computation for ‖B( f )‖ϕ applies, and adding the resulting expression to that just
derived gives

‖A( f )‖2ϕ + ‖B( f )‖2ϕ ≤ 2(‖S( f )‖2ϕ + ‖T∗( f )‖2ϕ) + C′3‖ f ‖2ϕ (6.16)

for some C′3 ∈ R>0, and where f ∈ D(
∧r,s+1(T∗CU)) has support in K. Combining the

conclusions of Lemmata 6.2.6 and 6.2.7 we have

‖A( f )‖2ϕ + ‖B( f )‖2ϕ =

∫
U

∑
′

I∈nr

∑
′

J∈ns+1

n∑
j=1

∣∣∣∣∂ fI,J
∂ω̄ j (z)

∣∣∣∣2e−ϕ(z) dµ(z)

+

∫
U

∑
′

I∈nr

∑
′

J∈ns

n∑
j,k=1

δ j( fI, jJ)(z)δk( fI,kJ)(z) −
∂ fI, jJ
∂ω̄k

(z)
∂ fI,kJ

∂ω̄ j (z)

 e−ϕ(z) dµ(z). (6.17)

To manipulate the right-hand side into something we want, we shall swap the operators
δ j for the operators ∂

∂ω̄ j . To do so, let us first indicate the appropriate integration by parts
formula.

1 Sublemma If g,h ∈ D(U;C) then∫
U

g(z)
∂h
∂zj (z) dλ(z) = −

∫
U

∂g
∂z̄j (z)h(z) dλ(z)

and ∫
U

g(z)
∂h
∂z̄j (z) dλ(z) = −

∫
U

∂g
∂zj (z)h(z) dλ(z)

for j ∈ {1, . . . ,n}.

Proof This is a direct computation using the definitions of ∂
∂z j and ∂

∂z̄ j , and the usual
integration by parts formula. H

The following closely related lemma is one we shall implicitly make use of.

2 Sublemma If g,h ∈ D(U;C) then∫
U

g(z)
∂h
∂ωj (z) dµ(z) = −

∫
U

∂g
∂ω̄j (z)h(z) dµ(z) +

∫
U

βj(z)g(z)h(z) dµ(z)

and ∫
U

g(z)
∂h
∂ω̄j (z) dµ(z) = −

∫
U

∂g
∂ωj (z)h(z) dµ(z) +

∫
U

βj(z)g(z)h(z) dµ(z)

for j ∈ {1, . . . ,n}, where βj ∈ C∞(U;C) are independent of g and h.

Proof The proof is a direct computation using the preceding lemma and the fact that ∂
∂ω j

and ∂
∂ω̄ j are linear combinations of ∂

∂z1 , . . . ,
∂
∂zn and ∂

∂z̄1 , . . . ,
∂
∂z̄n , respectively, with coefficients

in C∞(U;C). H

Now we have the following lemma relating the operators ∂
∂ω̄ j and δ j.
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3 Sublemma If g,h ∈ D(U;C) then∫
U

∂g
∂ω̄j (z)h(z)e−ϕ(z) dµ(z) = −

∫
U

g(z)δj(h)(z)e−ϕ(z) dµ(z) +

∫
U

αj(z)g(z)h(z)e−ϕ(z) dµ(z),

for some αj ∈ C∞(U;C) that is independent of g and h.
Proof This is a direct computation using the definition of δ j, integration by parts, and the
fact that g and h have compact support. H

Now, by moving both differentiations to the left in the first summand in the second
integral of (6.17), we see that we need to understand the commutator δ j ◦

∂
∂ω̄k −

∂
∂ω̄k ◦δ j. The

following lemma gives us this.

4 Sublemma For g ∈ C∞(U;C) we have

δj ◦
∂

∂ω̄k
(g) −

∂

∂ω̄k
◦δj(g) = gϕjk +

n∑
l=1

cl
kjδl(g) −

n∑
l=1

c̄l
jk
∂g
∂ω̄l

.

Proof This is another direct computation using the definitions. H

We now put together the preceding two sublemmata to deduce that∫
U

∑
′

I∈nr

∑
′

J∈ns

n∑
j,k=1

δ j( fI, jJ)(z)δk( fI,kJ)(z) −
∂ fI, jJ
∂ω̄k

(z)
∂ fI,kJ

∂ω̄ j (z)

 e−ϕ(z) dµ(z)

=

∫
U

∑
′

I∈nr

∑
′

J∈ns

n∑
j,k=1

ϕ jk(z) fI, jJ(z) fI,kJ(z)e−ϕ(z) dµ(z) (6.18)

+

∫
U

∑
′

I∈nr

∑
′

J∈ns

n∑
j,k,l=1

fI, jJ(z)cl
k j(z)

∂ fI,kJ

∂ω̄l
(z)e−ϕ(z) dµ(z) (6.19)

−

∫
U

∑
′

I∈nr

∑
′

J∈ns

n∑
j,k,l=1

fI, jJ(z)c̄l
k j(z)δl( fI,kJ)(z)e−ϕ(z) dµ(z) (6.20)

+

∫
U

∑
′

I∈nr

∑
′

J∈ns

n∑
j,k=1

 fI, jJ(z)αk(z)
∂ fI,kJ

∂ω̄ j (z) − fI, jJ(z)ᾱ j(z)δk( fI,kJ)(z)

 e−ϕ(z) dµ(z).

(6.21)

We next estimate the terms in lines (6.18)–(6.21).
Since the basis (ω1, . . . , ωn) is orthonormal, ϕ jk, j, k ∈ {1, . . . ,n}, are the components of

both the Hermitian form Lev(ϕ) and the Hermitian endomorphism h] ◦Lev(ϕ)[. It follows,
therefore, that

n∑
j,k=1

ϕ jk(z) fI, jJ(z) fI,kJ(z) ≥ λ(z)
n∑

j=1

fI, jJ(z) fI, jJ(z). (6.22)

Therefore,∑
′

I∈nr

∑
′

J∈ns

n∑
j,k=1

ϕ jk(z) fI, jJ(z) fI,kJ(z) ≥ λ(z)
∑

′

I∈nr

∑
′

J∈ns

n∑
j=1

fI, jJ(z) fI, jJ(z) = λ(z)‖ f (z)‖2,
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giving an estimate for line (6.18).
Now let us consider line (6.19). First we use a lemma.

5 Sublemma There exists cn ∈ R>0 such that, for any w, z ∈ Cn,

n∑
j,k=1

|wj||zk| ≤ cn

( n∑
j=1

|wj|
2
)1/2( n∑

j=1

|zj|
2
)1/2

.

Proof Our argument is somewhat indirect. We first define a norm on the setCn×n matrices
by

‖A‖1 =

n∑
j,k=1

|A jk|.

Note for w, z ∈ Cn we have
n∑

j,k=1

= |w j||zk| = ‖wzT
‖2.

Now denote by ‖·‖2,2 the norm on Cn×n induced by the Euclidean norm on C<0¡ thinking
of Cn×n as being the set of endomorphisms of Cn, That is,

‖A‖2,2 = inf{‖Aζ‖ | ‖ζ‖ = 1}.

Then we have
‖wzTζ‖ = |〈z,ζ〉|‖w‖ ≤ ‖w‖‖z‖‖ζ‖,

from which we conclude that ‖wzT
‖2,2 ≤ ‖w‖ ‖z‖. The lemma follows by noting that

equivalence of the norms ‖·‖1 and ‖·‖2,2 implies the existence of the constant cn in the
statement. H

Note also that there exists N ∈ Z>0 such that

n∑
j=1

∑
′

I∈nr

∑
′

J∈ns

|αI, jJ |
2
≤ N

∑
′

I∈nr

∑
′

J∈ns+1

|αI,J |
2,

since the sum on the left contains each term in the sum on the right a finite number
(bounded above by some N ∈ Z>0) of times.

Let
M1 = sup{|cl

k j(z)| | z ∈ K, j, k, l ∈ {1, . . . ,n}}.
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Putting all of the above together we compute∣∣∣∣∫
U

∑
′

I∈nr

∑
′

J∈ns

n∑
j,k,l=1

fI, jJ(z)cl
k j(z)

∂ fI,kJ

∂ω̄l
(z)e−ϕ(z) dµ(z)

∣∣∣∣
≤M1

∫
U

∑
′

I∈nr

∑
′

J∈ns

n∑
j,k,l=1

| fI, jJ(z)|
∣∣∣∣∂ fI,kJ

∂ω̄l
(z)

∣∣∣∣e−ϕ(z) dµ(z)

≤M1

n∑
j,k,l=1

(∫
U

∑
′

I∈nr

∑
′

J∈ns

| fI, jJ(z)|2e−ϕ(z) dµ(z)
)1/2(∫

U

∑
′

I∈nr

∑
′

J∈ns

∣∣∣∣∂ fI,kJ

∂ω̄l
(z)

∣∣∣∣2e−ϕ(z) dµ(z)
)1/2

≤ cnM1

n∑
l=1

(∫
U

n∑
j=1

∑
′

I∈nr

∑
′

J∈ns

| fI, jJ(z)|2e−ϕ(z) dµ(z)
)1/2( n∑

k=1

∑
′

I∈nr

∑
′

J∈ns

∫
U

∣∣∣∣∂ fI,kJ

∂ω̄l
(z)

∣∣∣∣2)1/2

≤ NcnM1

n∑
l=1

(∫
U

∑
′

I∈nr

∑
′

J∈ns+1

| fI,J(z)|2
)1/2(∫

U

∑
′

I∈nr

∑
′

J∈ns+1

∣∣∣∣∂ fI,J
∂ω̄l

(z)
∣∣∣∣2e−ϕ(z) dµ(z)

)1/2
.

By combining Sublemma 3 with computations like those above, the term in line (6.20)
is estimated by∣∣∣∣∫

U

∑
′

I∈nr

∑
′

J∈ns

n∑
j,k,l=1

fI, jJ(z)c̄l
k j(z)δl( fI,kJ)(z)e−ϕ(z) dµ(z)

∣∣∣∣
≤ NcnM2

n∑
l=1

(∫
U

∑
′

I∈nr

∑
′

J∈ns+1

| fI,J(z)|2e−ϕ(z) dµ(z)
)1/2(∫

U

∑
′

I∈nr

∑
′

J∈ns+1

∣∣∣∣∂ fI,J
∂ω̄l

(z)
∣∣∣∣2e−ϕ(z) dµ(z)

)1/2

+ M3

∫
U

∫
U

∑
′

I∈nr

∑
′

J∈ns+1

| fI,J(z)|2e−ϕ(z) dµ(z)

for suitable constants M2,M3 ∈ R>0.
We can estimate the terms in the line (6.21) in a similar way, and combining the

estimates for lines (6.19)–(6.21) we obtain that the sum of these lines is bounded above in
magnitude by

D1

n∑
l=1

(∫
U

∑
′

I∈nr

∑
′

J∈ns+1

| fI,J(z)|2e−ϕ(z) dµ(z)
)1/2(∫

U

∑
′

I∈nr

∑
′

J∈ns+1

∣∣∣∣∂ fI,J
∂ω̄l

(z)
∣∣∣∣2e−ϕ(z) dµ(z)

)1/2

+ D2

∫
U

∫
U

∑
′

I∈nr

∑
′

J∈ns+1

| fI,J(z)|2e−ϕ(z) dµ(z)

for some D1,D2 ∈ R>0. We now apply the equality ab ≤ 1
2 (a2 + b2), valid for a, b ∈ R≥0, for

a =
(∫

U

∑
′

I∈nr

∑
′

J∈ns+1

| fI,J(z)|2e−ϕ(z) dµ(z)
)1/2

,

b = D1

(∫
U

∑
′

I∈nr

∑
′

J∈ns+1

∣∣∣∣∂ fI,J
∂ω̄l

(z)
∣∣∣∣2e−ϕ(z) dµ(z)

)1/2
.
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In this case the sum of the lines (6.19)–(6.21) is bounded above in magnitude by

1
2

∫
U

n∑
l=1

∑
′

I∈nr

∑
′

J∈ns+1

∣∣∣∣∂ fI,J
∂ω̄l

(z)
∣∣∣∣2e−ϕ(z) dµ(z) + D

∫
U

∑
′

I∈nr

∑
′

J∈ns+1

| fI,J(z)|2e−ϕ(z) dµ(z)

for some D ∈ R>0.
Assembling all of the estimates for lines (6.18)–(6.21) we finally obtain

∫
U

∑
′

I∈nr

∑
′

J∈ns

n∑
j,k=1

δ j( fI, jJ)(z)δk( fI,kJ)(z) −
∂ fI, jJ
∂ω̄k

(z)
∂ fI,kJ

∂ω̄ j (z)

 e−ϕ(z) dµ(z)

≥

∫
U

∑
′

I∈nr

∑
′

J∈ns+1

| fI,J(z)|2λ(z)e−ϕ(z) dµ(z) −
1
2

∫
U

∑
′

I∈nr

∑
′

J∈ns+1

| fI,J(z)|2e−ϕ(z) dµ(z)

−D
∫
U

∑
′

I∈nr

∑
′

J∈ns+1

∣∣∣∣∂ fI,J
∂ω̄l

(z)
∣∣∣∣2e−ϕ(z) dµ(z).

Combining the preceding estimate with the equality (6.17) and the inequality (6.16) gives
the lemma. �

We now give a global version of the preceding lemma.

6.2.12 Lemma (A global estimate) If ϕ ∈ C∞(M) and if λ is the smallest eigenvalue function as
above, there exists C ∈ C0(M) such that∫

M
(λ(z) − C(z))‖f(z)‖e−ϕ(z) dµ(z) ≤ 4(‖T∗(f)‖2ϕ + ‖S(f)‖2ϕ)

for every f ∈ D(
∧r,s+1(T∗CM)).

Proof We cover M by a locally finite open cover (Ua)a∈A whose open sets are C-chart
domains. For each a ∈ A let ρa ∈ D(Ua; [0, 1]) be such that∑

a∈A

ρa(z)2 = 1, z ∈ M.

(One can take the functions ρa, a ∈ A, to be the square roots of the functions defining
a partition of unity subordinate to (Ua)a∈A.) For a ∈ A, note that Ka = supp(ρa) is a
compact subset of Ua. Then, by Lemma 6.2.11, there exists Ca ∈ R>0 such that, for any
f ∈ D(

∧r,s+1(T∗CM)),∫
M
‖ρa(z) f (z)‖2λ(z)e−ϕ(z) dµ(z) ≤ 2(‖T∗(ρa f )‖2ϕ + ‖S(ρa f )‖2ϕ) + Ca

∫
M
‖ρa(z) f (z)‖2e−ϕ(z) dµ(z).

Now note that
‖S(ρa f )‖ϕ ≤ ‖ρaS( f )‖ϕ + ‖ρaS( f ) − S(ρa f )‖ϕ.

We square both sides and using the fact that 2(a2 + b2) ≥ (a2 + b2 + 2ab) for a, b ∈ R≥0, we get

‖S(ρa f )‖2ϕ ≤ 2(‖ρaS( f )‖2ϕ + ‖ρaS( f ) − S(ρa f )‖2ϕ) ≤ 2‖ρaS( f )‖2ϕ + 2‖ f ‖2ϕ,
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using (6.11). Similarly, using (6.12), we have

‖T∗(ρa f )‖2ϕ ≤ 2‖ρaT∗( f )‖2ϕ + 2‖ f ‖2ϕ.

Thus, for each a ∈ A we have the estimate∫
M
‖ρa(z) f (z)‖2λ(z)e−ϕ(z) dµ(z) ≤ 4(‖ρaT∗( f )‖2ϕ + ‖ρaS( f )‖2ϕ) + (4 + Ca)

∫
M
‖ f (z)‖2e−ϕ(z) dµ(z).

By summing this inequality over A, it only remains to show that there exists a continuous
function C such that

C(z) ≥
∑
a∈Az

(4 + Ca),

where Az = {a ∈ A | z ∈ Ua}. As M is assumed to be second countable, let (K j) j∈Z>0 be a
compact exhaustion of M. For j ∈ Z>0 let

M j = max
{ ∑

a∈Az

(4 + Ca)
∣∣∣∣ z ∈ K j

}
.

By local finiteness of the open cover (Ua)a∈A, M j is finite for every j ∈ Z>0. Define g1 ∈

C0(M; [0, 1]) so that g1(z) = 1 for z ∈ K1 and g1(z) = 0 for z ∈ M \ int(K2). For j ≥ 2 let
g j ∈ C0(M; [0, 1]) be such that g j(z) = 1 for z ∈ K j and g j(z) = 0 for z ∈ (M \ int(K j+1)) ∪ (M \
int(K j−1)). Then the function

C(z) =

∞∑
j=1

|M j|g j(z)

has the desired property. �

6.2.6 Existence theorems for the ∂-problem

Now we use our estimates from the preceding section to give existence theorems
for the ∂̄-problem. We do this first for data in L2

loc.

6.2.13 Theorem (Existence of solutions to the ∂̄-problem in L2) If M is a second countable
strongly pseudoconvex holomorphic manifold then there exists ϕ ∈ C∞(M) such that, given
f ∈ L2

loc(
∧r,s+1(T∗CM)) satisfying ∂̄f = 0, there exists u ∈ L2

loc(
∧r,s(T∗CM)) satisfying ∂̄u = f

and ‖u‖ϕ ≤ ‖f‖ϕ.
Proof Let ψ be a strictly pseudoconvex exhaustion function on M and let λ ∈ C0(M) be
the smallest eigenvalue function for h] ◦Lev(ψ)[. We let σ : R→ R be smooth, convex, and
strictly increasing so that ϕ , σ ◦ψ is strictly plurisubharmonic. It is plurisubharmonic by
Proposition 6.1.10(iv) and strictly plurisubharmonic since, in a C-chart,

∂2ϕ

∂zk∂z̄ j (z) = σ′′(ψ(z))
∂ψ

∂zk
(z)
∂ψ

∂z̄ j (z) + σ′(ψ(z))
∂2ψ

∂zk∂z̄ j (z),

from which we deduce that Lev(ϕ) is positive definite. From this last formula observe that
the inequality (6.22) implies that∑

′

I∈nr

∑
′

J∈ns

n∑
j,k=1

ϕ jk(z) fI, jJ(z) fI,kJ(z) ≥ σ′(ψ(z))λ(z)‖ f (z)‖2
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for f ∈ D(
∧r,s+1(T∗CM)). Therefore, by Lemma 6.2.12, there exists a continuous function

C such that ∫
M

(σ′(ψ(z))λ(z) − C(z))‖ f (z)‖e−ϕ(z) dµ(z) ≤ 4(‖T∗( f )‖2ϕ + ‖S( f )‖2ϕ)

for every f ∈ D(
∧r,s+1(T∗CM). We claim that it is possible to choose σ so that

σ′(ψ(z))λ(z) − C(z) ≥ 4, z ∈ M. (6.23)

Indeed, for x ∈ R denote
Kx = {z ∈ M | ψ(z) ≤ x},

noting that this set is compact since ψ is an exhaustion function. With this notation, (6.23)
is equivalent to the requirement that

σ′(x) ≥ γ(x) , sup
{4 + C(z)
λ(z)

∣∣∣∣ z ∈ Kx
}

for every x ∈ R. Note that γ is increasing and bounded on all compact subsets of R.
It is then a straightforward exercise (e.g., first use a piecewise linear function and then
smooth it) to find a smooth increasing function σ′ that exceeds γ. One can without loss of
generality also ensure that σ′ is positive. Integrating gives us the desired smooth, convex,
and strictly increasing σ so that, if ϕ = σ ◦ψ, then

‖ f ‖2ϕ ≤ ‖T
∗( f )‖2ϕ + ‖S( f )‖2ϕ.

for every f ∈ D(
∧r,s+1(T∗CM)). By Lemma 6.2.9 we conclude that this inequality holds for

every f ∈ dom(T∗)∩ker(S). From Lemma 6.2.4 we conclude that for every f ∈ ker(S) there
exists u ∈ L2

ϕ(
∧r,s(T∗CM)) such that T(u) = f and such that ‖u‖ϕ ≤ ‖ f ‖ϕ. This establishes

the required existence result in L2
ϕ(

∧r,s(T∗CM)).
Now let f ∈ L2

loc(
∧r,s+1(T∗CM)). By taking σ sufficiently large, for ϕ = σ ◦ψ we have

f ∈ L2
ϕ(

∧r,s+1(T∗CM)). By our arguments above there is a solution u ∈ L2
ϕ(

∧r,s(T∗CM)) to
T(u) = f . Since L2

ϕ(
∧r,s(T∗CM)) ⊆ L2

loc(
∧r,s+1(T∗CM)), the theorem follows. �

Now we investigate the regularity of solutions to the ∂̄-problem when the problem
data is regular. We shall refer here to the Sobolev space constructions of Section E.2.1.
We consider a holomorphic manifold M. By Hq

loc(
∧r,s(T∗CM)) we denote the sections

of
∧r,s(T∗CM) for which the components of the local representatives in any relatively

compact C-chart (U, φ) are in Hq(φ(U);C). It is easy to show that this definition makes
sense since the notion of being locally in L2 is independent of changes of coordinate.
This notation is used in the following theorem.

