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Evolution of players’ misperceptions
in hypergames under perfect observations

Bahman Gharesifard Jorge Cortés

Abstract—This paper considers games of incomplete informa-
tion and studies the evolution of the (not necessarily consistent)
perceptions of the players using the framework of hypergames.
The focus is on developing methods to modify the players’ percep-
tion about other players’ preferences by incorporating the lessons
learned from observing their actions. If players are rational, our
first update mechanism, called swap learning, is guaranteed to
decrease the mismatch between a player’s perception and the
true payoff structure of other players. However, this method can
lead to inconsistencies in the stability properties of the resulting
perception. This motivates the introduction of a second update
mechanism, called modified swap learning, that is guaranteed
to produce a consistent perception. We also identify a class
of hypergames for which modified swap is also guaranteed to
decrease the mismatch in a player’s perception. We introduce
the novel notion of H-digraph as a useful tool to encode the
information in a hypergame, and fully characterize how this
digraph is affected by changes in the players’ beliefs.

I. INTRODUCTION

Belief manipulation plays a key role in many strategic
situations. A proper understanding of the evolution of the
perceptions of players about the game they are involved in
is key to unravel how belief manipulation and deception may
arise. In adversarial scenarios, it is common to encounter
situations where the specific objective of any given individual
are unknown or only partially known to the other players.

The goal of this paper is to develop methods that players
can implement to modify their perception about other players’
ultimate objectives and reason about the actions they take. In
this context, the actions taken by a player and the implicit
information they contain can be thought of as inputs to the
dynamical system describing the evolution of the perceptions
of other players. In that regard, controllability and reachability
questions (i.e., is there a sequence of actions by one player
that would make another player achieve certain perception)
become relevant. We are also interested in characterizing how
the stability properties of the game outcomes are affected
by the evolution of the perceptions. Domains where these
questions are relevant include social networks, modeling of
human cultural behavior, cybersecurity, and financial markets.

Literature review: Deception and belief manipulation are
rooted at an incorrect perception by a player about the true in-
tentions or state of other players. Within the context of games,
these situations can be modeled as games of either incomplete
or imperfect information. In a game of incomplete information,
players do not know the payoff structure of the other players

Bahman Gharesifard and Jorge Cortés are with the Department of Me-
chanical and Aerospace Engineering, University of California, San Diego,
{bgharesifard,cortes}@ucsd.edu

and have an imprecise understanding about their objectives
and true intentions. The usual approach, see e.g., [2], consists
of transforming the game into one of imperfect information,
where Nature decides the true type of the players according
to some probability distribution that is known to all. This
approach gives rise to Bayesian games [3], [4], where players
try to learn from observations the true type of the opponents.
Although games with incomplete information facilitate the
modeling of uncertainty in players’ beliefs, they do not account
for a variety of asymmetric situations, such as some players
being absolutely certain about other players’ types and these
certainties being mutually inconsistent, or scenarios where the
full set of actions available to the opponents may not be
known by some of the players. These restrictions have been
pointed out in [5] for a nonzero sum game where players have
subjective information structures, and the inconsistent structure
of beliefs leads to counterintuitive behaviors. Furthermore, the
differences in beliefs may in general not be smoothed out if
the game is repeated infinitely many times. [6] demonstrates
that there exist games with incomplete information in which
players almost never learn to predict their opponents’ behav-
ior. Within the context of games of incomplete information,
deception has not been studied in a systematic way with
the exception of a few references. [7] studies deception via
strategic communication, in which a ‘sophisticated’ player
sends either truthful or false messages to the opponents. [8]
investigates the vulnerability of strategic decision makers to
persuasion. The work [9] constructs a theory of deception for
games with incomplete information using the analogy-based
sequential equilibrium approach [10], where players form ex-
pectations about the average behavior of other players based on
histories. In such context, deception arises because boundedly
rational players make incorrect inferences about the type of
other players. Instead, in hypergames, deception arises because
players choose to believe that their perceptions are correct.

In games of imperfect information, players observe only
partially the actions taken by other players and therefore have
uncertainty about the true state of the game, see e.g., [11], [12].
Early references on deception and deception-robustness in
dynamic games with imperfect information include [13], [14].
The work [15] illustrates, in a particular example of a non-
cooperative stochastic game, how a player has the potential
of manipulating the information available to the opponent
and can strategically deceive her. In [16], it is shown that
asymmetric information has the potential to inject deception
in a non-zero sum game. The work [17] presents an example
of deception in a two-person zero-sum dynamic game with
imperfect information. The works [18], [19] study deception
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and provide deception-robust schemes for a class of discrete
dynamic stochastic games under imperfect observations.

Here, we consider games of incomplete information and,
more specifically, the framework of hypergames [20], [21],
[22], [23]. This approach allows us to consider situations
where a player believes, whether it is true or not, that
other players are of a certain type or have a specific set
of actions available to them. This is in contrast with the
explicit consideration of uncertainty about other players’ types
as typically done in games of incomplete information, see
e.g. [2]. The introduction to the notion of hypergames goes
back to [20] and was originally used to model conflicts [24].
An advantage of using hypergames instead of games with
imperfect information is that they allow the possibility of
explicitly modeling incorrect perceptions by some players
about the intent of other players. Moreover, in hypergames,
players can benefit from many levels of perception, in the
sense that they can have perceptions about the other players’
interpretations of the game, and also about the opponents’
perception of their game and so on, see [21], [23]. Hypergames
are also well suited to model scenarios where players play
security strategies or when the cost of risky actions is high,
such as wartime negotiation [25] and cybersecurity [26]. In the
context of hypergames, few works [27], [28] have addressed
the study of learning from observations. Throughout the paper,
we make the simplifying assumption that the actions taken by
the opponents are perfectly observed by the players.