6.2.14 Theorem (Existence of solutions to the ∂̄-problem in Hq) If M is a second count-
able strongly pseudoconvex holomorphic manifold and if q ∈ Z>0, then, given f ∈
Hq

loc(
∧r,s+1(T∗CM)) satisfying ∂̄f = 0, there exists u ∈ Hq+1

loc (
∧r,s(T∗CM)) satisfying ∂̄u = f and

‖u‖ϕ ≤ ‖f‖ϕ.
Moreover, if s = 0 then u ∈ Hq+1

loc (
∧r,s(T∗CM)) for every u satisfying ∂̄u = f.
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Proof Throughout the proof, we make use of regularisations by convolution, and refer to
the constructions of Lemma GA2.7.1.4 for details. Here, we shall simply denote by ( f j) j∈Z>0

the sequence of compactly supported smooth approximations of a function or form f .
We first prove a technical lemma.

1 Lemma Let M be a holomorphic manifold, let (U, φ) be a C-chart for M, and let (ω1, . . . , ωn)
be a basis for

∧1,0(T∗CM). If g ∈ L2(U;C) has compact support and if ∂g
∂ω̄j ∈ L2(U;C) for each

j ∈ {1, . . . ,n}, then g ∈ H1(U;C).

Proof First let us suppose that g is smooth. In this case, two applications of Sublemma 2
from the proof of Lemma 6.2.11, using the fact that g has compact support, gives∫

U

∣∣∣∣ ∂g
∂ω j (z)

∣∣∣∣2 dµ(z) =

∫
U

∂g
∂ω j (z)

∂g
∂ω j (z) dµ(z)

= −

∫
U

∂2g
∂ω̄ j∂ω j (z)g(z) dµ(z) +

∫
U

β j(z)
∂g
∂ω j (z)g(z) dµ(z)

=

∫
U

∣∣∣∣ ∂g
∂ω̄ j (z)

∣∣∣∣2 dµ(z) −
∫
U

β j(z)
∂g
∂ω̄ j (z)g(z) dµ(z)

−

∫
U

g(z)
∂(β

j
g)

∂ω̄ j (z) dµ(z) +

∫
U

β̄ j(z)g(z)β̄ j(z)g(z) dµ(z).

Now let (gk)k∈Z>0 be a sequence of smooth compactly supported approximations to g, cf. the
proof of Lemma GA2.7.1.4. By hypothesis and since differentiation, even of distributions,
commutes with convolution, the sequence ( ∂gk

∂ω̄ j )k∈Z>0 converges in L2. Therefore, by using
our computation above, for ε ∈ R>0, there exists N ∈ Z>0 such that∫

U

∣∣∣∣ ∂gk

∂ω j (z) −
∂gl

∂ω j (z)
∣∣∣∣2 dµ(z) < ε

for k, l ≥ N. Thus the sequence ( ∂gl
∂ω̄ j )k∈Z>0 also converges in L2. Therefore, the sequence

(g j) j∈Z>0 has a limit, namely g, that is an element of H1(U;C). H

Now we prove the theorem in the case s = 0. Thus we let f ∈ Hq
loc(

∧r,1(T∗CM)) and
note that Theorem 6.2.13 shows that there exists u ∈ L2

loc(
∧r,0(T∗CM)) such that T(u) = f .

We will prove by induction that u ∈ Hk
loc(

∧r,s(T∗CM)) for every k ∈ {0, 1, . . . , q + 1}. We
certainly have u ∈ H0

loc(
∧r,s(T∗CM)). Suppose that u ∈ Hk

loc(
∧r,s(T∗CM)) for k ∈ {0, 1, . . . , q}.

For z ∈ M let (Uz, φz) be a C-chart about z. Let Vz be a relatively compact open set such
that z ∈ Vz and such that cl(Vz) ⊆ Uz. Let χz ∈ D(Uz;C) be such that χz(w) = 1 for w in a
neighbourhood of Vz. Note that if

u|Uz =
∑

′

I∈nr

uIdzI,

we have ∂uI
∂z̄ j ∈ Hk(Uz;C) for each increasing multi-index I ∈ nr and j ∈ {1, . . . ,n}. Therefore,

by Leibniz’s Rule,
∂̄(χzu) ∈ Hk(Uz;C). (6.24)
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Now let I ∈ Zn
≥0 satisfy |I| = k. By (6.24) it follows that ∂̄(DI(χzu)) ∈ L2(

∧r,1(T∗CUz)). By
Lemma 1 above, χzu ∈ Hk+1(

∧r,1(T∗CUz)). Since χz is equal to the constant function 1 on Vz,
u|Vz ∈ Hk+1(

∧r,1(T∗CVz)). Thus we have a covering of M by coordinate charts Vz, z ∈ M, for
which the components of u are in Hk+1(Vz;C) for each z ∈ M. Thus u ∈ Hk+1

loc (
∧r,0(T∗CM)),

and by induction u ∈ Hq+1
loc (

∧r,0(T∗CM)), as desired. Note that this also proves the second
assertion of the theorem.

Now let s ≥ 2 and let f ∈ Hq
loc(

∧r,s+1(T∗CM)). We will prove by induction on k that
u ∈ Hk

loc(
∧r,s(T∗CM)) for every k ∈ {0, 1, . . . , q + 1}. By Theorem 6.2.13 this holds for k = 0.

So suppose that this holds for k ∈ {0, 1, . . . , q}. For z ∈ M let (Uz, φz) be a C-chart about z.
Let Vz be a relatively compact open set such that z ∈ Vz and such that cl(Vz) ⊆ Uz. Let
χz ∈ D(Uz;C) be such thatχz(w) = 1 for w in a neighbourhood ofVz. Letα ∈ D(

∧r,s(T∗CUz)),
let D be a partial differential operator of order k, and compute

〈∂̄Du j, α〉 = 〈u j,D∗∂̄∗α〉 = 〈u, ∂̄∗D∗α j〉 = 〈 f ,D∗α j〉 = 〈D f j, α〉,

using change of variables in the convolution formula, and using the fact that convolution
commutes with differentiation with respect to coordinates. From the above computation
we deduce that ∂̄Du j = D f j, equality being as distributions with support in some compact
subset of Uz. Now, according to the proof of Lemma 6.2.4, we can choose u ∈ cl(image(∂̄∗))
such that ∂̄u = f . Thus, by Theorem E.1.8, 〈u, e−ϕ∂̄β〉 = 0 for every β ∈ D(

∧r,s−2(T∗CUz))
for ϕ ∈ C∞(M) chosen as in the proof of Theorem 6.2.13. This implies, therefore, that
〈u, e−ϕ∂̄(eϕβ)〉 = 0 for every β ∈ D(

∧r,s−2(T∗CUz)). Thus we have

〈u, ∂̄β〉 = −〈u, ∂̄ϕ ∧ β〉

for every β ∈ D(
∧r,s−2(T∗CUz)). Let us write

−〈u, ∂̄ϕ ∧ β〉 = 〈β, γϕ〉

for an appropriate γϕ ∈ L2(
∧r,s−2(T∗CM)), this being possible since the expression on the

left is linear in β. Note that, in fact, γϕ ∈ Hk
loc(

∧r,s−2(T∗CM)) by the induction hypothesis.
As above, let D be a linear constant coefficient differential operator of order k and compute

〈∂̄∗Du j, β〉 = 〈u j,D∗∂̄β〉 = 〈u, ∂̄D∗β j〉 = 〈γϕ,D∗β j〉 = 〈D(γϕ), β j〉 = 〈(D(γϕ)) j, β〉,

using the fact that γϕ ∈ Hk
loc(

∧r,s−2(T∗CM)). As with the computation above, in the above
sequence of calculations we used a change of variable in the convolution and the commuta-
tivity of convolution with differentiation. In any event, we conclude that ∂̄∗Du j = (D(γϕ)) j,
equality being of distributions with support in compact subsets of Uz. We also conclude
from the arguments above that the sequences (∂̄Du j) j∈Z>0 and (∂̄∗Du j) j∈Z>0 converge to D( f )
and D(γϕ) in the sense of converging in L2 on compact sets.

Next note that
∂̄(χzDu j) = χz∂̄Du j + ∂̄χz ∧Du j

and, using the local form for ∂̄∗ from Lemma 6.2.7,

∂̄∗(χzDu j) = χz∂̄
∗Du j + B(∂χz,Du j),
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where B is a zeroth-order differential operator, the exact form of which is of no particular
consequence. Now, by the induction hypothesis and our arguments above, the sequences
(∂̄(χzDu j)) j∈Z>0 and (∂̄∗(χzDu j)) j∈Z>0 converge in the L2-topology on cl(Vx).

Next let m ∈ {1, . . . ,n}, let I ∈ nr and J ∈ ns, and note from Lemma 6.2.11 that we have∫
Uz

∣∣∣∣∂(χzD(uI,J) j)
∂ω̄m (z)

∣∣∣∣2 dµ(z) ≤ 4(‖∂̄∗(χzDu j)‖2 + ‖∂̄(χzDu j)‖2 + C3‖χzDu j‖
2).

Since the terms on the right-hand side correspond to converging sequences, given ε ∈ R>0,
there exists N ∈ Z>0 such that∫

Uz

∣∣∣∣∂(χzD(uI,J) j)
∂ω̄m −

∂(χzD(uI,J)k)
∂ω̄m (z)

∣∣∣∣2 dµ(z) < ε

for j, k ≥ N. Thus
(∂(χzD(uI,J) j)

∂ω̄m

)
j∈Z>0

converges in L2. Referring to the proof of Lemma 1,

we see that this implies that the sequence
(∂(χzD(uI,J) j)

∂ωm

)
j∈Z>0

also converges in L2. Therefore,

arguing as in the proof of Lemma 1, χzD(uI,J) ∈ H1(Uz;C) and so uI,J ∈ Hk+1(Vz;C), giving
the result. �

We can now state the main result of this section.

6.2.15 Theorem (Existence of solutions to the ∂̄-problem in C∞) If M is a second countable
strongly pseudoconvex holomorphic manifold then, given f ∈ Γ∞(

∧r,s+1(T∗CM)), there exists
u ∈ Γ∞(

∧r,s(T∗CM)) satisfying ∂̄u = f.
Proof By Theorem 6.2.14 we have that there exists u ∈ ∩q∈Z>0Hq

loc(
∧r,s(T∗CM)) such that

∂̄u = f , with equality being in the sense of distributions. It remains to show that if g ∈
∩q∈Z>0Hq

loc(
∧r,s(T∗CM)) then g is almost everywhere equal to an element of Γ∞(

∧r,s(T∗CM)).
Thus let g ∈ ∩q∈Z>0Hq

loc(
∧r,s(T∗CM)) and let z0 ∈ M. Let φ ∈ D(M;R) have the property

that φ(z) = 1 for z in a neighbourhood of z0. Since g ∈ ∩q∈Z>0Hq
loc(

∧r,s(T∗CM)) we easily
conclude that φg ∈ ∩q∈Z>0Hq

loc(
∧r,s(T∗CM)). Let us suppose that supp(φ) ⊆ U where U is

the domain of a holomorphic chart for M. To simplify notation, let us identify objects with
their local representatives. Let us also suppose for simplicity that the image of U under
the chart map is a polydisk. Let ρ ∈ C∞(Cn) have the following properties:

1. ρ(z) ≥ 0;
2. supp(ρ) = Bn(1, 0);
3. ρ(z1) = ρ(z2) whenever ‖z1‖ = ‖z2‖;
4.

∫
Cn ρ(z) dλ(z) = 1.

For j ∈ Z>0 define

(φg) j(z) =

∫
Cn

(φg)(ζ)ρ( j(z − ζ)) j2n dλ(ζ),

noting that (φg) j is a smooth differential form and has compact support contained in U for
j sufficiently large.
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We claim that, for any linear partial differential operator D of degree k ∈ Z≥0 with
constant coefficients, D((φg) j) is a Cauchy sequence with respect to uniform convergence.
To see this, consider the linear partial differential operator D0 defined by

D0ψ =
∂2nψ

∂x1 · · · ∂xn∂y1 · · · ∂yn

where z j = x j + iy j are the coordinates in the chart. For ψ ∈ L2(
∧r,s(T∗CU)) let us denote

‖ψ‖22 =

∫
U

∑
′

I∈nr

∑
′

J∈ns

|ψI,J(z)|2 dλ(z).

Since convolution commutes with partial differentiation of distributions, since the inclu-ref

sion of L2(
∧r,s(T∗CU)) in D(

∧r,s(T∗CU)) is continuous, and since φg ∈ H2n+k(
∧r,s(T∗CU)), we

have
lim
j→∞
‖D0D((φg) j) −D0D(φg)‖2 = 0.

Let h ∈ C∞(Cn) have compact support in U, let z ∈ U, and let w ∈ Cn
\U. We then estimate

|h(z)| =
∣∣∣∣∫ Re(z1)

Re(w1)
· · ·

∫ Re(zn)

Re(wn)

∫ Im(zn)

Im(w1)
· · ·

∫ Im(zn)

Im(wn)
D0h(ζ) dλ(ζ)

∣∣∣∣
≤

∫
U

|D0h(ζ)|dλ(ζ) ≤ λ(U)1/2
‖D0h‖2,

using the Cauchy–Schwartz inequality in the last step. This shows that∑
′

I∈nr

∑
′

J∈ns

sup{|D((φgI.J) j(z))| | z ∈ U} ≤ λ(U)1/2
‖D0D((φg) j)‖2.

It follows, therefore, that the coefficients (D((φgI.J) j) j∈Z>0 form a Cauchy sequence for
uniform convergence, as was claimed at the beginning of this paragraph.

As the conclusions of the preceding paragraph hold for any linear partial differential
operator with constant coefficients, it follows that all partial derivatives of the sequence
((φg) j) j∈Z>0 converge uniformly onU, and so converge to some smooth limit that we denote
by h. Moreover, we have

‖h − φg‖2 = lim
j→∞
‖(φg) j − φg‖2 = 0,

the first inequality holding since uniform convergence implies L2-convergence. From this
we conclude that φg is almost everywhere equal to h. Thus φg is almost everywhere equal
to a smooth differential form. Since φ has value 1 in a neighbourhood of z0 we conclude
that g is almost everywhere equal to a smooth differential form in a neighbourhood of z0,
and from this the theorem follows. �
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6.3 Stein manifolds

As we have seen, there are two quite different sorts of holomorphically convex
holomorphic manifolds: (1) domains of holomorphy in Cn and (2) compact holo-
morphic manifolds. The character of holomorphic functions on these two sorts of
holomorphically convex manifolds are quite different. For example, in a domain
of holomorphy we can solve “reasonable” interpolation problems (Theorem 3.5.3),
whereas on compact holomorphic manifolds all holomorphic functions are locally
constant (Corollary 4.2.11). What we seek is a class of holomorphic manifolds that
resemble domains of holomorphy in that they have a plentiful supply of holomorphic
functions.

6.3.1 The ingredients for Stein manifolds

There are a number of equivalent definitions of what is meant by a Stein manifold.
In this section we introduce the concepts used to define what is meant by a Stein
manifold, and the relationships between them. Some of the relationships are trivial,
and others much less so, relying on the solution to the Levi problem we give in
Section 6.3.2.

6.3.1 Definition (Holomorphically separable, holomorphically spreadable, global co-
ordinate functions) Let M be a holomorphic manifold.

(i) M is holomorphically spreadable if, for every z ∈ M, there exists k ∈ Z>0, a map
f ∈ Chol(M;Ck), and a neighbourhood U of z such that

f−1( f (z)) ∩ U = {z}.

(ii) M is holomorphically separable if, for every distinct z1, z2 ∈ M, there exists
f ∈ Chol(M) such that f (z1) , f (z2).

(iii) M is locally holomorphically separable if, for each z ∈ M, there exists a neigh-
bourhood U of z such that, for every w ∈ U, there exists f ∈ Chol(M) satisfying
f (w) , f (z).

(iv) M possesses global coordinate functions if, for every z ∈ M, there exists f ∈
Chol(M;Cn) and a neighbourhood U of z such that (U, f |U) is a C-chart. •

Let us prove some relationships between these various concepts.

6.3.2 Lemma (Connections between holomorphically spreadable, holomorphically
separable, and global coordinate functions) For a holomorphic manifold M, the fol-
lowing statements hold:

(i) if M is holomorphically spreadable then it is locally holomorphically separable;
(ii) if M is holomorphically separable then it is locally holomorphically separable;
(iii) if M is holomorphically separable then it is holomorphically spreadable;
(iv) if M possesses global coordinate functions then it is holomorphically spreadable;
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(v) if M is second countable, Hausdorff, and holomorphically convex, then the following
statements hold:

(a) if M is locally holomorphically separable then it is holomorphically separable;
(b) if M is holomorphically spreadable then it is holomorphically separable;
(c) if M is holomorphically separable then it possess global coordinate functions.

Proof (i) Let z ∈ M, and let U be a neighbourhood of z and f ∈ Chol(M;Ck) be such that
f−1( f (z)) ∩ U = {z}. Define g ∈ Chol(M) by

g(w) =

k∑
j=1

( f j(w) − f j(z))2,

and note that g(z) = 0 and g(w) ∈ R>0 for w ∈ U. From this we conclude that M is locally
holomorphically separable.

(ii) This is obvious.
(iii) Let z0 ∈ M and let z1 , z0. Let f1 ∈ Chol(M) satisfy f1(z0) , f1(z1). By shiftingMake references to

analytic sets chapter and scaling the values of f1, we may suppose that f1(z0) = 0 and f1(z1) = 1. If z0 lies
in a component of dimension 0 of the analytic set f−1

1 (0) then f−1
1 ( f1(z0)) ∩ U = {z0} for

some sufficiently small neighbourhood U of z0. Otherwise, let S1, . . . ,Sk be the irreducible
components of f−1

1 (0). For each j ∈ {1, . . . , k} choose w j ∈ S j and let g j ∈ Chol(M) be such
that g j(z0) = 0 and g j(w j) = 1. Let

f2(z) = 1 −
k∏

j=1

(1 − g j(z))

so that f2(z0) = 0 and f2(w j) = 1 for each j ∈ {1, . . . , k}. Note that f2 then does not vanish
identically on the irreducible components of f−1

1 (0). If z0 lies in a component of dimension 0
of the analytic set f−1

1 (0)∩ f−1
2 (0) then f−1( f (z0)) = {z0}with f (z) = ( f1(z), f2(z)). Otherwise,

we continue on this way, next on the irreducible components of f−1(0). As the dimension
of the irreducible components decreases at each step, this procedure will terminate with
the existence of f ∈ Chol(M;Ck) for which f−1( f (z0)) = {z0}.

(iv) Let z ∈ M and let (U, φ) be a C-chart for which φ(z) = 0, supposing since M
possesses global coordinate functions, that φ = f |U for f ∈ Chol(M;Cn). Then we have
f−1( f (z)) ∩ U = {z}.

(v a) By Theorem 6.3.3, M is strongly pseudoconvex. By Theorem 6.3.5, M is holomor-
phically separable.

(v b) By part (i) and Theorem 6.3.3, M is strongly pseudoconvex. By Theorem 6.3.5, M
is holomorphically separable.

(v c) By part (ii) and Theorem 6.3.4, M is strongly pseudoconvex. By Theorem 6.3.5,
M possesses global coordinate functions. �

By Theorems 3.1.10 and 3.1.12 we deduce that domains of holomorphy are holo-
morphically separable. By Corollary 4.2.11 we have that compact holomorphic man-
ifolds are not holomorphically separable.
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6.3.2 The Levi problem on manifolds

In this section we shall present the solution to the Levi problem on manifolds using
the solution of the ∂̄-problem that we presented at length in Section 6.2. As we saw
in Section 3.4, the Levi problem for open subsets of Cn is the assertion that weakly
pseudoconvex (or equivalently strongly pseudoconvex) open sets are domains of holo-
morphy. This problem was solved by [Oka 1953]. The Levi problem in manifolds is
slightly different in that one must begin with the hypothesis of strong pseudoconvex-
ity and the conclusion is that the manifold is a Stein manifold. This version of the
Levi problem was solved by Grauert [1958] using methods from sheaf theory. Here
we give the solution of the Levi problem using partial differential equation methods.
Our approach follows the presentation of Hörmander [1973].

The Levi problem gives the equivalence of strong pseudoconvexity with holomor-
phic convexity in the presence of other conditions. We begin with some of the easier
implications, beginning with the assumption of local holomorphic separability.

6.3.3 Theorem (Holomorphic convexity plus local holomorphic separability imply
strong pseudoconvexity) Let M be a second countable Hausdorff holomorphic manifold.
If M is holomorphically convex and locally holomorphically separable, then M is strongly
pseudoconvex.

Proof Let z ∈ M and let V be a neighbourhood of z such that, for every w ∈ V, there exists
f ∈ Chol(M) satisfying f (w) , f (z). Let (W, φ) be a C-chart about z such that φ(z) = 0 and
such that φ−1(Bn(r, 0)) ⊆ V. Let w ∈ φ−1(bd(Bn(r, 0))) and let gw ∈ Chol(M) be such that
gw(w) , gw(z). Without loss of generality we can suppose that gw(z) = 0 and gw(w) > 1.
By continuity of gw there is a neighbourhood Nw of w such that gw(w′) > q for all w′ ∈ Nw.
By compactness of φ−1(bd(Bn(r, 0))) there exists w1, . . . ,wkz ∈ φ

−1(bd(Bn(r, 0))) such that, if
we take hz =

∑kz
j=1|gw j |

2, then hz(z) = 0 and hz(w) > 1 for w ∈ φ−1(bd(Bn(r, 0))). By Lemma 1
from the proof of Theorem 6.1.22, hz is smooth and plurisubharmonic. Now define

fz(w) =

hz(w), w ∈ M \ φ−1(Bn(1, 0)),
M(ε,ε)(hz(w), ‖φ(w)‖2), w ∈ φ−1(Bn(1, 0)),

where M(ε,ε) is as defined in Lemma 1 from the proof of Proposition 6.1.21. Note that
fz is plurisubharmonic and strictly plurisubharmonic (by Lemma 1 from the proof of
Proposition 6.1.21) in a neighbourhood Nz of z. Since M is second countable, there exists
(z j) j∈Z>0 such that (Nz j) j∈Z>0 covers M.

We shall construct a strictly plurisubharmonic function v as the limit of a sequence of
smooth functions converging in the weak C∞-topology. We prove the following lemma of
general utility.

1 Lemma If M is a smooth paracompact Hausdorffmanifold and if (fj)j∈Z>0 is a sequence in C∞(M),
then there exists a sequence (εj)j∈Z>0 in R>0 such that the sum

∑
∞

j=1 εjfj converges in the weak
C∞-topology.

Proof We equip M with a Riemannian metricG, this by paracompactness of M [Abraham,
Marsden, and Ratiu 1988, Corollary 5.5.13]. We denote by ∇ the Levi-Civita connection of
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G. Let g ∈ C∞(M). If K ⊆ M is compact and if r ∈ Z≥0, we define

‖g‖r,K = sup{‖∇ jg(x)‖ | x ∈ K, j ∈ {0, 1, . . . , r}},

where ‖·‖ indicates the norm induced on tensors by the norm associated with the Rieman-
nian metric. One readily sees that the family of seminorms ‖·‖r,K, r ∈ Z≥0, K ⊆ M compact,
defines a locally convex topology agreeing with other definitions of the weak C∞-topology.reference for this

Thus, if a sequence (g j) j∈Z>0 satisfies

lim
j→∞
‖g − g j‖r,K = 0, r ∈ Z≥0, K ⊆ M compact,

then g is infinitely differentiable [Michor 1980, §4.3].
Without loss of generality, we suppose that M is connected, since otherwise the con-

struction can be applied separately to the connected components of M. If M is paracompact,
connectedness allows us to conclude that M is second countable [Abraham, Marsden, and
Ratiu 1988, Proposition 5.5.11]. Using Lemma 2.76 of [Aliprantis and Border 2006], we let
(K j) j∈Z>0 be a sequence of compact subsets of U such that K j ⊆ int(K j+1) for j ∈ Z>0 and
such that ∪ j∈Z>0K j = U. Let us define α j = ‖ f j‖ j,K j and take ε j ∈ R>0 to satisfy ε j < (α j2 j)−1.
We define f by

f (x) =

∞∑
j=1

ε j f j(x),

and claim that the sum converges to f in the weak C∞-topology. Let us define gm ∈ C∞(M)
by

gm(x) =

m∑
j=1

ε j f j(x).

Let K ⊆ M be compact, let r ∈ Z≥0, and let ε ∈ R>0. Take N ∈ Z>0 sufficiently large that
K ⊆ KN and such that

m2∑
m=m1+1

1
2m < ε,

for m1,m2 ≥ N with m1 < m2, this being possible by convergence of
∑
∞

j=1
1
2 j . Then, for

m1,m2 ≥ N,

‖gm1 − gm2‖r,K = sup{‖∇ jgm1(x) − ∇ jgm2(x)‖ | x ∈ K, j ∈ {0, 1, . . . , r}}

= sup
{∥∥∥∥ m2∑

m=m1+1

εm∇
j fm(x)

∥∥∥∥ ∣∣∣∣ x ∈ K, j ∈ {0, 1, . . . , r}
}

≤ sup
{ m2∑

m=m1+1

εm‖∇
j fm(x)‖

∣∣∣∣ x ∈ K, j ∈ {0, 1, . . . , r}
}
≤

m2∑
m1+1

1
2m < ε.

Thus, for every r ∈ Z≥0 and K ⊆ M compact, ( fm)m∈Z>0 is a Cauchy sequence in the
norm ‖·‖r,K. Completeness of the weak C∞-topology implies that the sequence ( fm)m∈Z>0

converges to a function that is infinitely differentiable. H
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By the lemma, let (ε j) j∈Z>0 be a sequence in R>0 for which the sum

v =

∞∑
j=1

ε j fz j

converges in the weak C∞-topology. Let z ∈ M. Since v is an infinite sum of smooth
plurisubharmonic functions, at least one of which is strictly plurisubharmonic in a neigh-
bourhood of z, it follows from that v is strictly plurisubharmonic in a neighbourhood of z,
and so it strictly plurisubharmonic.

Finally, we show that there exists a smooth strictly plurisubharmonic exhaustion
function on M. Since M is holomorphically convex, it is weakly pseudoconvex by Theo-
rem 6.1.22. Our assertion follows from Proposition 6.1.20. �

A related result with stronger hypotheses and stronger conclusions is the follow-
ing.

6.3.4 Theorem (Holomorphic convexity and global coordinate functions imply strong
pseudoconvexity) Let M be a second countable Hausdorff holomorphic manifold, let K ⊆ M
be compact, and let U be a neighbourhood of K. If M is holomorphically convex and possesses
global coordinate functions, then there exists u ∈ C∞(M) ∩ SPsh(M) such that

(i) u is an exhaustion function,
(ii) u(z) < 0 for every z ∈ K, and
(iii) u(z) > 0 for every z ∈ M \ U.

Proof By Proposition 6.1.5(iii) let (K j) j∈Z>0 be a sequence of compact subsets of M such
that

1. K1 = hconvM(K),
2. hconvM(K j) = K j,
3. K j ⊆ int(K j+1) for j ∈ Z>0, and
4. M = ∪ j∈Z>0K j.

For each j ∈ Z>0 let U j be such that K j ⊆ U j ⊆ K j+1, this being possible by a simple
construction using the fact that K j ⊆ int(K j+1) and that K j is compact. We may suppose,
moreover, that U1 ⊆ U. Denote L j = K j+2 \ U j, j ∈ Z>0. For w ∈ L j let fw, j ∈ Chol(M) be such
that | fw, j(w)| > ‖ fw, j‖K j , this being possible since w < K j and since hconvM(K j) = K j. By
rescaling we can suppose that ‖ fw, j‖K j < 1 and | fw, j(w)| > 1. Also let gw,1, . . . , gw,n ∈ Chol(M)
be such that the map

w′ 7→ (gw,1(w′), . . . , gw,n(w′))

is aC-chart on a neighbourhood of w for which w is mapped to 0. By rescaling if necessary,
we can suppose that ‖gw,l‖K j < 1 for l ∈ {1, . . . ,n}. Let Uw, j be a neighbourhood of w
such that | fw, j(z)| > 1 for all z ∈ Uw, j. Since L j is compact, let w1, . . . ,wk j be such that

L j ⊆ ∪
k j

l=1Uwl, j. Then, for all z ∈ L j we have

max({| fwl, j(z)| | l ∈ {1, . . . , k j}} ∪ {|gwl,r(z)| | l ∈ {1, . . . , k j}, r ∈ {1, . . . ,n}}) > 1
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and for all z ∈ K j we have

| fwl, j(z)| < 1, l ∈ {1, . . . , k j},

and
|gwl,r(z)| < 1, l ∈ {1, . . . , k j}, r ∈ {1, . . . ,n}.

We combine the two families

( fw1, j, . . . , fwkj , j
), (gw1,1, . . . , gw1,n, . . . , gwkj ,1

, . . . , gwkj ,n
)

into a single family that, with an abuse of notation, we denote by

( fw1, j, . . . , fwkj , j
).

Now choose m j ∈ Z>0 sufficiently large that

k j∑
l=1

| fwl, j(z)|2m j ≥ j, z ∈ L j

and
k j∑

l=1

| fwl, j(z)|2m j ≤
1
2 j , z ∈ K j.

Now let

u(z) =

∞∑
j=1

k j∑
l=1

| fwl, j(z)|2m j − 1, z ∈ M.

By Lemma 1 from the proof of Theorem 6.1.22, u is real analytic and plurisubharmonic.
Following the proof of that lemma, we showed that u is also an exhaustion function.
Moreover, by construction, u(z) < 0 for z ∈ K and u(z) > 0 for z ∈ M \ U.

It remains to show that u is strictly plurisubharmonic. Suppose that Lev(u)(Zz,Zz) = 0
for some Zz ∈ TM. As we saw in the proof of Lemma 1 from the proof of Theorem 6.1.22,

Lev(u)(Zz) =

∞∑
j=1

k j∑
l=1

|Zz fwl, j|
2.

Thus we have Zz fwl, j = 0 for every l ∈ {1, . . . , k j}, j ∈ Z>0. Since the list of functions fwl, j,
l ∈ {1, . . . , k j}, j ∈ Z>0, contains functions that form aC-chart about z, it follows that Zz = 0z,
giving strictly plurisubharmonicity of u as desired. �

Now we can prove a converse to results such as the preceding two. While the
preceding results are more or less easy to prove, the proof we give of the following
result depends on the results of Section 6.2.

6.3.5 Theorem (The Levi problem on manifolds) If M is a second countable, strongly pseudo-
convex holomorphic manifold, then M is holomorphically convex, holomorphically separable,
and possesses global coordinate functions.

Proof We first prove a lemma.
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1 Lemma If M is a holomorphic manifold, if u is a smooth strictly plurisubharmonic exhaustion
function on M, and if z0 ∈ M, there exists a neighbourhood U0 of z0 and f0 ∈ Chol(U0) such that
f0(z0) = 0 and

Re(f0(z)) < u(z) − u(z0)

for all z ∈ U0 \ {z0}.

Proof Let (U, φ) be a C-chart for M about z0 such that φ(z0) = 0. By Lemma 3.2.10 we can
then write the Taylor series for the local representative uφ as

uφ(z) = uφ(0) + Re(P(z)) + Lev(uφ)(0; z) + O(‖z‖3)

for a polynomial P of degree at most two and satisfying P(0) = 0. Since Lev(uφ) is positive-
definite,

Re(P(z)) < uφ(z) − uφ(0)

for z in some neighbourhood of 0. Taking f0 to have local representative P gives the
result. H

Let u be a strictly plurisubharmonic exhaustion function on M. Let z0, z1 ∈ M be distinct
and choose a neighbourhood U0 of z0 and f0 ∈ Chol(U0) as in the lemma. We suppose,
without loss of generality, that u(z1) ≤ u(z0). We may also suppose that z1 < U0, cf. the
proof of the lemma. Let U1 and U2 be neighbourhoods of z0 satisfying

cl(U1) ⊆ U2 ⊆ cl(U2) ⊆ U0.

By the Tietze Extension Theorem [Abraham, Marsden, and Ratiu 1988, Proposition 5.5.8],
let ψ ∈ C∞(M) be such that supp(ψ) ⊆ U2 and ψ(z) = 1 for z in some neighbourhood of U1.
Let a > u(z0) and let

z ∈ supp(∂̄ψ) ∩ {w ∈ M | u(w) < a}.

By choosing a sufficiently small, continuity of u ensures that such a z exists. Then, since
z ∈ supp(∂̄ψ) ⊆ cl(U2) \ U1 ⊆ U0 \ {z0}, Re( f0(z)) < u(z) − u(z0). Therefore, u(z0) > a,

Re( f0(z)) < a − a = 0.

By compactness of supp(∂̄ψ), there exists ε ∈ R>0 such that

Re( f0(z)) < −ε, z ∈ supp(∂̄ψ) ∩ {w ∈ M | u(w) < a}. (6.25)

Define
Ma = {z ∈ M | u(z) < a}.

By Proposition 6.1.21(iv) and Theorem 6.2.13 there exists ϕa ∈ C∞(Ma) such that, if g ∈
L2

loc(
∧0,1(T∗CMa)) satisfies ∂̄g = 0, then there exists v ∈ L2

loc(Ma, ϕa) for which ∂̄v = g
and ‖v‖ϕa ≤ ‖g‖ϕa . Moreover, by Theorem 6.2.14 and the argument of the proof of
Theorem 6.2.15, if g is of class C∞, then so too will be v.

Now, with f0 and ψ as above, and for f ∈ Chol(U0) and t ∈ R>0, define

gt = f et f0 ∂̄ψ.
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Note that gt = ∂̄( f et f0ψ) and so ∂̄gt = 0 by Proposition 4.6.4. By (6.25) we have

‖gt‖ϕa ≤ C1e−εt

for some C1 ∈ R>0. Thus there exists vt such that ∂̄vt = gt and

‖vt‖ϕa ≤ C2e−εt

for some C2 ∈ R>0. Since gt(z) = 0 for z ∈ Ma \supp(∂̄ψ), vt is holomorphic in Ma \supp(∂̄ψ).
Finally, define

ft = f et f0ψ − vt, (6.26)

and note that ft is also holomorphic in Ma \ supp(∂̄ψ).
By applying Lemma 1 from the proof of Theorem GA2.7.1.7, along with the discussion

following that lemma, we have

lim
t→∞

ft(z1) = − lim
t→∞

vt(z1) = 0

(noting that z1 ∈ Ma since we are assuming that u(z1) ≤ u(z0)) and

lim
t→∞

ft(z0) = f (z0) − lim
t→∞

vt(z0) = f (z0).

Now take f so that f (z0) = 1 so that ft(z0) , ft(z1) for t sufficiently large. By Theo-
rem GA2.7.1.7 it follows that there exists g ∈ Chol(M), approximating ft on cl(Mϕ(z0))
closely enough that g(z0) , g(z1). Thus M is holomorphically separable.

For a ∈ R let us denote

Ma = {z ∈ M | u(z) ≤ a} = cl(Ma).

We claim that hconvM(Ma) = Ma for every a ∈ R. To see this, let z0 < Ma and let a′ ∈ (a,u(z0)).
By our constructions above, and using z0 as used in these constructions, we have a family
ft, r ∈ R>0, of smooth functions on M for which

lim
t→∞

ft(z0) = 1

and

lim
t→∞

∫
Ma′

| ft(z)|2 dµ(z) = 0,

(using the Dominated Convergence Theorem). The arguments from the proof of Theo-
rem GA2.7.1.7 show that ft converges as t → ∞ uniformly to zero on compact sets. In
particular, then ft converges uniformly to zero on Ma. Choose t sufficiently large that
‖ ft‖Ma

< 1
2 and ft(z0) > 1

2 . Using Theorem GA2.7.1.7 we can approximate ft uniformly on

Mα′ by functions holomorphic on M. Thus there exists g ∈ Chol(M) for which |g(z0)| > ‖g‖Ma
.

Thus z0 < hconvM(Ma), as desired.
Next we show that our conclusion of the preceding paragraph implies that M is

holomorphically convex. Let K ⊆ M be convex. Since u is an exhaustion function, there
exists a ∈ R such that K ⊆ Ma. By Proposition 6.1.2(ii), and the previous paragraph,
hconvM(K) ⊆ Ma. Since Ma is compact (u being an exhaustion function) and since hconvM(K)
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is closed by Proposition 6.1.2(iv), it follows that hconvM(K) is compact by [Runde 2005,
Proposition 3.3.6]. Thus M is holomorphically convex.