Statement of contributions: The first contribution of the
paper is the introduction of the basic notions of partial
order, preference vector, rank, and H-digraph. These notions
simplify the calculation of the equilibria of hypergames and
their stability analysis. We also introduce the H-digraph
algorithm, which provides a procedure for computing H-
digraphs and characterize its complexity. The second contri-
bution is the introduction of the swap learning method, which
allows a player to update her own perception based on the
information contained in the actions taken by other players. We
use the misperception function as a measure of the mismatch
between a player’s perception and the true payoff structure of
the other players. Assuming all players are rational, we show
that the swap learning method ensures that the misperception
function will decrease and that the players’ perceptions will
converge if they repeatedly use this strategy. On the other
hand, we show that other plausible learning strategies, such
as right-shift and left-shift learning, are not guaranteed to
decrease the misperception function. The third contribution is
the introduction of the notion of inconsistency in perceptions.
Specifically, we show that the swap learning method can
yield preference vectors that are inconsistent with the mod-
ified stability properties of the outcomes determined by the
actions of other players. This leads us to propose a modified
version of the swap learning method which is guaranteed to
prevent any inconsistency in the perceptions. We establish a
class of hypergames for which the modified strategy is also
guaranteed to decrease the misperception function. Finally, the
last contribution is the characterization of the evolution of
the H-digraph under the swap learning method. We study the
effect that the changes in the players’ perceptions, determined

by swap learning, have in the structure of their respective H-
digraphs. These results provide a fast and inexpensive way for
detecting outcomes which are not affected by a certain action
and, more importantly, open the way to construct algorithmic
procedures for belief manipulation. Throughout the paper, we
illustrate our discussion with several examples.

Organization: Section II introduces a new framework for
studying hypergames. The settlement game in Section III
serves the dual purpose of illustrating the basic hypergame def-
initions and motivating the questions on learning. Section IV
introduces the swap learning method to modify a player’s
perception by incorporating observations from other players’
actions and studies its properties. Section V discusses the
inconsistencies in perception that might arise under the swap
update method and proposes a modified version. Section VI
discusses the effect that the changes in the players’ percep-
tions have in the structure of their respective H-digraphs.
Section VII contains our conclusions and ideas for future work.

II. HYPERGAME THEORY

In this section, we review the basic notions of hypergame
theory. Throughout the paper, unless otherwise noted, we as-
sume that players are rational. Although most of the concepts
can be found in [22], [21], [20], we have revised the discussion
to provide a smooth presentation of the main ideas. We also
introduce and analyze the novel concept of H-digraph.

A. Basic notions

A 0-level hypergame is a finite game, i.e., a triplet G =
(V,Sotcm,P), where V is a set of n players; Sotcm = S1 ×
. . . × Sn is the outcome set, where Si is a finite set of
strategies available to player vi ∈ V , i ∈ {1, . . . , n}; and
P = (P1, . . . , Pn), with Pi = (x1, . . . , xN )T ∈ SN

otcm,
N = |Sotcm| and i ∈ {1, . . . , n}, is called the preference vector
of player vi. Each preference vector Pi is equipped with a
preorder �Pi , i.e., a reflexive and transitive binary relation,
such that, if x has a lower entry index that y in Pi, then
x �Pi y. In this way, the emphasis is put on the order of
preferences among outcomes, rather than on the actual payoff
that players obtain for each specific outcome.

Definition 2.1: (1-level hypergame): A 1-level n-person
hypergame is a set H1 = {G1, . . . ,Gn}, where Gi =
(V, (Sotcm)i,Pi), i ∈ {1, . . . , n}, is the subjective finite game
of player vi ∈ V , and

(i) V is a set of n players;
(ii) (Sotcm)i = S1i× . . .×Sni, where Sji is the finite set of

strategies available to vj , as perceived by vi;
(iii) Pi = (P1i, . . . , Pni), where Pji is the preference vector

of vj , as perceived by vi.
In a 1-level hypergame, each player vi ∈ V plays the 0-level

hypergame Gi with the perception that she is playing a game
with complete information, which is not necessarily true. The
definition of a 1-level hypergame can be extended to high-level
hypergames, where some of the players have access to some
additional information that allow them to form perceptions
about other players’ beliefs, other players’ perceptions about
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them, and so on. The following inductive definition allows
modeling of multiple levels of perception.

Definition 2.2 (High-level hypergame): A k-level n-person
hypergame, k ≥ 1, is a set Hk = {Hk1

1 , . . . ,Hkn
n }, where

ki ≤ k−1 and at least one ki is equal to k−1. The hypergame
Hk is called homogeneous if ki = k−1 for all i ∈ {1, . . . , n}.

Assumption 2.3 (2-person 1-level hypergames): Here, we
focus on 2-person 1-level hypergames. The results are extensi-
ble to 1-level hypergames with an arbitrary number of players,
see Remark 2.13 later. 1-level hypergames are the simplest
class where players have perceptions about their opponents’
preferences. As the ensuing discussion shows, this scenario is
already quite challenging, even though the perception about
the opponent’s preference is the only element susceptible
of change. In high-level hypergames, however, players have
to deal with multiple possibilities, including changing the
perception that a player A has about the perception that
another player B has about the original player A, and so on.•

B. Equilibria and stability

Next, we recall the notion of equilibria for hypergames [21].
Let us start by introducing some notation. For a 1-level
hypergame H1, we denote by H0

A = (PAA,PBA) the 0-level
hypergame for A, where PAA and PBA are, respectively, the
preferences of A and B perceived by A. Similarly, we define
H0

B = (PAB ,PBB). Here, we assume that players have no
misperception in their own preferences and that all the 0-level
hypergames have the same set of outcomes Sotcm. Throughout
the paper, we let SP ⊂ SN

otcm, N = |Sotcm|, denote the set of all
elements of SN

otcm with pairwise different entries. We denote
by �PIJ

the binary relation on Sotcm corresponding to PIJ ,
where I, J ∈ {A,B} and by πI the projection of Sotcm to the
strategy set of player I ∈ {A,B}. For convenience, we define
the restricted outcome set Sotcm|πI(x) = {y ∈ Sotcm | πI(y) =
πI(x)}. We also find it useful to use I ′ to denote the opponent
of I in {A,B}. The next definitions introduce the concepts of
improvement and rational outcome.

Definition 2.4 (Improvement and rational outcome):
Given two distinct outcomes x, y ∈ Sotcm, y is an improvement
from x for I ∈ {A,B}, perceived by J ∈ {A,B} in H0

J ,
if and only if πI′(y) = πI′(x) and y �PIJ

x. An outcome
x ∈ Sotcm is rational for I ∈ {A,B}, perceived by
J ∈ {A,B} in H0

J , if there exists no improvement from x
for this player.