Finally, we show that M possesses global coordinate functions. We again make ref-
erence to the constructions of the first part of the proof, i.e., that portion of the proof
following the lemma. In particular, we start with z0 ∈ M. By shrinking U0 if necessary, we
choose f 1, . . . , f n

∈ Chol(U0) such that z 7→ ( f 1(z), . . . , f n(z)) forms a coordinate system in
a neighbourhood of z0 mapping z0 to 0. Then define smooth functions f 1

t , . . . , f n
t on M as

in (6.26), i.e., replace “ f ” in (6.26) with “ f j”, j ∈ {1, . . . ,n}. Note that

∂ f j
t (z0) = ∂ f f (z0) − ∂gt(z0), j ∈ {1, . . . ,n},

and so, by our arguments above,

lim
t→∞

∂ f j
t (z0) = ∂ f j(z0), j ∈ {1, . . . ,n}. (6.27)

Let Jt be the holomorphic function defined in a neighbourhood of z0 by computing the
Jacobian determinant with respect to the coordinates z 7→ ( f 1(z), . . . , f n(z)) of the Cn-
valued function z 7→ ( f 1

t (z), . . . , f n
t (z)). By (6.27) it follows that limt→∞ Jt(z0) = 1. Thus, for

t sufficiently large, we have that z 7→ ( f 1
t (z), . . . , f n

t (z)) are globally defined coordinates for
M about z0. �

6.3.3 Stein manifolds and their basic properties

There are many ways one can characterise Stein manifolds, but they all amount
share being equivalent to the fact that a manifold is a Stein manifold if and only if
it is strongly pseudoconvex. The results of Section 6.3.2, along with Lemma 6.3.2,
lead to many equivalent such characterisations, all of which appear in the literature in
various places. We formulate our definition of a Stein manifold to capture all of these
equivalent characterisations, just to summarise what they are so that we can use the
characterisation that is most convenient for our various purposes.

6.3.6 Definition (Equivalent definitions of “Stein manifold”) A second countable holo-
morphic manifold M is a Stein manifold if it satisfies one of the following equivalent
definitions:

(i) M is holomorphically convex and holomorphically spreadable;
(ii) M is holomorphically convex and locally holomorphically separable;
(iii) M is holomorphically convex and holomorphically separable;
(iv) M is holomorphically convex and possesses global coordinate functions;
(v) M is strongly pseudoconvex. •

As we shall see as we go along, Stein manifolds possess many deep and ultimately
useful properties. In this section we shall present some of the simpler properties of
Stein manifolds, most of which follow directly from their defining properties.

Let us consider some examples of Stein manifolds.
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6.3.7 Examples (Stein manifolds and not Stein manifolds)
1. IfU ⊆ Cn is an open set, then the coordinate functions are holomorphic functions on

U that provide a globalC-chart for U. Thus an open subset ofCn is a Stein manifold
if and only if it is holomorphically convex. Thus, by Theorems 3.1.10 and 3.1.13,
the open subsets of Cn that are Stein manifolds are the domains of holomorphy.

2. The only compact holomorphic manifolds that are Stein manifolds are those of zero
dimension. Indeed, holomorphic functions on a connected compact manifold are
constant by Corollary 4.2.11, and this precludes a compact holomorphic manifold
from being locally holomorphically separable, even though it is holomorphically
convex.

3. The holomorphic manifold from Example 6.1.23 is not Stein, although it is weakly
pseudoconvex. In that example, the manifold is not holomorphically convex. •

The following result is a consequence of Propositions 6.1.20 and 6.1.21.

6.3.8 Proposition (Basic properties of Stein manifolds) If M and N are Stein manifolds,
then the following statements hold:

(i) M × N is a Stein manifold;
(ii) if M is a Stein manifold and if S ⊆ M is a closed holomorphic submanifold, then S is a

Stein manifold;
(iii) if S1, . . . ,Sk ⊆ M are Stein submanifolds for which S = ∩k

j=1Sj is a holomorphic
submanifold, then S is a Stein manifold;

(iv) if Φ : M → N is holomorphic, if S ⊆ M and T ⊆ N are Stein submanifolds, and if
S ∩Φ−1(T) is a holomorphic submanifold of M, then S ∩Φ−1(T) is a Stein manifold;

(v) if M is a second countable Stein manifold and if u ∈ Psh(M)∩C∞(M), then u−1([−∞, α))
is a Stein manifold for every α ∈ R.

The following result gives a criterion for a holomorphically convex manifold to be
Stein. We refer to Chapter GA2.6 for a discussion of analytic sets.

6.3.9 Proposition (Analytic subsets of Stein manifolds) If M is holomorphically convex and
if there are no compact analytic subsets of positive dimension, then M is Stein.

Proof Let z0 ∈ M so K = hconvM{z0} is compact. Let U be a relatively compact neighbour-
hood of K. For all z ∈ bd(U) there exists f ∈ Chol(M) with | f (z)| > | f (z0)|. Since bd(U) is
compact there exists f1, . . . , fk ∈ Chol(M) such that, for z ∈ bd(D), there exists j ∈ {1, . . . , k}
such that | f j(z)| > | f j(z0)|. Let

S = {z ∈ M | f j(z) = f j(z0)}.

Then S ∩D is a closed subset of M and hence is a closed analytic subset of M contained in
cl(D). Thus Z ∩D is finite and so M is holomorphically spreadable. �

For Stein manifolds, one can also relate the holomorphically convex hull with the
plurisubharmonic convex hull.
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6.3.10 Proposition (Convex hulls for Stein manifolds) If M is a Stein manifold and if K ⊆ M
is convex, then hconvM(K) = pconvM(K).

Proof Let z < hconvM(K) so that there exists f ∈ Chol(M) for which | f |(z) > ‖| f |‖K. This
implies that | f |2(z) > ‖| f |2‖K, and since | f |2 is plurisubharmonic (cf. the proof of Lemma 1
from the proof of Theorem 6.1.22) it follows that z < pconvM(K). This proves that
pconvM(K) ⊆ hconvM(K).

For the opposite inclusion, suppose that z < pconvM(K). Thus there exists u ∈ Psh(M)∩
C0(M) such that u(z) > supK u. We can then choose ε ∈ R>0 sufficiently small that

u(z) + εu0(z) > sup
K

(u + εu0),

where u0 is a smooth strictly plurisubharmonic exhaustion function (which exists since M
is Stein). Now we can use Theorem GA2.7.1.5 to infer the existence of v ∈ Psh(M)∩C∞(M)
such that v(z) > supK v. Let c ∈ (supK v, v(z)). As we proved during the course of the
proof of Theorem 6.3.5, v−1((−∞, c]) is holomorphically convex. Since c < supK v we have
K ⊆ v−1((−∞, c]). Therefore,

hconvM(K) ⊆ hconvM(v−1((−∞, c])) = v−1((−∞, c]).

Thus z < hconvM(K) since v(z) > c. �

6.4 Real analytic manifolds

In this section we apply techniques from the theory of Stein manifold to say useful
things about real analytic manifolds. As we shall see, real analytic manifolds should
not be thought of as being analogous to general holomorphic manifolds, but rather
only to holomorphic manifolds that are Stein. Thus real analytic manifolds do not
share the sorts of restrictions on their real analytic functions that one can expect for
general holomorphic manifolds.

6.4.1 Totally real submanifolds of holomorphic manifolds

In this section we consider a generalisation of the notion of the fact that we have a
natural embedding

(x1, . . . , xn) 7→ (x1 + i0, . . . , xn + i0)

of Rn as the “real part” of Cn. To generalise this idea to a holomorphic manifold is no
longer natural. For example, were one to attempt to formulate the definition of a real
submanifold as being one whose image under a C-chart lies in Rn

⊆ Cn, this notion
fails to be chart independent. The following definition captures the notion we are
after, using the complex structure on a holomorphic manifold as per Definition 4.5.7
and the notion of a totally real subspace from Section 4.1.7.

6.4.1 Definition (Totally real submanifold) Let M be a holomorphic manifold with complex
structure J. A smooth real submanifold S of M, i.e., S is a submanifold of the smooth
manifold M, is totally real if TzS is a totally real subspace of TxM for every z ∈ S. •
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Totally real submanifolds are distinguished by the fact that they admit particular
coordinate charts.

6.4.2 Lemma (C-charts near totally real submanifolds) Let M be a holomorphic manifold
with complex structure J and let S be a smooth totally real submanifold. Then, for z0 ∈ S,
there exists a C-chart (U, φ) for M about z with the following properties:

(i) φ takes values inCn
' Rn

×Rn
' Rk

×R2n−k, and we denote coordinates byφ(z) = z(z) =
x(z) + iy(z) ∈ Cn, φ(z) = (x(z),y(z)) ∈ Rn

× Rn, or φ(z) = (ξ(z),η(z)) ∈ Rk
× R2n−k;

(ii) φ(z0) = 0;
(iii) T0(φ(U ∩ S)) = T0Rk

⊆ T0(Rk
× R2n−k).

If, moreover, S is additionally a real analytic submanifold, then (U, φ) may be additionally
chosen so that

(iv) φ(U|S) ⊆ {(ξ,η) | ξ = 0}.
Proof Let (U, ψ) be any C-chart about z0 such that ψ(z0) = 0. Since ψ(V ∩ S) is a totally
real submanifold of ψ(V) ⊆ Cn, T0(ψ(V ∩ S)) is a totally real subspace of T0Cn

' Cn. Let
(v1, . . . ,vk) be a (real) basis for T0(ψ(V∩S)). By Lemma 4.1.27 there exists vk+1, . . . ,vn ∈ Cn

such that
(v1, . . . ,vn, J(v1), . . . , J(vn))

is J-adapted, where J denotes the standard linear complex structure on Cn. Thus, by
Proposition 4.1.6, the map L : Cn

→ Cn defined by

L
( n∑

j=1

a jv j +

n∑
j=1

b jJ(v j)
)

= (a1 + ib1, . . . , an + ibn)

is C-linear. Then the map φ : U→ Cn defined by φ(z) = L ◦ψ(z) has the properties (i)–(iii),
as can be verified directly.

For the final assertion of the lemma it is convenient to rename the coordinates (ξ,η) ∈
Rk
× R2n−k as (z1, z2) ∈ Ck

× Cn−k as follows:

z j
1 = ξ j + iηk+ j, j ∈ {1, . . . , k},

z j
2 = η j + iηn+ j, j ∈ {1, . . . ,n − k}.

We also denote x1 = Re(z1), y1 = Im(z1), x2 = Re(z2), and y1 = Im(z2). Then, from
the first part of the proof and by shrinking U if necessary, we have real analytic maps
χ1 : φ(U) ∩ Rk

→ Rk and χ2 : φ(U) ∩ Rk
→ Cn−k with the property that

φ(U ∩ S) = {(x1 + iy1, z2) ∈ Ck
× Cn−k

| y1 = χ1(x1), z2 = χ2(x1), x1 ∈ φ(U) ∩ Rk
}.

Moreover, χ1 andχ2 and their first derivatives vanish at 0 ∈ Rk. By Lemma 1 from the proof
of Proposition 6.4.3 below, there exists a neighbourhood U of 0 ∈ Ck and holomorphic
maps χ1 : U → Ck and χ2 : U → Cn−k that agree with χ1 and χ2, respectively, on U ∩ Rk.
DefineΦ : U × U→ Ck by

Φ(z1,ζ1) = z1 − ζ1 − iχ1(ζ1).



28/02/2014 6.4 Real analytic manifolds 55

By the holomorphic Implicit Function Theorem, Theorem 1.2.7, we can write ζ1 as a
holomorphic function of z1 and such thatΦ(z1,ζ1(z1)) = 0. We have

Re(ζ1(z1)) = Re(z1) + Im(χ1(Re(ζ1(z1)))) = Re(z1)

since χ1 is real for real arguments. Therefore, we have that Im(ζ1(z1)) = 0 if and only if

0 = Im(z1) − Re(χ1(Re(ζ1(z1))) = y1 − χ1(Re(ζ1(z1))) = y1 − χ1(Re(z1)),

Let us also define
ζ2(z1, z2) = z2 − χ2(ζ1(z1)).

If Im(ζ(z1)) = 0 then

ζ2(z1, z2) = z2 − χ2(Re(ζ1(z1))) = χ1(Re(z1)).

so that (z1, z2) ∈ φ(U ∩ S) ∩ U if and only if Im(ζ1(z1)) = 0 and ζ2(z1, z2) = 0. Thus the
coordinates (ζ1,ζ2) achieve the desired result. �

The lemma says, roughly, that totally real submanifolds are linearly approximated
by real subspaces of Cn (this is unsurprising) and, if the submanifold is real analytic,
this approximation is not only linear, but local.

It is also possible to extend real analytic maps from real analytic totally real sub-
manifolds.

6.4.3 Proposition (Extension of real analytic maps) Let M and N be holomorphic manifolds,
let S ⊆ M be a totally real real analytic submanifold for which dimR(S) = dimC(M), and
let Φ ∈ Cω(S; N) (thinking of N also as a real analytic manifold). Then there exists a
neighbourhood U of S in M and Φ ∈ Chol(U; N) such that Φ|S = Φ. Moreover, if U and
U′ are two neighbourhoods of S in M and if Φ ∈ Chol(U; N) and Φ′ ∈ Chol(U′; N) satisfy
Φ|S = Φ′|S = Φ, then Φ and Φ′ agree on any connected component of U ∩ U′ that intersects
S.

Moreover, if dimC(M) = dimC(N) and if Φ is a real analytic diffeomorphism onto a totally
real submanifold of N, then the neighbourhood U and the extension Φ can be chosen so that Φ
is a holomorphic diffeomorphism onto its image.

Proof Let us first do this for Euclidean space, using the following (usual) identification
of Cn with Rn

× Rn:

(z1, . . . , zn) 7→ ((Re(z1), . . . ,Re(zn)), (Im(z1), . . . , Im(zn))). (6.28)

With this convention, we have the following result.

1 Lemma Let U ⊆ Rn be open and letΦ ∈ Cω(U;Cm). Then there exists a neighbourhood U ⊆ Cn

of U×{0} andΦ ∈ Chol(U;Cm) such thatΦ|U×{0} =Φ. Moreover, for any other neighbourhood
U′ of U × {0} in Cn and for any other mappingΦ′ ∈ Chol(U′;Cm) for whichΦ′|U × {0} =Φ,Φ
andΦ′ agree on any connected component of U ∩ U′ intersecting U.

Moreover, if m = n and if Φ is a real analytic diffeomorphism onto its image inRm
×{0}, then

U and the extensionΦ can be chosen so thatΦ is a holomorphic diffeomorphism onto its image.
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Proof Let x ∈ U and let Vx ⊆ U be a neighbourhood of x in Rn such that the Taylor series
forΦ converges on Vx. Thus, for each y ∈ Vx, we have

∞∑
k=0

∑
I∈Zn

≥0

1
I!
∂|I|Φ j

∂xI (x)(y − x)I, j ∈ {1, . . . ,m}.

Then, by Theorem 1.1.17, there exists a neighbourhood Vx of (x, 0) in Cn such that

∞∑
k=0

∑
I∈Zn

≥0

1
I!
∂|I|Φ j

∂xI (x0)(z − (x, 0))I, j ∈ {1, . . . ,m},

converges for every z ∈ Vx. LetΦx ∈ Chol(Vx;Cm) be the holomorphic function defined by
the preceding Taylor series.

We claim that if V is a neighbourhood of (x, 0) and ifΨ ∈ Chol(V;Cm) agrees withΦx

when restricted to a neighbourhood of x inRn
×{0}, thenΦx andΨ agree on the connected

component of the intersection of their domains containing (x, 0). To see this, we note that
the real Taylor series ofΦx andΨ, restricted to Rn

× {0}, must agree. ThusΦx andΨ have
the same Taylor series at (x, 0), and so must agree on a neighbourhood of (x, 0). Our claim
follows from Theorem 1.1.18.

Thus we have a family (Vx)x∈U and (Φ)x∈U of open sets and holomorphic functions
defined on these open sets. Define U to be the connected component of ∪x∈UVx containing
U × {0} and define Φ ∈ Chol(U;R) by asking that Φ(z) = Φx(z) where x ∈ U is such that
z ∈ Vx. By the second paragraph of the proof,Φ is well-defined on U since U is connected.
That Φ is holomorphic follows by holomorphicity of the functions Φx, x ∈ U. The final
assertion of the theorem follows from the Identity Theorem, Theorem 1.1.18.

The final assertion follows by the Inverse Function Theorem, Theorem 1.2.6, along
with the fact that the complexification of aR-linear isomorphism is aC-linear isomorphism.

H

For the general case, let z ∈ S and, by Lemma 6.4.2, choose a C-chart (Uz, φz) for M
about z such that

φz(Uz ∩ S) ⊆ {z ∈ Cn
| Im(z) = 0}.

Also choose a C-chart (Vz, ψz) for N about Φ(z) and suppose that Φ(Uz) ⊆ Vz. Then the
local representative Φφzψz : z 7→ ψz ◦Φ ◦ψ−1

z (z) satisfies the hypotheses of the lemma. By the
conclusions of the lemma we can extend Φ to Φz ∈ Chol(Uz; N) defined on a neighbourhood
Uz of Uz. We can argue as in the proof of the lemma that, by doing this for each z ∈ S,
we obtain a neighbourhood U = ∪z∈SUz and a well defined map Φ ∈ Chol(U; N) given by
requiring that Φ(w) = Φz(w) if w ∈ Uz. The Identity Theorem for manifolds, Theorem 4.2.5,
gives the uniqueness assertion of the theorem.

The final assertion of the theorem follows from the final assertion of the lemma above,
along with an application of Lemma 6.4.2 at z ∈ S and Φ(z) ∈ N. �

An important property of totally real submanifolds is that they have Stein tubular
neighbourhoods. This was first proved by [Grauert 1958] in, more or less, the case of
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totally real submanifolds of half the (real) dimension of M. The proof in general that
we give is that of [Cieliebak and Eliashberg 2012]. To state the theorem and give the
proof, we need to recall some facts about Riemannian manifolds.

We suppose that M is equipped with a Hermitian metricH, and that the associated
Riemannian metric is denoted by G, cf. Section 4.1.5. We shall additionally suppose
that M is connected. For an absolutely continuous curve γ : [0,T] → M we define its ref

length by

`H(γ) =

∫ T

0
G(γ′(t), γ′(t))1/2 dt.

It is easily and directly shown that this definition of the length of a curve depends only
on the trace of the curve and not its parameterisation. Thus we may as well suppose
that T = 1 when we speak of the length of a curve. Thus, for x, y ∈ M, we define the
distance between x and y to be

dH(x, y) = inf{`H(γ) | γ : [0, 1]→ M is absolutely continuous with γ(0) = x, γ(1) = y}.

One verifies that dH is a metric on M. Thus, for a subset S ⊆ M, we can define
distS : M→ R≥0 by

distS(x) = inf{dH(x, y) | y ∈ S}

as the distance function from S. With all this as backdrop, we state the following ref

theorem.

6.4.4 Theorem (Totally real submanifolds possess Stein neighbourhoods) Let M be
a paracompact holomorphic manifold, let H be an Hermitian metric on M with associated
Riemannian metric G, and let S be a properly embedded, totally real submanifold of M. Then

(i) dist2
S is strictly plurisubharmonic in a neighbourhood of S and

(ii) for any neighbourhood N of S, there exists a neighbourhood U ⊆ N of S that is a Stein
manifold with a smooth strictly pseudoconvex boundary, i.e., a boundary that is a level
set of a strictly plurisubharmonic function.

Proof We suppose that M is connected, and so second countable [Abraham, Marsden,
and Ratiu 1988, Proposition 5.5.11]. If this is not so, the construction of the proof can be
made on all connected components of M. We let NS ⊆ TM|S be the G-normal bundle of S.
For z ∈ S and vz ∈ NzS define τ(vz) = γvz(1), where γvz is the unique geodesic satisfying
γ′vz

= vz. For ρ : S→ R≥0 define

NSρ = {vz ∈ NS | ‖vz‖G < ρ(z)}.

By the Tubular Neighbourhood Theorem [Bröcker and Jänich 1982, Theorem 12.11] there
exists a continuous mapρ : S→ R≥0 such that τ is a diffeomorphism from NSρ onto a neigh-
bourhood of S in M. Moreover, by properties of geodesic normal coordinates [Kobayashi
and Nomizu 1963, §IV.3], the distance from z ∈ NSρ to S is ‖τ−1(z)‖G.

The following lemma gives particular coordinates for Tρ , τ(NSρ) about every point
in S.
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1 Lemma For each z0 ∈ S there exists a chart (U, φ) about z0 with the following properties:
(i) φ takes values inRn

×Rn
' Rk

×R2n−k, and we denote coordinates byφ(w) = (x(w),y(w)) ∈
Rn
× Rn or φ(w) = (ξ(w),η(w)) ∈ Rk

× R2n−k;
(ii) S ∩ U = {w ∈ U | η(w) = 0};
(iii) for w ∈ U, distS(w) = ‖η(w)‖;
(iv) for each z ∈ S ∩ U the function fz ∈ C∞(U) given by

fz(w) = 2‖η(w)‖2 − ‖ξ(w) − ξ(z)‖2

is strictly plurisubharmonic on U.

Proof Let (V, ψ) be a chart for S about z0, and denote coordinates in this chart by w 7→ ξ(w).
We suppose this chart has been chosen so that ( ∂

∂ξ1 (z0), . . . , ∂
∂ξk (z0)) is a G(z0)-orthonormal

basis for Tz0S. By Proposition 4.1.26 and the fact that J(z0) is G(z0)-orthogonal, it follows
that

∂

∂ξ1
(z0), . . . ,

∂

∂ξk
(z0), J

( ∂
∂ξ1

(z0)
)
, . . . ,

( ∂
∂ξk

(z0)
)

form an orthonormal basis for Tz0S ⊕ J(Tz0S).
Now let X1, . . . ,Xn−k be orthonormal sections of NV that are orthogonal to J(TS). Let

Y1, . . . ,Yk be orthonormal sections of NV for which Y j(z0) = J( ∂
∂ξ j ), j ∈ {1, . . . , k}. Finally, let

Yk+1, . . . ,Yn be orthonormal sections of NV for which Y j(z0) = J(X j−k(z0)) for j ∈ {k+1, . . . ,n}.
Note that with these sections as defined, J(z0) has the matrix representation[

0 −In
In 0

]
in the basis

∂

∂ξ1
(z0), . . . ,

∂

∂ξk
(z0),X1(z0), . . . ,Xn−k(z0),Y1(z0), . . . ,Yn(z0)

for Tz0M.
For z ∈ V and for (η1, . . . , η2n−k) ∈ R2n−k sufficiently small, we can define

expz(η1, . . . , η2n−k) = (γY1(z)(η1), . . . , γY2n−k(z)(η2n−k)),

where t 7→ γv(t) denotes the geodesic of G for which γ′(0) = v. Moreover, the Tubular
Neighbourhood Theorem shows that the map

η1Y1(z) + · · · + η2n−kY2n−k(z) 7→ (ξ(z),η)

is a diffeomorphism from a neighbourhood of Z(NS) to a neighbourhood of S. Thus we
have a chart (U, φ) for M defined in a neighbourhood of z0. Moreover, the distance from
z ∈ U to S is exactly η(z).

It remains to show that fz is strictly plurisubharmonic in a neighbourhood of z0 for
each z sufficiently close to z0. Let J be the complex structure on φ(U) ⊆ Rn

× Rn
' Cn

induced by the coordinate chart and the complex structure J on M. That is, J = φ∗(J|U).
Note that J agrees with the canonical complex structure at φ(z0) by the manner in which
we have constructed our coordinates. Next note that the function

(ξ,η) 7→ 2‖η‖2 − ‖ξ − ξ(z)‖2
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is strictly plurisubharmonic on Cn for any z ∈ V, as can be directly verified. By this we
mean that it is strictly plurisubharmonic with respect to the standard complex structure.
Define a map L : U × U → Cn×n by asking that Li j(z,ζ) be the Levi form for φ∗ fφ−1(ζ) with
respect to the complex structure J(z) evaluated at the standard basis vectors ei and e j. The
matrix L(φ(z0), φ(z0)) is Hermitian and positive-definite. Thus there is a neighbourhood
of z0 such that the Levi form of fz is positive-definite for every z in that neighbourhood,
and this concludes the proof. H

By virtue of second countability of M, we can thus choose a locally finite covering of
S with a countable family ((Ul, φl))l∈Z>0 of submanifold charts as in the lemma, and with
closed subsets Al ⊆ Ul, l ∈ Z>0, for which S = ∪l∈Z>0Al. Borrowing the notation from the
lemma, we denote

φl(w) = (xl(w), yl(w)) = (ξl(w),ηl(w)).

For each l ∈ Z>0 and each z ∈ S ∩ Al, define fl,z ∈ C∞(Ul) by

fl,z(w) = 2‖ηl(w)‖2 − ‖ξl(w) − ξl(z)‖2.

By the lemma the neighbourhood Ul is chosen so that fl.z is strictly plurisubharmonic on
Ul for each z ∈ S ∩ Ul.

Let N be a neighbourhood of S. Since dist2
S(w) = ‖τ−1(w)‖2G the Hessian of dist2

S at
z ∈ S is

Hess dist2
S(z)(uz, vz) = G(z)(ν(uz), ν(vz)),

where ν is the projection onto NzS. From Lemma 3.2.9 we have

Lev(dist2
S)(vz) = G(z)(ν(vz), ν(vz)) +G(z)(ν(J(vz)), ν(J(vz))).

Since S is totally real, we conclude that dist2
S is strictly plurisubharmonic along S. By

Lemma 3.3.3 let ψ be a smooth exhaustion function on S that we extend arbitrarily to a
smooth function on the tubular neighbourhood Tρ by asking that τ∗ψ(vz) = ψ(z) for every
vz ∈ NzSρ. That is, if we regard Tρ as a bundle over S whose fibre over z ∈ S is a disk,
the extension of ψ just described prescribes ψ as being constant on these fibres. Now,
following the argument given in the proof of Theorem 6.2.13, let σ : R → R be smooth,
convex, and strictly increasing and such that ψ + σ ◦dist2

S is strictly plurisubharmonic on
S, and so in a neighbourhood U of S. We choose U to be a neighbourhood of S contained
in N ∩ cl(Tρ).

For each z ∈ S let Vz be a neighbourhood of z such that (1) Vz ⊆ U and (2) if w ∈ Vz
and if l ∈ Z>0 is such that z ∈ Ul, then 3‖η(w)‖2 < dist(Al, bd(Ul))2, the distance between
sets being given as in . This is possible since the covering (Ul)l∈Z>0 is locally finite. Let ref

V = cl(∪z∈SVz). For z ∈ S and l ∈ Z>0 such that z ∈ Ul, denote

Cl,z = {w ∈ Ul ∩ V | fl,z(w) > 0}.

We claim that, with V so chosen,

bdV(Cl,z) = {w ∈ Ul ∩ V | fl,z(w) = 0},

i.e., the boundary of Cl,z in V does not contain points from bd(Ul). Indeed, suppose this is
not so, so that there exists w ∈ cl(Cl,p) ∩ bd(Ul). Therefore,

0 ≤ fl,z(w) = 2‖η(w)‖2 − ‖ξ(w)‖2.
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Since w ∈ bd(Ul) and z ∈ Al we have

dH(w, z) ≥ dist(Al, bd(Ul)).

By the lemma,
dH(w, z) ≥ distS(w) = ‖η(w)‖.

Combining the preceding inequalities, we have

dist(Al, bd(Ul))2
≤ ‖η(w)‖2 + ‖ξ(w) − ξ(z)‖2 ≤ 3‖η(w)‖2 < dist(Al, bd(Ul))2,

which is a contradiction. Thus we conclude that (6.4.4) holds, as desired. For z ∈ S fix
lz ∈ Z>0 such that z ∈ Alz . Since V \ S = ∪z∈SClz,z, the condition (6.4.4) ensures that there
exists a countable set (z j) j∈Z>0 in S such that bd(V) ⊆ ∪ j∈Z>0Clzj ,z j . (To see this, note that
bd(V) is a countable union of compact sets, each of which can be covered by a finite number
of the sets Clz,z.)

Now let

φ(t) =

e−1/t, t ≥ 0,
0, t < 0.

and define g j = φ ◦ flzj ,z j , j ∈ Z>0. Note that g j is defined on Ul j , but can be smoothly
extended to V. Moreover, by Proposition 6.1.10(iv), g j is strictly plurisubharmonic on
Clzj ,z j and plurisubharmonic on V. We can then choose suitable α j ∈ R>0, j ∈ Z>0, such
that, if we define

g(z) =
∑
j∈Z>0

α jg j(z), z ∈ V,

then g−1([0, 1)) ⊆ V. If ε ∈ (0, 1) is a regular value for g (of which there are densely many by
Sard’s Theorem [Abraham, Marsden, and Ratiu 1988, Theorem 3.6.5]), then Vε = g−1([0, ε))
is a neighbourhood of S with a smooth strictly pseudoconvex boundary.

Now let ε be a regular value of g and κ : [0, ε) → R≥0 be defined by κ(s) = tan(πs
2ε ),

noting that κ is a strictly convex diffeomorphism. Thus κ ◦ g is plurisubharmonic by
Proposition 6.1.10(iv). Thus u = κ ◦ g + ψ + σ ◦dist2

S is strictly plurisubharmonic. Let
us verify that it is also an exhaustion function on Vε. Let α ∈ R. Since ψ|S is an
exhaustion function, (ψ|S)−1((−∞, α]) is compact. Since S is properly embedded in M,
Kα , ψ−1((−∞, α]) ∩ S is compact. Note that, by the manner in which ψ is extended from
S to Tρ,

ψ−1((−∞, α]) = {z ∈ Tρ | πTM(τ−1(z)) ∈ Kα}.

By the following lemma, ψ−1((−∞, α]) is compact.

2 Lemma Let X and Y be topological spaces with X compact and let π : Y→ X be a continuous map
with the following properties:

(i) π is a surjective open mapping;
(ii) π−1(x) is compact in Y for every x ∈ X.

Then Y is compact.
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Proof Let (Ua)a∈A be an open cover for Y. Let x ∈ X and note that (Ua∩π−1(x))a∈A is an open
cover for π−1(x). Since π−1(x) is compact there exists a finite subset {a1(x), . . . , akx(x)} ⊆ A
such that π−1(x) = ∪kx

j=1Ua j(x). Now, note that Nx = ∩kx
j=1π(Ua j(x)) is a neighborhood of x

since π is open. In turn, this implies that N = (Nx)x∈X is an open cover of the compact set
X. Therefore, there exits a finite subset {x1, . . . , xm} ⊆ X such that X = ∪m

l=1Nxl . In summary
we have

Y = ∪x∈Xπ
−1(x) = ∪x∈X ∪

kx
j=1 Ua j(x) = ∪m

l=1 ∪
kxl
j=1 Ua j(xl),

giving a finite subcover of Y as desired. H

Since g and dist2
S are R≥0-valued we have u−1((−∞, α]) ⊆ ψ−1((−∞, α]). Compactness

of u−1((−∞, α]) now follows since it is a closed subset of the compact setψ−1((−∞, α]). Thus
Vε is strongly pseudoconvex, and so Stein. �

6.4.2 Complexification of real analytic manifolds

Very often in real analytic geometry it is useful to complexify, by which we mean
extend real analytic objects to the corresponding holomorphic objects. The first step in
doing this, of course, is to complexify real analytic manifolds. It is relatively easy to do
this in a dumb direct way, but upon doing so one would like for the complexification
to have some nice properties. In this section we indicate what these nice properties
might be, and prove that a complexification does indeed exist with these properties.
The first substantial work in this direction was done by Whitney and Bruhat [1959] (see
also [Cartan 1957]). Further exploration of the idea of complexification was carried
out by Kulkarni [1978].

Let us first define what we mean by the complexification of a real analytic mani-
fold.

6.4.5 Definition (Complexification) If M is a real analytic manifold, a complexification of
M is a pair (M, ι) where M is a holomorphic manifold M and ι : M→ M is a real analytic
embedding for which ι(M) is a totally real submanifold. A complexification M is
minimal if ι is a homotopy equivalence, i.e., if there exists continuous maps p : M→ M,
h : [0, 1] ×M→ M, and h : [0, 1] ×M→ M such that

(i) h(0, x) = p ◦ ι(x) for all x ∈ M,
(ii) h(1, x) = x for all x ∈ M,

(iii) h(0, z) = ι ◦p(z) for all z ∈ M, and

(iv) h(1, z) = z for all z ∈ M. •

With these definitions we have the following result.

6.4.6 Theorem (Real analytic manifolds possess minimal complexifications) If M is a
Hausdorff, paracompact real analytic manifold then there exists a minimal Hausdorff complex-
ification M of M.
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Proof For x ∈ M let Ux, Vx, and Wx be neighbourhoods x in M for which Ux and Vx are
relatively compact, for which

cl(Ux) ⊆ Vx, cl(Vx) ⊆Wx,

and for which Wx is the domain of a real analytic chart map φx : Wx → Rn. We denote
Ax = φx(Ux), Bx = φx(Vx), and Cx = φx(Wx). Since M is paracompact, by [Abraham,
Marsden, and Ratiu 1988, Proposition 5.5.5] we choose a subcover of (Ux)x∈M of M with
index set I such that (Ui)i∈I, (Vi)i∈I and (Wi)i∈I are locally finite open covers. We use the
symbols Ai, Bi, Ci, and φi for the obvious entities for each i ∈ I. Let us also denote

Ai j = φi(Ui ∩ U j), Bi j = φi(Vi ∩ V j), Ci j = φi(Wi ∩W j)

for i, j ∈ I. We shall assume whenever necessary and without saying so that i, j ∈ I are such
that desired intersections are nonempty. Thus we have a real analytic diffeomorphism
φi j : Ci j → C ji if Ci j , ∅. Obviously we have

Ai j ⊆ Bi j ⊆ Ci j

and
φi j(Ai j) = A ji, φi j(Bi j) = B ji.

By Proposition 6.4.3 we can extend φi j to a holomorphic diffeomorphism φi j : Ci j → C ji

from a neighbourhood Ci j of Ci j ⊆ Rn in Cn. By restricting if necessary, we suppose that
φ−1

i j = φ ji for each i, j ∈ I. For i, j ∈ I let Bi j be an open subset of Cn with the following
properties for each i, j ∈ I:

1. cl(Bi j)) is a compact subset of Ci j;

2. Bi j ∩ Rn = B ji;

3. cl(Bi j) ∩ Rn = cl(B ji);

4. φi j(Bi j) = B ji.

Note that cl(Ai)∩φ ji(cl(A j)∩ cl(B ji)) is a compact subset of Bi j. Thus, for each i, j ∈ I, there

exists an open subset Di j of Cn with the following properties for each i, j ∈ I:

5. cl(Di j) is a compact subset of Bi j;

6. cl(Ai) ∩ φ ji(cl(A j) ∩ cl(B ji)) ⊆ Di j;

7. φi j(Di j) = D ji.

Since Di j is an open set containing the intersection of the two compacts sets cl(Ai) and
φ ji(cl(A j) ∩ cl(B ji)), it follows that the sets

cl(Ai) −Di j, φ ji(cl(A j) ∩ cl(B ji)) −Di j

are disjoint and each compact. Thus there exist disjoint open sub sets Xi and Yi in Cn

containing these complements, and thus having the property that

cl(Ai) ⊆ Di j ∪ Xi j, φ ji(cl(A j) ∩ cl(B ji)) ⊆ Di j ∪ Yi j.

Let i ∈ I. Let Xi be an open subset of Cn having the following properties:
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8. Xi ∩ Rn = Ai;
9. cl(Xi) ∩ Rn = cl(Ai);

10. Xi ⊆ Di j ∪ Xi j for each j ∈ I (of which there are finitely many) for which Ci j , ∅.
Note that

cl(Xi ∩Bi j) ⊆ cl(Xi) ∩ cl(Bi j)

and so
cl(φi j(Xi ∩Bi j)) ⊆ φi j(cl(Xi) ∩ cl(Bi j)).

Therefore,

cl(φi j(Xi1 ∩Bi j)) ∩ Rn
⊆ φi j(cl(Xi) ∩ cl(Bi j)) ∩ Rn

= φi j(cl(Xi) ∩ cl(Bi j) ∩ Rn)

= φi j(cl(Ai) ∩ cl(Bi j)), (6.29)

by virtue of the properties of 2 and 3 of Bi j and 8 and 9 of Xi.
For x ∈ Bi, let Bi,x be an open subset of Cn satisfying the following properties:

11. for each j ∈ I (of which there are finitely many) for which x ∈ Bi j, Bi,x ⊆ Bi j;

12. for each j ∈ I (of which there are finitely many) for which x ∈ φ ji(cl(A j) ∩ cl(B ji)),

Bi,x ⊆ Di j ∪ Yi j;

13. since, by (6.29), if φi j(x) < cl(A j) then we have x < φi j(cl(Xi) ∩ cl(Bi j)), we require
that, for each j ∈ I (of which there are finitely many) for which φi j(x) < cl(A j),
Bi,x ∩ φi j(cl(Xi) ∩ cl(Bi j)) = ∅;

14. for each ordered pair ( j, k) ∈ J × J (of which there are finitely many) for which
x ∈ Bi j ∩Bik, we have

Bi,x ⊆ φ ji(B ji ∩B jk) ∩ φki(Bki ∩Bkj)

and φi j(z) = φkj ◦φik(z) for every z ∈ Bi,x.

Now denote Bi = ∪x∈BiBi,x and let Ai be a neighbourhood of Ai in Cn contained in
Xi ∩Bi and for which cl(Ai) ⊆ Bi. By properties 8 and 9 of Xi we have

Ai ∩ Rn = Ai, cl(Ai) ∩ Rn = cl(Ai).

Let us also define
Ai j = Ai ∩ ψ ji(Ai ∩B ji), Ai jk = Ai j ∩Aik.

Note that φi j|Ai j is a holomorphic diffeomorphism onto A ji. Also let z ∈ Ai jk so z ∈ Ai j

and, therefore, z ∈ φ ji(A j ∩B ji). Similarly, z ∈ φki(Ak ∩Bki). From this we conclude that

z ∈ φ ji(X j ∩B ji) ∩ φki(Xk ∩Bki).

Therefore, if z ∈ Bi,x for some x ∈ Bi (as must be the case), then Bi,x must intersect both
φ ji(X j∩B ji) andφki(Xk∩Bki). By property 13 of the setsBi,x we conclude thatφi j(x) ∈ cl(A j)
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and φik(x) ∈ cl(Ak). From this we conclude that x ∈ Bi j ∩ Bik. By property 11 of the sets
Bi,x we conclude that z ∈ Bi j ∩Bik. Thus we have

φik(z) = φ jk ◦φi j(z) ∈ Akj.

Since z ∈ Aik we also have φik(z) ∈ Ak. Therefore, we also have φkj ◦φik(z) = φi j(z). From
this we conclude that

φi j(z) ∈ A j, φi j(z) ∈ φi j(Ai ∩Bi j), φi j(z) ∈ φkj(Ak ∩Bkj).

From the preceding three formulae we conclude that φi j(z) ∈ A jik. Thus φi j(Ai jk) ⊆

A jik. In like manner we conclude that φ ji(A jik) ⊆ Ai jk. Therefore, φi j is a holomorphic

diffeomorphism from Ai jk onto A jik.