An outcome x ∈ Sotcm is a pure Nash equilibrium of H1 if
it is perceived as rational by A in H0

A and by B in H0
B . This

notion of equilibrium does not take into account the different
perceptions of the players. This is best illustrated with an
example. Suppose A has some perception about B’s game and
suppose A has an improvement y from x. According to the
definition above, x is not a Nash equilibrium of the hypergame.
However, if A believes that B has an improvement z from y
such that x �PAA

z, then taking the action associated with
y could lead A to an outcome less preferred than x. This
mismatch can be addressed by extending the notion of Nash
equilibrium using the concept of sequential rationality [22].

Definition 2.5 (Sequential rationality): Consider a 1-level
hypergame H1 between players A and B. An outcome x ∈

Sotcm is sequentially rational for I ∈ {A,B} with respect to
H0

J , J ∈ {A,B}, if and only if for each improvement y for
I , perceived by J in H0

J , there exists an improvement z for
I ′, perceived by J in H0

J , such that x �PIJ
z. Whenever this

holds, we say that the improvement z from y for I ′ sanctions
the improvement y from x for I in H0

J .
Note that the sanction z might itself not be sanction free

for B. One could restrict sanctions to have this property at
the cost of a more complex notion of sequential rationality.
By definition, a rational outcome is also sequentially rational.
We denote by SeqI(H0

J) ⊂ Sotcm the set of all sequentially
rational outcomes for player I ∈ {A,B}, as perceived by
player J ∈ {A,B} in H0

J . An outcome x ∈ Sotcm is unstable
for I with respect to H0

J if x ∈ Seqc
I(H

0
J) = Sotcm\SeqI(H0

J)
and is an equilibrium of H0

J if x ∈ SeqJ(H0
J)∩ SeqJ′(H0

J).
For brevity, we sometimes omit the wording ‘with respect
to H0

J ’ when it is clear from the context. An outcome x
is an equilibrium of H1 if x ∈ SeqA(H0

A) ∩ SeqB(H0
B).

An outcome x can be an equilibrium for H1 and not an
equilibrium of H0

A. Also, note that pure Nash equilibria of
H1 are equilibria of H1.

The following results play an important role in the forth-
coming discussion. For simplicity, we present them with re-
spect to the player B in the game H0

A. However, one can easily
extend them for player I in the game H0

J , I, J ∈ {A,B}.
Lemma 2.6: (Abundance of unstable outcomes): Assume

x ∈ Sotcm is perceived as unstable for B by A in H0
A. Then

any other outcome z ∈ Sotcm such that πA(z) = πA(x) and
x �PBA

z is also perceived as unstable for B by A in H0
A.

Lemma 2.7: (Existence of rational outcomes): For x ∈
Sotcm, either x is rational for B in H0

A or there exists an
improvement y from x perceived by A for B in H0

A which is
rational for B.

Since rational outcomes are also sequentially rational,
Lemma 2.7 also shows the existence of sequentially rational
outcomes. It can be shown [21] that every 0-level hypergame
has an equilibrium outcome, which may not be unique. How-
ever, there exist high-level hypergames which do not contain
any equilibrium outcome. Existence can be guaranteed, how-
ever, if one extends the notion of equilibria to include mixed
strategies, see [29].

Remark 2.8: (Backward induction, subgame perfection, and
sequential rationality): It is worth noting the difference be-
tween the notion of sequential rationality defined above and
backward induction and subgame perfection [2]. To illustrate
this point, given a player, say A, and an outcome x, consider
the two-stage game where A acts first and B acts second. In
general, the Nash subgame perfect equilibria of this game do
not correspond to the sequentially rational outcomes given by
Definition 2.5. Essentially, this is because sequential rationality
cares about providing guarantees no matter the action of the
opponent, whereas Nash equilibria cares about maximizing at
each stage the expected payoff. Other notions of equilibria
are also relevant for hypergames, see [22] for a discussion
on the connections among them. The reason for the focus on
sequential rationality here is the emphasis on secure actions
and guaranteed payoffs based on the players’ perceptions. •
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C. H-digraphs

The stability analysis in hypergames is typically done by
means of preference tables, see [21], [22]. Here, instead, we
introduce an alternative method based on the novel notion of
H-digraph. The H-digraph contains the information about the
possible improvements from an outcome to another outcome,
the equilibria, and the sanctions in a hypergame.

A digraph G is a pair (V,E), where V is a finite set, called
the vertex set, and E ⊆ V × V , called the edge set. Given
(u, v) ∈ E, u is an in-neighbor of v and v is an out-neighbor
of u. The set of in-neighbors and out-neighbors of v are
denoted by N in(v) and N out(v), and their cardinalities are the
in-degree and out-degree of v, respectively. A is an adjacency
matrix for G = (V,E) if the following holds: aij > 0 if and
only if (vi, vj) ∈ E, for all vi, vj ∈ V . Before introducing the
concept of H-digraph, we define the notion of rank.

Definition 2.9 (Rank): Let H1 be a 1-level hypergame and
consider the preference vector PIJ in the hypergame H0

J ,
I, J ∈ {A,B}. We assign to each outcome x ∈ Sotcm a
positive number rank(x,PIJ) ∈ R>0, called the rank of
outcome x, such that, for each Sotcm 3 y 6= x, we have that
rank(y, PIJ) > rank(x,PIJ) if and only if x �PIJ

y.
According to this definition, players prefer the outcomes

with lower ranks. Throughout the paper and without loss
of generality, we use the set {1, . . . , |Sotcm|} to rank the
outcomes. Next, we introduce the notion of H-digraph.

Definition 2.10 (H-digraph): The H-digraph
GH0

A
= (Sotcm, EH0

A
) associated to H0

A is defined by
(x, y) ∈ EH0

A
iff one of the following holds,

• there exists an improvement y from x for A for which
there is no sanction of B in H0

A;
• there exists an improvement y from x for B for which

there is no sanction of A in H0
A.

Moreover, each vertex x ∈ Sotcm is labeled with
(rank(x,PAA), rank(x,PBA)).

Similarly, one can associate an H-digraph to H0
B . The next

result is an immediate consequence.
Lemma 2.11: (Stability notions via H-digraph): An out-

come x is sequentially rational for A (respectively for B)
if and only if N out(x) ∩ Sotcm|πB(x) = ∅ (respectively
N out(x) ∩ Sotcm|πA(x) = ∅). Moreover, an outcome is an
equilibrium for the hypergame H0

A if and only if its out-degree
in the associated H-digraph is zero.

Table 1 presents an algorithm to compute H-digraphs.
Lemma 2.12: (Computational complexity of the

H-digraph algorithm): The computational complexity
of the H-digraph algorithm is Θ(|Sotcm|2).

Proof: Note that |Sotcm| = nm, where n, m are the
number of actions of players I and J , respectively. Choose
any action of I , and let {x1, . . . , xm} be all the outcomes who
share this action. Without loss of generality, let xi �PJI

xi+1,
for all i ∈ {1, . . . ,m}, m ∈ Z≥1. For each xi, the algorithm
compares the rank in PJI of all the improvements for I from
xk, k < i, in H0

I , to the rank of xi in PJI . Note that there are
(i − 1) improvements from xi perceived for J and for each
of these improvements, there are at most n = |Sotcm|

m outcomes
that need to be examined in PII to draw a conclusion about the

Algorithm 1: The H-digraph algorithm

Goal: Compute the H-digraph GH0
I

Input: Sotcm, PII and PJI

Output: Adjacency matrix AH of GH0
I

Initialization: associate matrices Aimp
I and Aimp

J to I
and J , respectively, by assigning 1 to an
entry (i, j) if there exists an improvement
xj from xi for the corresponding player in
H0

I and zero otherwise; let
AH = 0|Sotcm|×|Sotcm|

1 foreach xi ∈ Sotcm do
2 foreach K ∈ {I, J} do
3 foreach xj ∈ Sotcm \ {xi} do
4 if (Aimp

K )ij 6= 0 and @l ∈ {1, . . . , |Sotcm|} such
that (Aimp

K′ )jl 6= 0, where xi �PKI
xl then

5 AH
ij = 1

stability of xi. As a result, the total number of computations re-
quired for the outcomes in Sotcm|πI(x1) is in Θ(n× m×(m−1)

2 )
and since πI partitions Sotcm into n subsets, the total compu-
tation required is Θ(n2 × m×(m−1)

2 ) = Θ(|Sotcm|2).
Remark 2.13 (n-person hypergames): The notion of H-

digraph can be extended to 0-level hypergames with a finite
number n of players. Such H-digraphs are n-dimensional, with
one dimension per individual player’s action set. Sanctions are
perceived with respect to all the opponents and edges cor-
respond to sanction-free improvements. The time complexity
grows with the number of outcomes, which in turn, grows with
the number of players. •

Once an H-digraph is calculated with complexity as charac-
terized by Lemma 2.12, if a change is done to the preference
vectors of a player, the complexity of recomputing it decreases
substantially. We will revisit this issue in Remark 6.3.

III. THE SETTLEMENT GAME

Here, we analyze in detail a hypergame to illustrate the
notions introduced in Section II. The example also serves
to motivate the questions addressed in the forthcoming dis-
cussion. Suppose two teams A and B are trying to deploy
some resources in a field partitioned into four regions, North
West (NW), North East (NE), South West (SW), and South
East (SE). Each team has its own perception about the condi-
tions in the field and, based on that, has some preferences
for deploying the resources. Furthermore, each team has
a perception about the opponent’s intentions. We associate
θ = [θA1 , θA2 , θB1 , θB2 ]

T ∈ {0, 1}4 to each outcome, where
• θA1 is 0 if A chooses West and 1 otherwise; θA2 is 0 if

A chooses North and 1 otherwise;
• θB1 is 0 if B chooses West and 1 otherwise; θB2 is 0 if

B chooses North and 1 otherwise.
For example, θ = (0, 0, 1, 1)T is associated to the outcome in
which team A decides to settle in NW, while team B goes
to SE. We associate a unique identifier Ind(θ) ∈ Z≥0 to θ as

Ind(θ) = θA1 × 20 + θA2 × 21 + θB1 × 22 + θB2 × 23.
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Suppose the players’ preferences and perceptions about each
other’s preferences are given by

PAA = (12, 9, 6, 3, 8, 4, 13, 1, 14, 2, 11, 7, 0, 5, 10, 15)T ,

PBA = (0, 5, 15, 10, 1, 2, 3, 7, 4, 6, 14, 13, 8, 11, 12, 9)T ,

PBB = (1, 2, 3, 7, 4, 6, 14, 13, 8, 11, 12, 9, 0, 5, 15, 10)T ,

PAB = (12, 9, 6, 3, 8, 4, 13, 1, 14, 2, 11, 7, 0, 5, 10, 15)T .

We rank Sotcm with the integers {1, . . . , |Sotcm|}.
Figure 1(a) and (b) show the H-digraphs associated to each

team’s hypergame. For instance, in Figure 1(a), there is no
outgoing edge from 0 to 4, 8, and 12, which, according to
Lemma 2.11, means that 0 is perceived as sequentially rational
for B in H0

A. Let us analyze what happens if players play this
hypergame. Team A hopes for the equilibrium 3 and moves
to SE. Team B also perceives 3 as the best equilibrium and
so moves to NW. The result of the game does not reveal any
new information about the misperceptions, in the sense that
none of the teams would do anything differently if they got
the chance to play it again.

Next, consider the same setup as above with a new set of
preferences for B,

P′BB = (13, 14, 12, 8, 9, 11, 2, 1, 3, 4, 7, 6, 15, 10, 0, 5)T .

Figure 1(c) shows the new H-digraph associated to B’s hy-
pergame. Team A hopes for 3 and so plays the action πA(3).
Similarly, B hopes for the equilibrium 12 and thus plays the
action πB(12). The result of a one-stage play is 15, which is
unstable for A in H0

A and B in H0
B . If any of them got the

chance to move again, they could find an improvement to a
sequentially rational outcome and select the action associated
to it. For example, B could take the action πB(11).

We are interested in understanding what the players could
have observed, at each round of play, about their misperception
of the opponent’s game. For example, consider A’s perception.
Initially, A thinks that 15 is (sequentially) rational for B. This
can be observed in Figure 1(a), where 15 has no outgoing
edge to 3, 7, or 11. Based on the action πB(11), A could
learn: (i) outcome 15 is not sequentially rational for B; (ii) B
prefers outcome 11 to outcome 15, i.e., 15 ≺P′BB

11. Player A
could use these observations to improve her perception about
B’s game. These are the kind of questions that motivate our
developments below.