Now consider the disjoint union
◦

∪i∈I Ai; thus an element of this set is a pair (i, z) where

z ∈ Ai. On
◦

∪i∈I Ai we use the disjoint union topology, i.e., the topology generated by the
sets {i} × O for i ∈ I and for O ⊆ Ai open. We define an equivalence relation on this set by
(i, z) ∼ ( j,w) if z ∈ Ai j, w ∈ A ji, and w = φi j(z). Our constructions above, particularly that

φi j is a holomorphic diffeomorphism from Ai j onto A ji and from Ai jk onto A jik, ensure that

∼ is indeed an equivalence relation. (We adopt the natural convention that Aii = Ai and

φii = id
Ai

.) Let us denote by M the quotient of
◦

∪i∈I Ai by the equivalence relation, and we

equip M with the quotient topology. By π we denote the projection. We claim that M has
a holomorphic structure and an inclusion of M whose image is real analytic and totally
real. First we specify the holomorphic structure by prescribing a holomorphic atlas. For
i ∈ I let Ui = π({i} × Ai) and φi : Ui → Cn by φi(z) = (i, z), where π(i, z) = z. Since φi is a
bijection onto Ai, (Ui, φi) is a C-chart. For two overlapping charts (Ui, φi) and (U j, φ j) we

have φ j ◦φ
−1
i (z) = φi j(z) for z ∈ φi(Ui ∩ U j). Thus ((Ui, φi))i∈I is a holomorphic atlas. Now

we need to embed M in M as a totally real submanifold. If x ∈ M then x ∈ Ui for some i ∈ I.
We then define ι(x) = π ◦φi(x). To see that ι is well-defined, suppose that x ∈ U j. We then
have φi(x) = φi j ◦φ j(x) so that (i, φi(x)) ∼ ( j, φ j(x)), giving well-definedness. Since the local
representative of ι with respect to the chart (Ui, φ) for M and the chart (Ui, φi) for M is the
canonical embedding of Ai ⊆ Rn in Ai ⊆ Cn, it follows that ι is real analytic and that its
image it totally real.

Next we show that the topology on M is Hausdorff. To do so, we first show that
cl(Ai j) ⊆ Bi j. To do so, we suppose without loss of generality that Ci j , ∅. Let z ∈ Ai j.
Noting that Ai j ⊆ Ai ⊆ Bi, it follows that there exists x ∈ Bi such that z ∈ Bi,x. We claim
that x ∈ φ ji(cl(A j) ∩ cl(B ji)). Indeed, suppose otherwise so φi j(x) < cl(A j). By property 13

of the sets Bi,x we have z < φ ji(X j ∩ B ji). This implies that z < φ ji(A j ∩ B ji), contradicting

the fact that z ∈ Ai j by the definition of Ai j. We, therefore, have x ∈ φ ji(cl(A j)∩ cl(B ji)). By

property 12 of the sets Bi,x we have z ∈ Di j∪Yi j. We also have z ∈ Ai ⊆ Xi ⊆ Xi j∪Di j. Since
Xi j and Yi j are prescribed as being disjoint, we must have z ∈ Di j. Since Di j is prescribed
as being relatively compact in Bi j, it follows that cl(Ai j) ⊆ Bi j, as desired.



28/02/2014 6.5 Embedding theorems 65

To show that M is Hausdorff, let z,w ∈ M be distinct and suppose that π(i, z) = z and
π( j,w) = w. We claim that there exists a neighbourhood S of z in Ai and a neighbourhood
T of w in A j such that the set

{((i, z′), ( j,w′)) ∈ ({i} × S) × ({ j} × T) | (i, z′) ∼ ( j,w′)}

is empty (this obviously suffices to show that z and w have disjoint neighbourhoods).
Suppose otherwise. This implies that there exists sequences (zl)l∈Z>0 in Ai j and (wl)l∈Z>0

in A ji converging to z and w, respectively, and such that wl = φi j(zl), l ∈ Z>0. By the

preceding paragraph, we conclude that z ∈ Bi j and w ∈ B ji. This contradicts the fact that
(i, z) � ( j,w).

Finally, we show that there is a minimal complexification. This, however, follows
from the Tubular Neighbourhood Theorem in the following manner. We suppose that M
possesses a Riemannian metric G as a smooth real manifold. By that theorem we have a
function ρ : M → R>0 and a diffeomorphism τ : NMρ → M from a neighbourhood of the
zero section of the normal bundle to M in M. By shrinking, we suppose that M = image(τ).
We then define the smooth map p : M → M by p(z) = ν ◦τ−1(z)x, where ν : NM → M is the
vector bundle projection. We define smooth maps h : [0, 1]×M→ M and h : [0, 1]×M→ M
by h(s, x) = x and h(s, z) = τ(sτ−1(z)). These maps clearly satisfy the conditions in the
definition of minimality. �

If we combine the preceding theorem with Theorem 6.4.4 we have the following
result.

6.4.7 Corollary (Real analytic manifolds possess Stein complexifications) If M is a
Hausdorff, paracompact real analytic manifold, then it possesses a minimal Stein complexifi-
cation.

6.5 Embedding theorems

Embedding theorems for manifolds have to do with the question, “When can a
manifold be embedded as a submanifold of Euclidean space?” The abstract definition
of a manifold by no means makes it clear that such an object can, indeed, be regarded
as a submanifold of Euclidean space. Embedding theorems, when they exist, are often
quite useful. For example, an embeddable manifold will always possess a Riemannian
or Hermitian metric, simply by restricting the standard Euclidean inner product or
Hermitian inner product, respectively. A host of similar type existence theorems follow
from embeddability, for example Theorem GA2.5.3.3 and its Corollary GA2.5.3.4.

The basic embedding theorem for smooth manifolds in differential geometry is that
of Whitney [1936], which says that a second countable smooth Hausdorff manifold of
dimension n can be embedded as a smooth submanifold of RN for some sufficiently
large 2n+1. The embedding theorem of Whitney is comparatively easy to prove, using
partitions of unity, and we give a proof below. Another important smooth embedding
theorem is that of Nash [1956], which says that if a second countable smooth Hausdorff
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manifold possesses a smooth Riemannian metric, its embedding intoRN (generally we
will have N > 2n+1) can be chosen such that the Riemannian metric on the embedded
submanifold agrees with that induced by the standard Euclidean metric. Nash’s proof
is a technical one, and involved proving a powerful Inverse Function Theorem in
infinite dimensions.

Thus, in the smooth case, one has at one’s disposal exactly the sort of embedding
theorems on would like. However, it is not the case that embedding theorems hold
universally; for instance, Example 4.2.13–3 shows that not all holomorphic manifolds
can be embedded in complex Euclidean space. Thus the question of embeddability
does not always have a positive answer. In this section we overview the embedding
theorems that will be of interest to us.

6.5.1 Proper mappings

The embedding theorems we give will all assert the our manifold is properly em-
bedded in some Euclidean space. In this section we quickly overview the notion of
being proper, and why it is important.

6.5.1 Definition (Proper map) For topological spaces S and T, a map Φ : S→ T is proper if
Φ−1(K) is compact for every compact subset K ⊆ T. •

To gain some insight into this definition, let us consider some examples.

6.5.2 Examples (Proper and not proper maps)
1. If S is a compact space, if T is a Hausdorff space, and if Φ : S→ T is continuous, then

Φ is proper, since a compact set K ⊆ T is closed ([Runde 2005, Proposition 3.3.6]),
so Φ−1(K) is closed and so compact ([Runde 2005, Proposition 3.3.6]).

2. The map P : R→ R is a polynomial function of positive degree, then it is proper.
3. The map sin: R→ R is not proper.
4. We claim that continuous exhaustion functions are proper. Indeed, if u : S → R

is such a function and of K ⊆ R, then K ⊆ (−∞, α] for some α. Therefore, u−1(K)
is a closed subset of the compact set u−1((−∞, α]) and so compact [Runde 2005,
Proposition 3.3.6].
Note, however, that not all continuous proper functions are exhaustion functions.
For example, an odd polynomial function P : R→ R is proper but not an exhaustion
function. Roughly speaking, proper functions have to “blow up” at “infinity” to
plus or minus infinity, whereas exhaustion functions “blow up” at “infinity” to
plus infinity. •

The examples, particularly the last two, suggest that a proper map “must go to
infinity when evaluated at points going to infinity.” This is imprecise, of course,1 but

1It can be made more precise by use of one-point compactifications. A little more specifically and
assuming that S andT are locally compact but not compact, if Ŝ and T̂ are the one-point compactifications
ofS andT, respectively, then a continuous map Φ : S→ T is proper if and only if it extends to a continuous
map Φ̂ : Ŝ→ T̂ having the property that Φ(∞) = ∞.
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nonetheless it does capture the spirit of why properness is important for our purposes.
To flesh this out further, let us introduce the following definition.

6.5.3 Definition (Properly embedded submanifold) A submanifold S of a smooth mani-
fold M is properly embedded if the inclusion map ιS : S→ M is proper. •

Some examples illustrate the point of this definition.

6.5.4 Examples (Properly and not properly embedded submanifolds)
1. Let M = R2 and consider the submanifold

S = {(x, y) ∈ R2
| y = 0}.

One readily verifies that S is properly embedded. Intuitively, points at infinity in
S are also at infinity in M.

2. Let M = R2 and consider the submanifold

S = {(x, y) ∈ R2
| y = 0, x ∈ (−1, 1)}.

Note that the compact subset K = [−1, 1], intersected with S, is not a compact subset
of S, and this precludes S from being properly embedded. Intuitively, points at
infinity in S, i.e., points tending to the endpoints of S, are not at infinity in M. •

The following result encapsulates the important properties of proper maps.

6.5.5 Proposition (Characterisations of proper maps) If M and N are smooth manifolds and
if Φ : M→ N is a continuous injection, then the following statements are equivalent:

(i) Φ is proper;
(ii) Φ(M) is closed and Φ : M→ Φ(M) is a homeomorphism provided that Φ(M) is equipped

with the subspace topology inherited from N;
(iii) Φ(A) is a closed subset of N for every closed subset A ⊆ S.

Proof (i) =⇒ (iii) Here we use a lemma.

1 Lemma Let M and N be smooth manifolds and let Φ ∈ C0(M; N). Then Φ is proper if and only if it
holds that, for every sequence (xj)j∈Z>0 for which the sequence (Φ(xj))j∈Z>0 converges to y ∈ N, then
there is a convergent subsequence (xjk)k∈Z>0 for which (Φ(xjk))k∈Z>0 also converges to y.

Proof Suppose that Φ is proper. Since the sequence (Φ(x j)) j∈Z>0 converges, there exists
a compact set K ⊆ N such that Φ(x j) ∈ K for every j ∈ Z>0. Then Φ−1(K) is compact
since Φ is proper, and x j belongs to the compact set Φ−1(x j) for each j ∈ Z>0. By the
Bolzano–Weierstrass Theorem, there exists a convergent subsequence (x jk) j∈Z>0 , and clearly
limk→∞Φ(x jk) = y.

To prove the converse, let K ⊆ N be compact and let (x j) j∈Z>0 be a sequence in Φ−1(K).
Since K is compact, by the Bolzano–Weierstrass Theorem there exists a subsequence
(x jk)k∈Z>0 such that (Φ(x jk))k∈Z>0 converges to y ∈ K. Then, by hypothesis, there exists a
subsubsequence (x jkl

)l∈Z>0 in Φ−1(K) converging to x ∈ M. Since Φ is continuous, Φ−1(K)
is closed x ∈ Φ−1(K). By the Bolzano–Weierstrass Theorem we conclude that Φ−1(K) is
compact and so Φ is proper. H
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Now let A ⊆ M be closed and let (x j) j∈Z>0 be a sequence in A for which (Φ(x j)) j∈Z>0

converges to y ∈ N. By the lemma and since A is closed, there exists a subsequence (x jk) j∈Z>0

converging to x ∈ A. Since Φ is continuous, Φ(x) = y and this shows that Φ(A) is closed.
(ii) =⇒ (i) Let K ⊆ N be compact so that K ∩ Φ(M) is a compact subset of the closed

set Φ(M). By [Runde 2005, Proposition 3.3.6] we have that K ∩ Φ(M) is compact. Since
Φ is a homeomorphism with the subspace topology on Φ(M), we conclude that Φ−1(K) =
Φ−1(K ∩Φ(M)) is compact, as desired.

(iii) =⇒ (ii) Let Φ−1 : Φ(M) → M be the inverse of Φ restricted to its image. Since Φ is
obviously continuous, it suffices to show that Φ−1 is continuous. For this, we must show
that Φ(U) is an open subset of Φ(M) in the subspace topology. By hypothesis, Φ(M \ U) is
a closed subset of N, and so a closed subset of Φ(M) in the subspace topology. Injectivity
of Φ ensures that Φ(U) = Φ(M) \ (Φ(M \U)), and from this we conclude that Φ(U) is indeed
open. �

6.5.2 The Whitney embedding theorem for smooth manifolds

In this section we prove the grandfather of the embedding theorems, and perhaps
the easiest of them to prove.

6.5.6 Theorem (The Whitney Embedding Theorem) If M is a smooth, paracompact, Hausdorff
and connected manifold of dimension n, then there exists a proper smooth embedding of M in
R2n+1.

Proof The proof will be by a series of lemmata. The first is a weak version of Sard’s
Theorem, adequate for our needs. For the general version and an elementary proof, we
refer to [Aubin 2001].

1 Lemma If Φ : U→ Rn is a map of class C1 from an open subset U ⊆ Rn, thenΦ(Z) has measure
zero for every subset Z ⊆ U of measure zero.

Proof Let B ⊆ U be a closed ball. Since B is compact,Φ|B is Lipschitz, and so there exists
C ∈ R>0 such that

‖Φ(x) −Φ(y)‖ < C‖x − y‖

for every x, y ∈ B. Since Z ∩ B has measure zero, given δ ∈ R>0 we can cover Z ∩ B by
balls (B j) j∈Z>0 whose volumes sum to less than δ. For each j ∈ Z>0,Φ(B j) is contained in a
ball whose radius is less than C times that of B j. ThusΦ(B j) is contained in a ball whose
volume is less than Cn times that of B j. In other words,Φ(Z∩B) is covered by balls (B′j) j∈Z>0

whose volumes sum to less than Cnδ. Since δ can be chosen as small as desired,Φ(Z ∩ B)
has measure zero. Since Z can be covered by countable many closed balls, Φ(Z ∩ B) is a
countable union of sets of measure zero, and so of measure zero. H

The next lemma is similar in spirit.

2 Lemma If M is a second countable smooth manifold of dimension n and if Φ ∈ C1(M;Rm) for
m > n, then Φ(M) has measure zero.

Proof First we prove the result in the case that M = U is an open subset of Rn. Let
p : Rm

→ Rn be the projection onto the first n components and define Φ̂ ∈ C1(U×Rm−n;Rm)
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by Φ̂(x, y) = Φ(x). By the preceding lemma, Φ̂(U × {0}) has measure zero. Since Φ(U) =
Φ̂(U × {0}), the lemma follows in this case.

If M is second countable, it can be covered by countably many coordinate charts. By
the first part of the proof, the image of each coordinate chart under Φ has measure zero.
Thus image(Φ) is a countable union of sets of measure zero, and so has measure zero. H

For the next lemma, let Rn×m be the set of R-matrices with n rows and columns, and
for k ≤ min{m,n} let Rn×m

k be the matrices of rank k.

3 Lemma The subset Rn×m
k is a finite union of submanifolds of dimension k(n + m − k).

Proof A simple computation shows that there are

N(n,m, k) =

(
n
k

)(
m
k

)
minors of size k×k. Thus we have functions Ψ j : Rn×m

→ R, j ∈ {1, . . . ,N(n,m, k)}, returning
the values of these k × k-minors. Let us denote

S j = {A ∈ Rn×m
| Ψ j(A) , 0}.

Let us suppose that Ψ1 is the principal k × k-minor.
If k = min{n,m} then Rn×m

k is the set of matrices of full rank, and so none of the

functions Ψ j vanishes on Rn×m
k , i.e., Rm×n

k = ∪
N(n,m,k)
j=1 S j. By continuity, the sets S j are open,

j ∈ {1, . . . ,N(n,m, k)}. Therefore,Rn×m
k is also open, and so a submanifold of dimension nm.

In case k < min{n,m} then if A ∈ Rn×m
k it must be the case that Ψ j(A) , 0 for

some j ∈ {1, . . . ,N(n,m, k)}. Let us suppose consider the set S1, as all other sets S j,
j ∈ {2, . . . ,N(n,m, k)}, are mapped to S1 by reordering row and column indices. In this
case, for a ∈ {1, . . . ,n − k}, b ∈ {1, . . . ,m − k}, and A ∈ Rn×m, define dab(A) to be the determi-
nant of the matrix 

A1
1 · · · A1

k A1
k+b

...
. . .

...
...

Ak
1 · · · Aa

k Ak
k+b

Ak+a
1 · · · Ak+a

k Ak+a
k+b

 .
Then define

Φ : Rn×m
→ R(n−k)(m−k)

A 7→ (d11(A), . . . , d1k(A), . . . , dn−k,1(A), . . . , dn−k,m−k(A)),

and note that S1 ∩ Rn×m
k is given by Φ−1(1, 0, . . . , 0). We then compute, for A ∈ S1 ∩ Rn×m

k ,

∂dab

∂Ai
j

(A) =

Ψ1(A), i = k + a, j = k + b,
0, i ∈ {k + 1, . . . ,n}, j ∈ {k + 1, . . . ,m}, i , k + a, j , k + b.

We conclude that points on S1 ∩ Rn×m
k are regular points for Φ, and so S1 ∩ Rn×m

k is a
submanifold of dimension nm − (n − k)(m − k) = k(n + m − k). As mentioned above, by
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reindexing, we also conclude that S j∩Rn×m
k is a submanifold of dimension nm− (n−k)(m−

k) = k(n + m − k) for each j ∈ {1, . . . ,N(n,m, k)}. Finally, since Rn×m
k ⊆ ∪

N(n,m,k)
j=1 S j, we have

Rn×m
k = ∪

N(n,m,k)
j=1 S j ∩ Rn×m

k ,

and so Rn×m
k is indeed of the stated form. H

Now we can give our first interesting construction, showing that certain maps can be
well approximated by maps all of whose values are regular values.

4 Lemma If Φ : U→ Rm is a mapping of class C2 from an open subset U ⊆ Rn with m ≥ 2n, then,
for ε ∈ R>0, there exists A ∈ Rm×n such that

(i) |Ai
j | < ε for i ∈ {1, . . . ,m}, j ∈ {1, . . . ,n}, and

(ii) the mapping x 7→Φ(x) + Ax is an immersion.

Proof Let us defineΨ : U × Rm×n
k → Rm×n by

Ψ(x,B) = DΦ(x) + B.

If k < n we have
n + k(n +m −k) ≤ n + (n − 1)(m + 1) ≤ nm − 1.

Thus, by the first lemma and the third lemma, Ψ(U × Rm×n
k ) has measure zero, and so

consequently does Ψ(U × ∪n−1
k=1R

m×n
k ). It follows, therefore, that there are matrices A in

the complement to ∪n−1
k=1R

m×n
k , i.e., matrices of maximal rank, that are as small as we

like, e.g., their components are as small as we like, and which satisfy the condition that
DΦ(x) + A has maximal rank for every x ∈ U, as desired. H

Next we give a local approximation result.