IV. DECREASING MISPERCEPTION BY OBSERVATIONS

In this section, we investigate methods that allow players
to update their own perceptions based on the information
contained in the actions taken by other players. To make this
precise, consider a 1-level hypergame H1 with two players A
and B. Suppose players take actions sequentially. Denote by
OBA the observation set of player A, that is, the set of binary
relations in PBB observed by A. We say that the preference
vector PBA is compatible with the observation set OBA if the
binary relations in OBA hold in PBA. Similar definitions can
be made for player B’s preferences.

In general, players seek for strategies to update their percep-
tions so that their preference vectors are compatible with their

observation sets. This is the problem treated here. Section IV-A
considers learning when only a single observation has been
made and Section IV-B analyzes its effect on misperceptions.
This discussion sets the basis for analyzing the case of multiple
observations in Section IV-C.

A. Learning from a single observation

In most of the following, we analyze the hypergame from
the viewpoint of A. An analogous discussion can be carried
out for B. Suppose B takes an action that changes the outcome
from x ∈ Sotcm to y ∈ Sotcm, with x 6= y. Then, A deduces
that B prefers y over x. Therefore, A can incorporate this in-
formation into her hypergame and update her perception about
the preferences of B. This section explores the suitability of
several methods to incorporate this information.

1) Swap update: In the second part of the settlement exam-
ple of Section III, the players’ change of actions leads to a shift
in the outcomes from 15 to 11; thus A concludes that B prefers
the outcome 11 to 15. Player A originally has the perception
15 �PBA

3 �PBA
7 �PBA

11 about Sotcm|πA(15). After
moving from outcome 15 to 11, it would appear reasonable
for A to interchange the positions of 15 and 11 in her belief
about B’s preferences: 11 �PBA

3 �PBA
7 �PBA

15. We call
this swap learning. We formally define this map next.

Definition 4.1 (Swap map): Let V be a set of cardinality
N and let W be the subset of V N with pairwise different
elements. For x1, x2 ∈ V , define swapx1 7→x2

: W → W by

(swapx1 7→x2
(v))i =

{
vj if vi = x1, vj = x2 and i < j,

vi if vi = x1, vj = x2 and i > j,

(swapx1 7→x2
(v))j =

{
vi if vi = x1, vj = x2 and i < j,

vj if vi = x1, vj = x2 and i > j,

and (swapx1 7→x2
(v))k = vk if vk 6= x1, x2. We refer to

swapx1 7→x2
as the x1 to x2 swap map.

Figure 2(a) shows the effect of the swap map for a vector v
with vi = x1, vj = x2, and i < j. We are now ready to define
the swap learning map acting on the preference vectors.

x1 x2

x1x2

(a)

x1 x2

x1x2

(b)

Fig. 2. Effect of (a) the swap map and (b) the right-shift map on a vector.

Definition 4.2 (Swap learning): Let H1 be a 1-level hyper-
game with two players A and B and suppose B takes an action
that changes the outcome from x to y. Then the swap learning
map SwA

x,y : SP → SP for A is SwA
x,y(P) = swapx7→y(P).

2) Right-shift learning: In the second part of the settlement
example of Section III, when the outcomes change from 15 to
11, A could instead update her belief about B’s preferences
as follows: 11 �PBA

15 �PBA
3 �PBA

7. Note that
with this update, unlike the swap learning, A employs the
information 11 �PBB

15, while still believing that B prefers
15 to outcomes 3 and 7. We call this right-shift learning. We
formally define this map next.
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Fig. 1. H-digraphs for the hypergames (a) (PAA, PBA), (b) (PAB , PBB), and (c) (PAB , P′
BB).

Definition 4.3 (Right-shift map): Let V be a set of cardinal-
ity N and let W be the subset of V N with pairwise different
elements. For x1, x2 ∈ V , define r-shiftx1 7→x2 : W → W by

(r-shiftx1 7→x2(v))i =

{
vj if vi = x1, vj = x2 and i < j,

vi if vi = x1, vj = x2 and i > j,

(r-shiftx1 7→x2(v))l =


vl−1 if vi = x1, vj = x2

and i < l ≤ j,

vl if vi = x1, vj = x2

and j ≤ l < i,

and (r-shiftx1 7→x2(v))k = vk if vi = x1, vj = x2 and k <
i or k > j. We refer to r-shiftx1 7→x2 as the x1 to x2 right-
shift map.

Figure 2(b) shows the effect of the right-shift map for a
vector v with vi = x1, vj = x2, and i < j. Next, we
show that the right-shift map corresponds to a composition
of swap maps.

Lemma 4.4: (Right-shift map as a composition of swap
maps): Let V be a set of cardinality N and let W be the subset
of V N with pairwise different elements. For x1, x2 ∈ V ,

r-shiftx1 7→x2(v) =
swapvj−(j−i−1) 7→x1

◦ · · · ◦ swapvj−1 7→x1
◦ swapx1 7→x2

(v),

where vi = x1 and vj = x2.
A right-shift map r-shiftx1 7→x2 acting on W ⊂ U can be

extended to a map r-shiftx1 7→x2 acting on U by prescribing
that r-shiftx1 7→x2 fixes all elements of U \W .

Definition 4.5 (Right-shift learning): Let H1 be a 1-level
hypergame with two players A and B and suppose B takes
an action that changes the outcome from x to y. The right-shift
learning map R-ShA

x,y : SP → SP for A is given by

R-ShA
x,y(P) = r-shiftx7→y(P)

where r-shiftx7→y is the x to y right-shift map on Sotcm|πA(x)

extended to Sotcm.
It is also possible to define the notion of left-shift learning

map, in which the player trusts that her initial belief about the
relative ranks with respect to the second outcome is correct.

B. Effect of learning on misperception

Here, our objective is to understand the effect of the learning
maps introduced above on the player’s perception. To that

goal, we introduce a function that compares the rank of each
outcome in the preference vector for B in H0

A to its rank in
B’s true preference vector in H0

B .
Definition 4.6 (Misperception function): Let H1 be a hy-

pergame with outcome set Sotcm. The misperception function
LBA : SP → R≥0 of A about B’s game is

LBA(P ) =
N∑

i=1

|rank(xi, PBB)− rank(xi, P )|

An analogous definition can be given for the misperception
function LAB of B about A’s game. The next result shows
that swap learning can only decrease the misperception.

Theorem 4.7: (The misperception does not increase under
swap learning): Consider a 1-level hypergame H1 between
players A and B. Suppose B takes an action such that the
outcome of the hypergame changes from xi to xj . Then
LBA(SwA

xi,xj
(PBA)) ≤ LBA(PBA).

Proof: Let xi �PBA
xj (otherwise, the swap learning

map is trivial and the result follows). For xk ∈ Sotcm|πA(xi)

let rk = rank(xk,PBB) and ak = rank(xk,PBA), and, up to
relabeling the outcomes, suppose that al ≤ ak if and only if
l < k. Under the swap learning map,

∆LBA = LBA(SwA
xi,xj

(PBA))− LBA(PBA)

= (|ri − aj |+ |rj − ai|)− (|rj − aj |+ |ri − ai|).

Since B is rational and has changed her action such that the
outcome shifted from xi to xj , we have rj ≤ ri. If ai = aj or
ri = rj , then ∆LBA = 0. Next, suppose ai < aj and rj < ri.
Then one of the following cases will happen

• if ri−aj ≥ 0, ri−ai > 0, rj −ai < 0, and rj −aj < 0,
then ∆LBA = 2(ai − aj) < 0;

• if ri−aj ≥ 0, ri−ai > 0, rj −ai > 0, and rj −aj ≥ 0,
then ∆LBA = 0;

• if ri−aj ≥ 0, ri−ai > 0, rj −ai > 0, and rj −aj < 0,
then ∆LBA = 2(rj − aj) < 0;

• if ri−aj < 0, ri−ai ≥ 0, rj −ai ≥ 0, and rj −aj < 0,
then ∆LBA = 2(rj − ri) < 0;

• if ri−aj < 0, ri−ai < 0, rj −ai < 0, and rj −aj < 0,
then ∆LBA = 0;

and the result follows.
However, the misperception can potentially increase under

right-shift learning, as shown next.
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Proposition 4.8: (The misperception can increase under
right-shift learning): Consider a 1-level hypergame H1 be-
tween players A and B. Suppose B takes an action that
changes the outcome from xi to xj . If rank(xj ,PBA) <
rank(xj ,PBB), then

LBA(R-ShA
xi,xj

(PBA)) ≥ LBA(PBA).

Proof: Note that the only part of Sotcm affected by the
right-shift learning are the outcomes in Sotcm|πA(xi) which do
not have ranks lower than xi or higher than xi+l. Therefore,
without loss of generality, we can assume Sotcm|πA(xi) =
{xi, xi+1, xi+2, . . . , xi+l}, where xi �PBA

xi+1 �PBA

xi+2 �PBA
. . . �PBA

xi+l, and B takes an action that changes
the outcome from xi to xi+l. For xk ∈ Sotcm|πA(xi), where
k ∈ Z≥1, let rk = rank(xk,PBB) and ak = rank(xk,PBA).
We compute the change in A’s misperception about B’s game
as follows,

∆LBA =LBA(R-ShA
xi,xj

(PBA))− LBA(PBA)

=
i+l−1∑
k=i

(|rk − ak+1| − |rk − ak|)

+ (|ri+l − ai| − |ri+l − ai+l|).

By assumption, we have ri+l−ai+l > 0. Since ai < ai+l, we
have ri+l − ai > 0. Thus

∆LBA = ai+l − ai +
i+l−1∑
k=i

(|rk − ak+1| − |rk − ak|).

Moreover,
∑i+l−1

k=i (|rk−ak+1|− |rk−ak|) ≥ ai−ai+l, since
for each i ≤ k ≤ i + l− 1 we have |rk − ak+1| − |rk − ak| ≥
−|ak − ak+1| = ak − ak+1. As a result, ∆LBA ≥ 0.

Note that ∆LBA = 0 in the proof of Proposition 4.8 if
and only if rk ≥ ak+1, for all i ≤ k ≤ i + l − 1. Since
the true preference of B is independent of A’s perception
about it, it is not difficult to find examples for which the
misperception function strictly increases. Even though a right-
shift map can be described as a composition of swap maps (cf.
Lemma 4.4), Proposition 4.8 does not contradict Theorem 4.7.
This is because only the first swap map in the description
corresponds to a change in outcomes caused by the action of
the other player, while the rest of swap maps do not. One
can prove a similar version of Proposition 4.8 for left-shift
learning. Given these results, we focus on swap learning.

C. Learning from multiple observations and convergence of
perceptions

Here we investigate the behavior of the hypergame when
players repeatedly use the swap update map to update their
perceptions. We assume that players take actions sequentially
and, at each round, each player chooses an action that she
believes will shift the outcome to a sequentially rational one
for her (note that this outcome does not necessarily need to
be the best sequentially rational outcome).

In the case of multiple observations, one should note that
the composition of swap update maps associated to the indi-
vidual observations does not result in general in a preference

vector that is compatible with the observation set. As a
simple illustration, suppose the perception of A specifies that
x �PBA

z �PBA
y. If A observes first z �PBB

y and then
y �PBB

x, the composition of the two swap updates will result
in y �PBA

z �PBA
x, which is not compatible with OBA.

However, an additional swap update between y and z would
result in the correct perception z �PBA

y �PBA
x. Therefore,

players must use a sorting algorithm to guarantee that the
binary relations in their observation set are respected. Such
sorting algorithm should only employ swap updates that are
compatible with their observation set (an example of such
algorithm is, for instance, the bubble sort algorithm [30]).
The resulting swap update maps for A and B are denoted by
SwA

OBA
and SwB

OAB
, respectively. By definition, and using

Theorem 4.7, these swap update maps do not increase the
corresponding misperception function.

The dynamical system that results from A using swap
learning to update her perception about B’s game is

PBA(l + 1) = SwA
OBA(l)(PBA(l)).

Here, OBA(l) denotes the observation set of players A at
round l ∈ Z≥0 and PBA(0) = PBA is the initial perception
of A about B’s game. We refer to this dynamical system as
(PBA,SwA). A similar equation characterizes the evolution
(PAB ,SwB) for B. The following convergence analysis is
valid for any initial outcome, and therefore, is independent of
the method used by the players to choose their initial actions.