5 Lemma Let M be a smooth manifold of dimension n and let Φ : M→ Rm be of class C1 with m > n.
Let (U, φ) be a chart, let K ⊆ U be compact, and suppose that, for all x ∈ K, TxΦ has maximal
rank n. Then there exists δ ∈ R>0 such that, if Ψ ∈ C1(M;Rm) satisfies ‖D(Ψ ◦φ−1)(x)‖ < δ for
x ∈ φ(K), then Tx(Φ + Ψ) has maximal rank n for all x ∈ K.

Proof Let d : K→ R be defined by asking that d(x) be the maximum absolute value of all
n × n minors of D(Ψ ◦φ−1)(φ(x)). Note that d is continuous and d|K is positive. Thus, by
virtue of compactness of K, there exists ε ∈ R>0 such that d(x) ≥ ε for all x ∈ K. Continuity
of the determinant ensures that there exists δ ∈ R>0 such that, if A ∈ Rm×n satisfies ‖A‖ < δ,
then D(Ψ ◦φ−1)(φ(x))+A has rank n for all x ∈ K. From this the result immediately follows.

H

Now we use the preceding lemmata to arrive at a global approximation result.

6 Lemma Let M be a smooth, connected, paracompact, Hausdorff manifold, let Φ : M → Rm be a
mapping of class C2 with m ≥ 2n, and let δ ∈ C0(M;R>0). Then there exists a C1 immersion
Ψ : M→ Rm satisfying ‖Ψ(x) −Φ(x)‖ < δ(x) for every x ∈ M.
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Proof By [Abraham, Marsden, and Ratiu 1988, Proposition 5.5.5] and since M is sec-
ond countable as it is paracompact and connected [Abraham, Marsden, and Ratiu 1988,
Proposition 5.5.11] we let (U j) j∈Z>0 , (V j) j∈Z>0 , and (W j) j∈Z>0 be locally finite open covers by
relatively compact sets such that (W j, φ j) is a coordinate chart, and such that

cl(U j) ⊆ V j, cl(V j) ⊆W j

for each j ∈ Z>0. For each j ∈ Z>0 let ρ j be a smooth function taking values in [0, 1] and
such that ρ j(x) = 1 for x ∈ cl(U j) and ρ j(x) = 0 for x ∈ M \ cl(V j) [Abraham, Marsden, and
Ratiu 1988, Proposition 5.5.8]. We inductively define a sequence of maps (Ψk)MRm such
that Ψk − Φ is smooth and has support contained in Kk = ∪k

j=1 cl(V j) for each k ∈ Z>0. For
k = 1, let A1 ∈ Rm×n and define

Ψ1(x) = Φ(x) + ρ1(x)A1(φ1(x)).

By the fourth lemma above, we can choose A1 such that (1) TxΨ1 is injective and (2) ‖Ψ1(x)−
Φ(x)‖ < δ(x)

2 for x ∈ cl(U1). Now suppose that we have defined Ψ1, . . . ,Ψk such that, for
each j ∈ {1, . . . , k}, Ψ j − Φ is smooth, has support in K j, and satisfies ‖Ψ j(x) − Φ(x)‖ < δ(x)

2 j

for x ∈ K j. For Ak+1 ∈ Rm×n denote

Ψk+1(x) = Ψk(x) + ρk+1(x)Ak+1(φk+1(x)).

Moreover, choose Ak+1 such that (1) TxΨk+1 is injective for x ∈Wk+1 (by the fourth lemma)
and (2) ‖Ψk+1(x) − Ψk(x)‖ < δ(x)

2k+1 for x ∈ Kk ∩ cl(Wk+1) (by the fifth lemma). Now take
Ψ(x) = limk→∞Ψk(x), this limit existing and Ψ being of class C2 since, for each x ∈ M, there
exists N ∈ Z>0 such that Ψk(y) = ΨN(y) for y in some neighbourhood of x. Moreover,
easily verify that Ψ is an immersion and satisfies ‖Ψ(x) −Φ(x)‖ < δ(x) for each x ∈ M. H

Next we modify the immersion of the preceding lemma so that it is injective.

7 Lemma Let M be a smooth, connected, paracompact, Hausdorff manifold, let Φ : M → Rm be a
mapping of class C2 with m ≥ 2n + 1, and let δ ∈ C0(M;R>0). Then there exists a C1 injective
immersion Ψ : M→ Rm satisfying ‖Ψ(x) −Φ(x)‖ < δ(x) for every x ∈ M.

Proof By the preceding lemma, let Φ : M→ Rm be a C2 immersion such that ‖Υ(x)−Φ(x)‖ <
δ(x)

2 for every x ∈ M. By Theorem 1.2.9 (or the smooth version of this, which follows from
the smooth Inverse Function Theorem exactly as Theorem 1.2.9 follows from the real
analytic Inverse Function Theorem), for each x ∈ M there exists a relatively compact
neighbourhood Ux about x such that Υ|Ux is injective. By paracompactness (and so second
countability, since M is connected) of M let (U j) j∈Z>0 be a locally finite open cover of M by
relatively compact open sets such that Υ|U j is injective. For each j ∈ Z>0 let ρ j be a smooth
function on M taking values in [0, 1] and satisfying ρ j(x) = 0 for x ∈ M \ U j, and suppose
that

∑
∞

j=1 ρ j(x) = 1 for every x ∈ M, i.e., (ρ j) j∈Z>0 is a partition of unity. For any sequence

(y j) j∈Z>0 in R2n+1 satisfying ‖y j‖ <
δ(x)
2 j+2 for x ∈ U j, for k ∈ Z>0 define

Ψk(x) = Υ(x) +

k−1∑
j−1

ρ j(x)y j.
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By the fifth lemma above the sequence (y j) j∈Z>0 can be chosen so that Ψk is an immersion
for each k ∈ Z>0.

For each k ∈ Z>0 let

Ok = {(x, y) ∈ M ×M | ρk(x) , ρk(y)}

and define Γk : Ok → R2n+1 by

Γk(x, y) =
Ψk(x) −Ψk(y)
ρk(x) − ρk(y)

.

Noting that Γk is of class C2, by the second lemma above we conclude that image(Γk) has
measure zero. Thus we can successively amend our section of the sequence (y j) j∈Z>0 in
such a way that we additionally have yk < image(Γk). Upon doing so, we define Ψ(x) =
limk→∞Ψk(x), noting that Ψ is of class C2, is an immersion, and satisfies ‖Ψ(x)−Φ(x)‖ < δ(x).

It remains to show that Ψ is injective. Suppose that Ψ(x) = Ψ(y). Let N ∈ Z>0 be
sufficiently large that ρ j(x) = ρ j(y) and Ψ j(x) = Ψ j(y) = Ψ(x) = Ψ(y) for every j ≥ N.
Since yN−1 < ON−1 we have ρN−1(x) = ρN−1(y). Consequently, the equality ΨN(x) = ΨN(y)
forces us to conclude that ΨN−1(x) = ΨN−1(y). We can proceed inductively backwards to
conclude that ρ j(x) = ρ j(y) and Ψ j(x) = Ψ j(y) for every j ∈ Z>0. Consequently, Υ(x) = Υ(y).
Since ρ j(x) , 0 for at least one j ∈ Z>0, it follows that x, y ∈ U j for some j ∈ Z>0. However,
this is in contradiction with the fact that Υ|U j is injective. H

Now we can conclude the proof of the theorem. It remains to show that an injective
immersion can be chosen that is an embedding. By Proposition 6.5.5 this means that we
must be able to choose a proper injective immersion. Let δ be the constant function on M
taking the value 1 and let u be a smooth exhaustion function on M; such a function exists
by Lemma 3.3.3. Now define Φ ∈ C∞(M;R2n+1) by

Φ(x) = (u(x), 0, . . . , 0).

By the previous lemma let Ψ be an injective immersion such that ‖Ψ(x) − Φ(x)‖ < 1 for
every x ∈ M. We claim that Ψ is proper. Let K ⊆ R2n+1 be compact. If x ∈ Ψ−1(K) then

‖Ψ(x)‖ ≤ sup{‖x‖ | x ∈ K} , CK,

and so ‖Φ(x)‖ ≤ CK + 1. Since ‖Φ(x)‖ = |u(x)| we have Ψ−1(K) ⊆ u−1((−∞,CK + 1]). Since
u is an exhaustion function we conclude that Ψ−1(K) is compact, being a closed subset of
the compact set u−1((−∞,CK + 1]), [Runde 2005, Proposition 3.3.6]. �

A much harder theorem, also due to Whitney [1944], asserts that an n-dimensional
paracompact Hausdorff manifold can be smoothly embedded inR2n. For our purposes,
the preceding theorem suffices. For example, it allows us to immediately conclude the
following.

6.5.7 Corollary (Existence of smooth Riemannian metrics) If M is a smooth, paracompact,
Hausdorff manifold, then there exists a smooth Riemannian metric on M.

Proof It suffices to give a smooth Riemannian metric on each connected component of
M. By the Whitney Embedding Theorem, one can embed each such connected component
into RN for suitable N, and the restriction of the Euclidean inner product to the embedded
component defines a smooth Riemannian metric on that component. �
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6.5.3 The Remmert embedding theorem for Stein manifolds

In this section we give the basic embedding theorem for holomorphic manifolds due
to Remmert [1955], with additional contributions by Bishop [1961] and Narasimhan
[1961]. The proof we give follows the treatment of Hörmander [1973]. For holomor-
phic manifolds, note that a general embedding theorem is not possible, for example,
by virtue of the fact that there are no compact positive-dimensional holomorphic
submanifolds of CN (Example 4.2.13–3). Thus we need restrictions on holomorphic
manifolds in order for them to admit a holomorphic embedding into Cn; it turns out
that the condition is that the manifold be a Stein manifold. Certainly a holomorphic
submanifold of CN is Stein by Proposition 6.3.8. The difficult thing to prove is the
converse, and this is what we now do.

6.5.8 Theorem (The Remmert Embedding Theorem) If M is a holomorphic, paracompact,
Hausdorff and connected manifold of dimension n, then there exists a proper holomorphic
embedding of M in C2n+1.

Proof The first part of the proof bears a strong resemblance in structure to the proof of the
Whitney Embedding Theorem. First we show that compact subsets of M can be immersed
in sufficiently large copies of Euclidean space.

1 Lemma Let M be a holomorphically separable holomorphic manifold possessing global coordinate
functions and let K ⊆ M be compact. Then there exists N ∈ Z>0 and a holomorphic map
Φ : M→ CN such that TCz Φ is injective for each z ∈ K.
Proof For z ∈ K let ζ1, . . . , ζn

∈ Chol(M) be holomorphic functions such that there exists a
neighbourhood Uz of z for which

φz : w 7→ (ζ1
z(w), . . . , ζn

z (w))

gives a C-chart (Uz, φz). Since K is compact, we can cover it by finitely many such charts
denoted (U j, φ j), j ∈ {1, . . . , k}. Let Ψ : M→ Cnk be the map

Ψ(z) = (φ1(z), . . . , φk(z)).

If z ∈ K then z ∈ U j for some j ∈ {1, . . . , k}. Then TCz φ j is injective, and so TCz Ψ is injective.
Let W = ∪k

j=1U j ×U j ⊆ K ×K be a neighbourhood of the diagonal. We claim that Ψ×Ψ|W

is injective. Indeed, if (z1, z2) ∈ W that z1, z2 ∈ U j for for some j ∈ {1, . . . , k}. Then we
immediately have z1 = z2 because of injectivity of φ j. Now let (z,w) ∈ K × K \W. Since
M is holomorphically separable, there exists f(z,w) ∈ Chol(M) such that f(z,w)(z) , f(z,w)(w).
There thus exists a neighbourhood W(z,w) of (z,w) such that f(z,w)(z′) , f(z,w)(w′) for each
(z′,w′) ∈ W(z,w). By compactness of K × K we can then find finitely many holomorphic
functions, say fnk+1, . . . , fm, such that, if f j(z1) = f j(z2) for all j ∈ {nk + 1, . . . ,m}, then z1 = z2,
provided that (z1, z2) ∈ K × K \W. If we define Φ : M→ Cm by

Φ(z) = (φ1(z), . . . , φk(z), fnk+1(z), . . . , fm(z)),

we see that Φ has the desired properties stated in the lemma. H

The next lemma says that, up to a point, we can reduce the number m from the
preceding lemma. We suppose, as usual, that dimC(M) = n.
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2 Lemma Let M be a holomorphic manifold, let K ⊆ M be compact, and let Φ ∈ Chol(M;Cm+1),
m ≥ 2n, be an immersion on K. Then, for ε ∈ R>0, there exists v ∈ Cm such that ‖v‖ < ε and
such that the map

z 7→ (Φ1(z) − v1Φm+1(z), . . . ,Φm(z) − vmΦm+1(z)) ∈ Cm

is an immersion on K. Moreover, the set of v ∈ Cm for which this is possible has a complement of
measure zero.
Proof First let us suppose that K ⊆ U for a C-chart (U, φ). To keep notation simple, let us
identify the local representative of Φ with Φ.

Let us define
b : K × Cn

→ Cm+1

(z,λ) 7→
( n∑

j=1

λk∂Φ
1

∂zk
(z), . . . ,

n∑
j=1

λk∂Φ
m+1

∂zk
(z)

)
.

We claim that if (v, 1) < image(b) then v satisfies the conclusions of the lemma. Indeed,
suppose that v ∈ Cm does not satisfy the conclusions of the lemma. This means that there
exists λ ∈ Cn

\ {0} such that
n∑

k=1

λk
(∂Φ1

∂zk
(z) − v1∂Φ

m+1

∂zk
(z), . . . ,

∂Φm

∂zk
(z) − vm∂Φ

m+1

∂zk
(z)

)
= 0

for some z ∈ K. Equivalently, if we take vm+1 = 1, there exists λ ∈ Cn
\ {0} such that

n∑
k=1

λk∂Φ
j

∂zk
(z) = v j

n∑
k=1

λk∂Φ
m+1

∂zk
(z), j ∈ {1, . . . ,m + 1},

for some x ∈ K. First note, since TzΦ is injective, this implies that
n∑

k=1

λk∂Φ
m+1

∂zk
(z) , 0,

since otherwise λ is a nonzero element of ker(TzΦ). Then, by scaling λ, we can suppose
that

n∑
k=1

λk∂Φ
m+1

∂zk
(z) = 1.

It then immediately follows that b(z,λ) = (v, 1), and we infer that if (v, 1) < image(b) then
a satisfies the conclusions of the lemma. Now we note that, by Lemma 2 from the proof
of Theorem 6.5.6, image(b) has measure zero in Cm+1. Therefore, we also have that

{v ∈ Cm
| (v, 1) ∈ image(b)}

has measure zero. Thus we can find v ∈ Cm as in the statement of the lemma, and moreover
can choose v as close to 0 as we like.

Finally, if K ⊆ M is not necessarily contained in a C-chart, we can cover K with finitely
many compact sets, each of which is contained in a C-chart. The set of v ∈ Cm such that
the conclusions of the lemma hold has a complement that is the union of finitely many
sets of measure zero, and so has measure zero. We can thus still take v as small as desired,
and satisfying the conclusions of the lemma. H
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3 Lemma Let M be a holomorphic manifold, let K ⊆ M be compact, and let Φ ∈ Chol(M;Cm+1),
m ≥ 2n + 1, be an injective immersion on K. Then, for ε ∈ R>0, there exists v ∈ Cm such that
‖v‖ < ε and such that the map

z 7→ (Φ1(z) − v1Φm+1(z), . . . ,Φm(z) − vmΦm+1(z)) ∈ Cm

is an injective immersion on K. Moreover, the set of v ∈ Cm for which this is possible has a
complement of measure zero.

Proof Let us define

b : K × K × C→ Cm+1

(z1, z2, α) 7→ α(Φ1(z1) −Φ(z2), . . . ,Φm+1(z1) −Φm+1(z2)).

We claim that if (b, 1) < image(b) then the conclusions of the lemma hold. Indeed, suppose
that the conclusions of the lemma do not hold. Then there exists z1, z2 ∈ K such that

Φ j(z1) − v jΦm+1(z1) = Φ j(z2) − v jΦm+1(z2), j ∈ {1, . . . ,m + 1},

which we rewrite as

Φ j(z1) −Φ j(z2) = v j(Φm+1(z1) −Φm+1(z2)), j ∈ {1, . . . ,m + 1},

taking vm+1 = 1. Since Φ is injective on K, we must have Φm+1(z1) − Φm+1(z2) , 0,
since otherwise we arrive at a contradiction. Consequently, there exists α ∈ C such that
α(Φm+1(z1) −Φm+1(z2)) = 1, and so

α(Φ j(z1) −Φ j(z2)) = v j, j ∈ {1, . . . ,m + 1}.

Thus (a, 1) ∈ image(b), showing that, for the conclusions of the lemma to hold, it suffices
to choose v so that (v, 1) < image(b). By Lemma 2 from the proof of Theorem 6.5.6 we
know that image(b) has measure zero. Combining this with the preceding lemma we see
that we can choose v ∈ Cm from a set with a complement of measure zero that satisfies the
conclusions of the lemma. H

We may now prove a preliminary result concerning the existence of immersions and
injective immersions of a holomorphic manifold in complex Euclidean space. To state the
result, we recall two things. First, the set Chol(M;Rm) is a Fréchet space and so a complete
metrisable space . Second, a subset of a complete metric space is of first category if it is ref

contained in a countable union of closed sets with nonempty interior. A subset of first
category has no interior and a dense complement, i.e., can be thought of as being “small.”

4 Lemma If M is a second countable, holomorphically separable holomorphic manifold that admits
global coordinate functions, then

(i) the set of holomorphic immersions of M in Cm has a complement of first category in
Chol(M;Cm) if m ≥ 2n and

(ii) the set of holomorphic injective immersions of M in Cm has a complement of first category in
Chol(M;Cm) if m ≥ 2n + 1.
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Proof We prove the first assertion. Since M is second countable, there exists a family
(K j) j∈Z>0 of compact sets such that K j ⊆ int(K j+1), j ∈ Z>0, and M = ∪ j∈Z>0K j [Aliprantis and
Border 2006, Lemma 2.76]. It thus suffices to show that if K ⊆ M is compact then the set of
mappings Φ ∈ Chol(M;Cm) for which TzΦ is not injective for some z ∈ K has first category.
Let us denote this set of mappings by MK. We first claim that MK is closed. Suppose
that (Φ j) j∈Z>0 is a sequence in MK converging to Φ ∈ Chol(M;Cm). Let z j ∈ K be such that
Tz jΦ j is not injective. By the Bolzano—Weierstrass Theorem let (z jk)k∈Z>0 be a subsequence
converging to z ∈ K. We claim that TzΦ is not injective. Indeed, suppose it is injective. By
continuity there exists a neighbourhood U of z such that TwΦ is injective for every w ∈ U.
Since convergence in Chol(M;Cm) implies uniform convergence of derivatives , there alsoref

exists a neighbourhood V of z and N ∈ Z>0 such that TwΦ j is injective for w ∈ V and
j ≥ N. But this contradicts the fact that there exists N′ ∈ Z>0 such that zk ∈ V for k ≥ N′

and TzkΦk is not injective. Let us next show that MK has empty interior. According to
Lemma 1 let k ∈ Z>0 and Ψ ∈ Chol(M;Ck) be such that Ψ is an injective immersion on K. Let
Φ ∈ Chol(M;Cm) and denote by (Φ,Ψ) the holomorphic mapping from M to Cm+k obtained
by adjoining the components of Ψ to those of Φ. Now apply Lemma 2 r times to arrive at
a j

r ∈ C, j ∈ {1, . . . ,m}, r ∈ {1, . . . ,m}, such that, if we define

Φ′ j = Φ j +

k∑
r=1

a j
rΨ

r,

we have that TzΦ
′ is injective for z ∈ K. Thus Φ′ < MK. Since the coefficients a j

r, j ∈
{1, . . . ,m}, r ∈ {1, . . . ,m}, can be chosen arbitrarily small, we can moreover conclude that
any neighbourhood of Φ contains elements from the complement of MK, and so MK must
have empty interior. Thus MK is of first category, as desired.