Theorem 4.9: (Convergence of evolutions under swap learn-
ing): Suppose A and B are playing a 1-level hypergame
with strict preferences, are rational, and are using the swap
learning method to update their perceptions. Then, the evo-
lutions defined by (PBA,SwA) and (PAB ,SwB) for the
hypergames H0

A and H0
B converge to some preference vec-

tors P∗BA and P∗AB , respectively. Furthermore, the induced
sequences {LBA(l) = LBA(PBA(l))}l≥0 and {LAB(l) =
LAB(PAB(l))}l≥0 are monotonically convergent.

Proof: Here, we give the proof for the evolution
(PBA,SwA); a similar argument works for (PAB ,SwB).
Given the definition of misperception function, the sequence
{LBA(l)}l≥0 is positive and bounded from below. Since the
sequence is non-decreasing, cf. Theorem 4.7, convergence
follows. However, this does not necessarily mean that the
evolution (PBA,SwA) is convergent. To establish this, we
need to show that, after a certain number of rounds, the
misperception being constant implies that SwA becomes the
identity. Suppose B takes an action such that the outcome
changes from x(l) to x(l + 1). Then,

rank(x(l),PBB) > rank(x(l + 1),PBB).

By rationality and since the preferences are strict, B will never
take an action which changes the outcome from x(l + 1) to
x(l) in future rounds. Hence, the set of possible swap learning
maps available to each player is finite, and SwA becomes the
identity after finitely many rounds.

Remark 4.10 (Non-strict preferences): Theorem 4.9 can be
generalized with minimal changes to hypergames with non-
strict preferences. This is because if B takes an action that
changes the outcome from x(l) to x(l +1), she will only take
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an action from x(l + 1) back to x(l) if these outcomes are
equally preferred. A can easily detect this and not perform
further swaps involving these outcomes. In the rest of the
paper, for simplicity, we assume all preferences are strict. •

In general, the final value of the misperception in Theo-
rem 4.9 is not necessarily zero. This is typical of hypergames
whose outcome set has a large cardinality, because the evo-
lution of the hypergame may finish in an equilibrium where
none of the players is willing to change her action any more,
whereas large parts of the outcome set remain unexplored.

Example 4.11 (The settlement game revisited): Recall the
settlement game introduced in Section III. One can com-
pute the initial misperception of A about B’s game to be
LBA(PBA) = 120. After B takes the action πB(11), A, using
the swap learning map, updates her perception about B to be

SwA
15,11(PBA) = (0, 5, 11, 10, 1, 2, 3, 7, 4, 6, 14, 13, 8, 15, 12, 9)T ,

with LBA(SwA
15,11(PBA)) = 106. This decrease in the value

of the misperception function is consistent with Theorem 4.7.
Since outcome 11 is an equilibrium of H1, A’s perception
converges to SwA

15,11(PBA), as predicated by Theorem 4.9.
Observe that, after swap update, 11 and 15 are perceived by
A as sequentially rational and unstable for B, respectively.
The resulting perception of A not only correctly reflects the
fact that B prefers 11 over 15, but also correctly encodes
the stability properties of both outcomes. The latter, however,
may not hold in general. Under swap update, the stability of
outcomes may not be consistent with the action taken by the
opponent. This is what motivates Section V. •

Remark 4.12 (Extensions to n-person hypergames revisited):
Following up on Remark 2.13, the basis for the extension
of the methods and results presented above to an n-person
scenario is the following: when a player Ai observes an
action taken by other player Aj , she updates its perception
reasoning on the 2-dimensional plane that corresponds to Ai

and Aj , leaving the edges corresponding to the remaining
(n− 2) dimensions unchanged. •

V. DETECTING THE INCONSISTENCIES IN PERCEPTION

Even though the swap update method introduced in Sec-
tion IV is guaranteed to decrease the misperception of a player,
it could lead to inconsistencies in perceptions about the other
players’ preferences. To make this point clear, consider the
hypergame H0

A and suppose B takes an action which changes
the outcome from xi to xj . Because of the rationality of B,
moving from xi to xj implies that xi is unstable and xj is
sequentially rational in H0

B . These two pieces of information
are not captured in general by the swap update method, which
instead simply takes care of updating the perception of A to
assert that B prefers xj to xi. In other words, it is possible that
the stability properties of xi and xj as computed by A with
her updated perceptions and as observed from the action taken
by B do not match. This discussion is also valid for the case
when B does not change its action (because xi is sequentially
rational for her) while at the same time xi is perceived as
unstable for B by A. Here, we develop a learning procedure
that addresses this problem.

Throughout the section, we present the results from the
viewpoint of A. An analogous discussion can be carried out
for B. We focus primarily on the case when B changes its
action (Remark 5.10 discusses the case when B does not
change its action). Recall that if xi ≺PBA

xj , the swap map
is the identity map and hence no change in perception occurs.
Thus, we deal with the case xi �PBA

xj .

A. Inconsistency in perception

Here we study all the cases that can occur under swap
learning regarding the consistency between a player’s percep-
tion and the stability properties of the outcomes as implied
by the actions taken by the other player. We summarize the
possible scenarios in Table I. For each case, we refer to the
corresponding result.

Lemma 5.1: (In a restricted outcome set, an unstable out-
come cannot have a rank lower than a sequentially rational
one): Suppose player B takes an action which changes the
outcome from xi to xj , where xi �PBA

xj . Then xi and xj

cannot be perceived simultaneously as sequentially rational
and unstable in (PAA,SwA

xi,xj
(PBA)), respectively.

Proof: By virtue of Lemma 2.6, a sequentially rational
outcome xi cannot have a higher rank than an unstable
outcome xj whenever πI(xi) = πI(xj), I ∈ {A,B}.

Next, we characterize two cases for which the swap learning
does not create inconsistencies.