The second assertion of the lemma follows from Lemma 3 as the first part follows
from Lemma 2. H

Our first result is that compact sets can be contained in holomorphic polyhedra (see
Definition 6.1.7).

5 Lemma If M is a Stein manifold, if K ⊆ M is a compact holomorphically convex set, and if U is
a neighbourhood of K in M, then there exists a relatively compact holomorphic polyhedron P such
that K ⊆ P and cl(P) ⊆ U.

Proof It suffices to take U to be relatively compact. Let z ∈ bd(U) and let fz ∈ Chol(M)
have the property that | fz(z)| > ‖ fz‖K. By rescaling we have | fz(z)| > 1 and ‖ f ‖K < 1.
Then there exists a relatively compact neighbourhood Vz of z such that | f (w)| > 1 for
w ∈ cl(Vz) ∩ bd(U). By compactness of bd(U) we choose z1, . . . , zm ∈ bd(U) such that
bd(U) ⊆ ∪m

j=1Uz j . Let f j = fz j , j ∈ {1, . . . ,m}. Note that the set

{z ∈ M | | f j(z)| < 1, j ∈ {1, . . . ,m}} (6.30)

contains K and its closure does not intersect bd(U). Thus we can take P to be the union of
the connected components of the set (6.30) that intersect U. H

Now let us reduce, up to a point, the number of holomorphic polyhedra needed to
cover a compact set.
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6 Lemma Let M be a Stein manifold and let K ⊆ M be compact. If P is a holomorphic polyhedron of
order m + 1, m ≥ 2n, that covers P, then there exists a holomorphic polyhedron P′ of order m such
that K ⊆ P′ ⊆ P.

Proof Let f1, . . . , fm+1 ∈ Chol(M) be such that P is a union of some connected components
of

{z ∈ M | | f j(z)| < 1, j ∈ {1, . . . ,m + 1}}.

Let α0 ∈ (0, 1) be such that ‖ f j‖K < α0 for each j ∈ {1, . . . ,m + 1}, this since the functions
| f1|, . . . , | fm+1| achieve their maximum on K by compactness. Let α1, α2, and α3 satisfy

α0 < α1 < α2 < α3 < 1.

Let us define a compact set

K2 = {z ∈ cl(P) | | fm+1(z)| ≥ α2}.

Now choose f ′1 , . . . , f ′m+1 ∈ Chol(M) to satisfy the following conditions:
1. f ′m+1 = fm+1;
2. by Lemma 4 choose f ′1 , . . . , f ′m so that the map

z 7→
( f ′1(z)

fm+1(z)
, . . . ,

f ′m(z)
fm+1(z)

)
is an immersion on K2;

3. again by Lemma 4 and noting that choosing
f ′j

fm+1
close enough to

f j

fm+1
, j ∈ {1, . . . ,m},

implies that f ′j can be made as close as desired to f j on K, ‖ f ′j ‖K < α0, j ∈ {1, . . . ,m};

4. arguing as in the preceding point, f ′j can be made sufficiently close to f j, j ∈ {1, . . . ,m},
such that cl(U) ⊆ P, where

U = {z ∈ P | | f ′j (z)| < α3, j ∈ {1, . . . ,m + 1}}.

(All statements regarding “closeness” above are made with reference to the Fréchet topol-
ogy on Chol(M;Cm).) ref

Next, for k ∈ Z>0, let

Vk = {z ∈ M | | f ′j (z)k
− fm+1(z)k

| < αk
1, j ∈ {1, . . . ,m}}.

Let us also denote by P′k the holomorphic polyhedron that is the union of the connected
components of Vk which have nonempty intersection with K. Noting that limk→∞(α0

α1
)k = 0,

let k be sufficiently large that 2αk
0 < α

k
1. Moreover,

| f ′j (z)k
− fm+1(z)k

| ≤ | f ′j (z) − fm+1(z)|k ≤ 2αk
0, j ∈ {1, . . . ,m},

for every z ∈ K and k ∈ Z>0. Thus

| f ′j (z)k
− fm+1(z)k

| < αk
1, j ∈ {1, . . . ,m},
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for z ∈ M and for large k, and from this we conclude, therefore, that K ⊆ Vk for k sufficiently
large. Obviously we also have K ⊆ P′k for sufficiently large k.

To conclude the proof we must show that P′k ⊆ P for sufficiently large k. We shall do
this by proving that P′k ⊆ U for k sufficiently large. Suppose that there exists no N ∈ Z>0
such that P′k ⊆ U for all k ≥ N. Noting that, for every k ∈ Z>0, every connected component
of P′k intersects U since it intersects K, this means there for each N ∈ Z>0 there exists k ≥ N
such that P′k ∩ bd(U) , ∅. Thus we have an increasing sequence (kr)r∈Z>0 in Z>0 and a
sequence (zr)r∈Z>0 such that zr ∈ Pkr ∩ bd(U). We claim that fm+1(zr) ≥ α2 for r sufficiently
large. Suppose otherwise so that there is an increasing sequence (rl)l∈Z>0 in Z>0 such that
fm+1(zrl) < α2 for each l ∈ Z>0. Then we have

| f ′j (zrl)|
krl ≤ | f ′j (zrl) − fm+1(zrl)|

krl + | fm+1(zrl)|
krl < α

krl
1 + α

krl
2 .

We have αk
1 + αk

2 < α
k
3 for large k, and so we conclude that | f ′j (zrl)|

krl < α
krl
3 for large l. This

contradicts the fact that zrl ∈ bd(U). Thus we conclude that fm+1(zr) ≥ α2 for r sufficiently
large. That is to say, for large r,

zr ∈ L , {z ∈ bd(U) | fm+1(z) ≥ α2}.

Let us now arrive at a few estimates. We denote F j =
f ′j

fm+1
, j ∈ {1, . . . ,m}, understanding

that we will be evaluating F j only at points where fm+1 is nonzero. For some of the
estimates, we shall utilise a C-chart (W, φ) for M about z ∈ L. For convenience in these
cases, we identity W and φ(W), and so we work in Cn. In particular, we will let ζ ∈ Cn

satisfy ‖ζ‖ = 1
k2 .

1. Let j ∈ {1, . . . ,m} and z ∈ L. Using Taylor expansions,

| fm+1(z + ζ)|k = | fm+1(z) + D fm+1(z) · ζ + O(k−4)|k.

Thus, for k sufficiently large, | fm+1(z + ζ)|k ≥
αk

2
2 . Note that this estimate holds

uniformly in z ∈ L since the terms in O(k−4) involve derivatives of fm+1 and so are
uniformly O(k−4) on L. Thus there exists N1 ∈ Z>0 such that

| fm+1(z + ζ)|k ≥
αk

2

2
, k ≥ N1, z ∈ L, ‖ζ‖ =

1
k2 .

2. Let j ∈ {1, . . . ,m}. A Taylor expansion gives

F j(z + ζ)
F j(z)

= 1 + F j(z)−1DF j(z) · ζ + O(k−4).

Since F j is an immersion on L, there exists C ∈ R>0 such that

max{|F j(z)−1DF j(z) · ζ| | j ∈ {1, . . . ,m}} ≥ C‖ζ‖.

Thus we have

max


∣∣∣∣∣∣F j(z + ζ)k

F j(z)k
− 1

∣∣∣∣∣∣
∣∣∣∣∣∣ j ∈ {1, . . . ,m}

 ≥ kC‖ζ‖ + O(k−2) =
C
k

+ O(k−2),
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and so

max


∣∣∣∣∣∣F j(z + ζ)k

F j(z)k
− 1

∣∣∣∣∣∣
∣∣∣∣∣∣ j ∈ {1, . . . ,m}

 ≥ C
2k

for k sufficiently large. More precisely, since the term O(k−2) involves derivatives of
F j, it is O(k−2) uniformly, and so there exists N2 ∈ Z>0 such that

max


∣∣∣∣∣∣F j(z + ζ)k

F j(z)k
− 1

∣∣∣∣∣∣
∣∣∣∣∣∣ j ∈ {1, . . . ,m}

 ≥ C
2k
, k ≥ N2, z ∈ L, ‖ζ‖ =

1
k2 .

3. Let j ∈ {1, . . . ,m}. If z ∈ L then f ′j (z) = α3 and fm+1(z) ∈ [α2, α3) and so F j(z) ≥ 1.

4. Let j ∈ {1, . . . ,m}. If z ∈ L∩Vk then we have, by definition of L andVk, |F j(z)k
−1| ≤ (α1

α2
)k.

Note that limk→∞ k(α1
α2

)k = 0, and so for k sufficiently large we have (α1
α2

)k < C
4k .

Therefore, for k sufficiently large, we have |F j(z)k
− 1| ≤ C

4k . By compactness of L this
bound holds uniformly, and so there exists N3 ∈ Z>0 such that

|F j(z)k
− 1| ≤

C
4k
, k ≥ N3, z ∈ L ∩ Vk.

5. Let j ∈ {1, . . . ,m}. We shall write

| f ′j (z + ζ)k
− fm+1(z + ζ)k

| = |F j(z + ζ)k
− 1|| fm+1(z + ζ)|k

and

F j(z + ζ)k
− 1 = F j(z)k

F j(z + ζ)k

F j(z)k
− 1

 + F j(z)k
− 1.

Using the preceding two expressions and combining the above estimates gives N′ ∈
Z>0 such that

| f ′j (z + ζ)k
− fm+1(z + ζ)k

| ≥
Cαk

2

8k
, k ≥ N′, z ∈ L, ‖ζ‖ =

1
k2 .

6. Now we note that limk→∞ k(α1
α2

)k = 0 and so k(α1
α2

)k < C
8 for k sufficiently large. Thus

we finally arrive at the estimate: There exists N ∈ Z>0 such that

| f ′j (z + ζ)k
− fm+1(z + ζ)k

| ≥ αk
1, k ≥ N′, z ∈ L ∩ Vk, ‖ζ‖ =

1
k2 .

This contradicts the definition of Vk and so we conclude that, for k sufficiently large,
P′k ∩ U = ∅ and so P′k must be contained in U. H

By Lemma 4 let Ψ : M → C2n+1 be a holomorphic injective immersion. By
Proposition 6.1.5(iii) and since M is second countable being paracompact and con-
nected [Abraham, Marsden, and Ratiu 1988, Proposition 5.5.5], let (K j) j∈Z>0 be a sequence
of holomorphically convex compact sets satisfying K j ⊆ int(K j1) and M = ∪ j∈Z>0K j. By the
preceding lemma, there exist holomorphic polyhedra P j, j ∈ Z>0, such that K j ⊆ P j ⊆ K j+1.
Let

M j = sup{Ψ j(z) | z ∈ K j, j ∈ {1, . . . , 2n + 1}}.

We now prove another lemma.
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7 Lemma There exist f1, . . . , f2n ∈ Chol(M) such that

sup{|fj(z)| | z ∈ bd(Pk), j ∈ {1, . . . , 2n}} > k + Mk+1

for k ∈ Z>0.

Proof For k ≥ 2 let h′k,1, . . . , h
′

k,2n ∈ Chol(M) be such that Pk is a union of connected compo-
nents of the set

{z ∈ M | |hk, j(z)| < 1}.

We thus have

sup{|hk, j(z)| | z ∈ cl(Pk−1), j ∈ {1, . . . , 2n}} < 1, sup{|hk, j(z)| | z ∈ bd(Pk), j ∈ {1, . . . , 2n}} = 1.

Now let a2 ∈ (1,∞) be sufficiently small and let m2 ∈ Z>0 be sufficiently large that, if we
define f2, j = (a2h2, j)m2 , j ∈ {1, . . . , 2n}, then we have

sup{| f2, j(z)| | z ∈ P1, j ∈ {1, . . . , 2n}} ≤ 2−k

and

sup{| f2, j(z)| | z ∈ bd(P2), j ∈ {1, . . . , 2n}}
≥Mk+1 + k + 1 + sup{| f1, j(z)| | z ∈ bd(P2), j ∈ {1, . . . , 2n}}.

Then, inductively in k ≥ 3, define take ak ∈ (1,∞) sufficiently small and mk ∈ Z>0 sufficiently
large that

sup{| fk, j(z)| | z ∈ Pk−1, j ∈ {1, . . . , 2n}} ≤ 2−k

and

sup{| f2, j(z)| | z ∈ bd(Pk), j ∈ {1, . . . , 2n}}

≥Mk+1 + k + 1 + sup
{ k−1∑

l=1

| f1, j(z)|

∣∣∣∣∣∣ z ∈ bd(Pk), j ∈ {1, . . . , 2n}
}
.

It is then clear that, on any compact set K ⊆ M, the sum

f j(z) =

∞∑
k=1

fk, j(z)

converges uniformly, and so converges to a holomorphic function . It is easy to check thatref

the functions f1, . . . , f2n have the desired properties. H

The next lemma gives us the function we need to append to f1, . . . , f2n to get the desired
proper embedding.
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8 Lemma There exists f ∈ Chol(M) such that

sup{|f(z)| | z ∈ Pk+1 \ Pk} ≥ k + Mk+1.

Proof For k ∈ Z>0 let us denote

Sk = {z ∈ Pk+1 \ Pk | max{| f j(z)| | j ∈ {1, . . . , 2n}} ≤ k + Mk+1},

Tk = {z ∈ Pk | max{| f j(z)| | j ∈ {1, . . . , 2n}} ≤ k + Mk+1}.

By the previous lemma,

sup{| f j(z)| | z ∈ bd(Pk), j ∈ {1, . . . , 2n}} > k + Mk+1

and
sup{| f j(z)| | z ∈ bd(Pk+1), j ∈ {1, . . . , 2n}} > k + 1 + Mk+2 > k + Mk+1.

From these facts we conclude that Sk is a compact subset of Pk+1 \ Pk and that Tk is
a compact subset of Pk. Moreover, Sk ∩ Tk = ∅. By Proposition 6.1.2(i) we have that
hconvM(Sk ∪ Tk) ⊆ Kk+2. In fact, by Proposition 6.1.8, hconvM(Sk ∪ Tk) ⊆ Pk+1. Now, by
Theorem GA2.7.1.7, there exists h1 ∈ Chol(M) such that

sup{|h1(z)| | z ∈ T1} <
1
2

and
sup{|h1(z)| | z ∈ S1} ≥ k + 1 + Mk+1.

We then iteratively define hk ∈ Chol(M) such that

sup{|hk(z)| | z ∈ T1} < 2−k (6.31)

and

sup{|hk(z)| | z ∈ S1} ≥ k + 1 + Mk+1 + sup
{∣∣∣∣∣∣ k−1∑

j=1

h j(z)

∣∣∣∣∣∣
∣∣∣∣∣∣ z ∈ Sk

}
.

We claim that M = ∪k∈Z>0Tk. Indeed, if z ∈ M then there exists N ∈ Z>0 such that z ∈ Pk
for all k ≥ N, by the manner in which the holomorphic polyhedra Pk, k ∈ Z>0, are defined.
Also, since PN is relatively compact, the functions f1, . . . , f2n are bounded on PN. Therefore,
there exists k sufficiently large that

max{| f j(z)| | j ∈ {1, . . . , 2n}} ≤ k + Mk+1,

i.e., such that z ∈ Tk. It follows, therefore, that every compact subset of M is contained in
Tk for some k and so the definition

f (z) =

∞∑
k=1

hk(z)

defines a holomorphic function on M by virtue of (6.31) and . Moreover, we easily verify ref

that
| f (z)| ≥ k + Mk+1, z ∈ Sk,

and since Sk ⊆ Pk+1 \ Pk, the lemma follows. H
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To complete the proof of the theorem we will show that Φ′ ∈ Chol(M;C2n+1) defined by

Φ′(z) = ( f1(z), . . . , f2n(z), f (z)),

with f1, . . . , f2n as in Lemma 7 and with f as in Lemma 8 gives the desired proper em-
bedding after a minor modification. From the preceding lemma and the definition of Mk,
k ∈ Z>0, we have

sup{|Φ′ j(z)| | z ∈ Pk+1 \ Pk, j ∈ {1, . . . , 2n + 1}}

≥ k + sup{|Ψ j(z)| | z ∈ Pk+1 \ Pk, j ∈ {1, . . . , 2n + 1}}.

Therefore, noting that ∪∞j=kP j+1 \ P j = M \ Pk, we have

sup{|Φ′ j(z)| | z ∈ M \ Pk, j ∈ {1, . . . , 2n + 1}}

≥ k + sup{|Ψ j(z)| | z ∈ M \ Pk, j ∈ {1, . . . , 2n + 1}}.

Relative compactness of Pk then implies that

{z ∈ M | max{Φ′ j(z) | j ∈ {1, . . . , 2n + 1}} ≤ k + max{Ψ j(z) | j ∈ {1, . . . , 2n + 1}}}

is relatively compact. We then successively apply Lemma 3 to the map z 7→ (Φ(z),Ψ(z))
from M to C4n+2 and the compact sets Kk, k ∈ Z>0, to define

Φ j = Φ′ j +

2n+1∑
k=1

v j
kΨ

k, j ∈ {1, . . . , 2n + 1},

with the constants v j
k, j, k ∈ {1, . . . , 2n + 1} chosen so that Φ is an injective immersion and

such that
2n+1∑
k=1

|v j
k| < 1, j ∈ {1, . . . , 2n + 1}.

We then have

{z ∈ M | |Φ j(z)| ≤ k, j ∈ {1, . . . , 2n + 1}}

⊆ {z ∈ M | max{|Φ′ j(z)| | j ∈ {1, . . . , 2n + 1}} ≤ k + max{|Φ′ j(z)| | j ∈ {1, . . . , 2n + 1}}},

which implies that Φ is proper since any compact subset of C2n+1 lies within a set of the
form

{z | max{|z j
| ≤ k | j ∈ {1, . . . , 2n + 1}}}

for some k ∈ Z>0. �

We have the following corollary that follows from the preceding theorem just as
Corollary 6.5.7 follows from Theorem 6.5.6.
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6.5.9 Corollary (Existence of holomorphic Hermitian metrics) If M is a paracompact, Haus-
dorff Stein manifold, then there exists a holomorphic Hermitian metric on M.

6.5.4 The Grauert–Morrey embedding theorem for real analytic manifolds

Our final embedding theorem is that for real analytic manifolds. This is an instance
of where real analytic theory differs from holomorphic theory. For holomorphic mani-
folds, we have a restriction, namely that they be Stein, in order for them to be embedded
in Euclidean space. For real analytic manifolds, there are no such restrictions.

6.5.10 Theorem (Embedding of real analytic manifolds) If M is a second countable real ana-
lytic manifold of dimension n, then there exists an embedding of M into R4n+2.

Proof By Corollary 6.4.7 let M be a Stein manifold of which M is a proper real analytic
totally real submanifold. By Theorem 6.5.8 there is a proper embedding of M in C2n+1

'

R4n+2. Restricting this map to M gives the desired embedding since holomorphic maps are
real analytic. �

We have the following corollary that follows from the preceding theorem just as
Corollary 6.5.7 follows from Theorem 6.5.6.

6.5.11 Corollary (Existence of real analytic Riemannian metrics) If M is a real analytic,
paracompact, Hausdorff manifold, then there exists a real analytic Riemannian metric on M.
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