Lemma 5.2: (Preservation of correct perception under swap
learning): Suppose player B takes an action which changes
the outcome from xi to xj , where xi �PBA

xj .
(i) If xi is perceived by A as an unstable outcome

for B in H0
A, then it is also perceived as unstable in

(PAA,SwA
xi,xj

(PBA)).
(ii) If xj is perceived by A as a sequentially rational

outcome for B in H0
A, then it is also perceived as

sequentially rational for B in (PAA,SwA
xi,xj

(PBA)).
Proof: We show (i) first. Suppose xi is perceived as

unstable for B in H0
A. By definition, there exists a perceived

improvement y from xi for B without any sanction of A.
Since rank(xi,SwA

xi,xj
(PBA)) > rank(xi,PBA), y is also a

perceived improvement from xi for B without any sanction of
A; thus xi remains unstable for B in (PAA,SwA

xi,xj
(PBA)).

Next, we show (ii). Suppose xj is perceived as sequentially
rational for B in H0

A. By definition, there exists no perceived
improvement for B from the outcome xj without sanction of
A, i.e., there exists no outcome y, πA(y) = πA(xj), that B can
move to from xj such that rank(xj ,PBA) > rank(y, PBA)
without a sanction of A. Since rank(xj ,SwA

xi,xj
(PBA)) <

rank(xj ,PBA), there is no improvement for B from the
outcome xj without sanction of A.

The next result identifies a case where swap learning
modifies correctly A’s perception about xi. The proof follows
from the definition of sequential rationality and Lemma 2.6.

Lemma 5.3: (Correction of perceptions under swap learn-
ing): Suppose player B takes an action which changes the
outcome from xi to xj , where xi �PBA

xj . Suppose that xi

is perceived as sequentially rational for B in H0
A and there

exists an outcome y, where πA(y) = πA(xj), perceived as
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xi ∈ SeqB(PAA,SwA
xi,xj

(PBA)) xi ∈ Seqc
B(PAA,SwA

xi,xj
(PBA))

xj ∈ SeqB(PAA,SwA
xi,xj

(PBA)) Inconsistent (Lemma 5.4) Consistent (Lemmas 5.2 and 5.3)
xj ∈ Seqc

B(PAA,SwA
xi,xj

(PBA)) Never happens (Lemma 5.1) Inconsistent (Lemma 5.4)

TABLE I
POSSIBLE PERCEPTIONS OF A ABOUT THE STABILITY OF OUTCOMES xi AND xj AFTER APPLYING SWAP LEARNING.

unstable for B in H0
A with rank(y, PBA) < rank(xj ,PBA).

Then xi is unstable in the game (PAA,SwA
xi,xj

(PBA)).
The next result captures two interesting situations: one in

which xj is perceived as unstable (respectively, one in which
xi is perceived as sequentially rational) in H0

A and remains
unstable (respectively sequentially rational) after applying the
swap learning map, thus giving rise to a contradiction in the
perceptions of A about the game of B.

Lemma 5.4: (Inconsistency in perceptions under swap learn-
ing): Suppose player B takes an action which changes the
outcome from xi to xj , where xi �PBA

xj .
(i) The outcome xj is perceived as unstable in

(PAA,SwA
xi,xj

(PBA)) if and only if xi is unstable
for B in H0

A.
(ii) If xi is perceived as sequentially rational for B in

H0
A and there exists a sequentially rational outcome

y, where πA(y) = πA(xj) and rank(y, PBA) >
rank(xj ,PBA), then xi remains sequentially rational
for B in (PAA,SwA

xi,xj
(PBA)).

Proof: Both statements follow from Lemma 2.6. We
only describe the proof of (i). Suppose xi is unstable for
B in H0

A. By Lemma 2.6, xj is also unstable for B in
H0

A. By assumption, there exists a perceived improvement
from xi to an outcome y for player B without sanction
of A in H0

A such that rank(y, PBA) < rank(xi,PBA).
Since rank(xj ,SwA

xi,xj
(PBA)) = rank(xi,PBA), xj remains

unstable for B. The converse follows similarly.

B. Modified swap learning method

Here, we investigate how a player can include the infor-
mation gathered from the contradictions in her perception
under swap learning (cf. Lemma 5.4) to learn more about
the other player’s game. We introduce a modified version
of the swap leaning method that prevents any inconsistency
in perceptions. Under this method, A assumes that B has
perfect information about her game and is convinced that any
inconsistency is due to her lack of knowledge about B’s game.

As we did for swap update in Section IV, we first describe
the strategy for the case with a single observation and later
discuss in Remark 5.11 the extension to multiple observations.
To formally define the method, we first need to present some
auxiliary results.

Lemma 5.5: (Existence of sequentially rational sanction-
free improvements): Consider a 1-level hypergame between A
and B. Let B take an action that changes the outcome from
xi to xj , where xi �PBA

xj , and suppose both xi and xj are
perceived as unstable for B in (PAA,SwA

xi,xj
(PBA)). Define

IBA
xj

= {y ∈ Sotcm|πA(xj) | y sanc-free improv from xj for B,

seq. rational in (PAA,SwA
xi,xj

(PBA))} ⊂ Sotcm|πA(xj).

Then IBA
xj

6= ∅.
The proof of this result follows from Lemma 2.7. For each

y ∈ IBA
xj

, let IAA
y denote the set of improvements from y

in PAA. For convenience, denote by

lwt(S, P) = argmino∈Srank(o,P),
hght(S, P) = argmaxo∈Srank(o,P),

the outcomes in S ⊂ Sotcm with lowest and highest
rank in P, respectively. Note that there exists no out-
come in IBA

xj
\{hght(IBA

xj
,PBA)} which is rational for A

in (PAA,SwA
xi,xj

(PBA)), since otherwise hght(IBA
xj

,PBA)
would be unstable for B.

Definition 5.6 (Outcome w): With the assumptions of
Lemma 5.5, let o = hght(IBA

xj
,PBA). For each y ∈ IBA

xj
, if

y 6= o, let

wy = lwt({w ∈ IAA
y | w ≺PBA

o},PBA);

if y = o is rational in PAA, let wy = o; if y = o is not rational
in PAA and {w ∈ IAA

y | w ≺PBA
o} 6= ∅, let

wy = lwt({w′ ∈ IAA
y | w′ ≺PBA

o},PBA);

and otherwise, let wy = hght(IAA
y ,PBA). Then, let

w = lwt({wy | y ∈ IBA
xj

},PBA).

Definition 5.6 plays an important role in modified swap
learning to correct the inconsistency of xj being perceived
as unstable. The next result, instead, is relevant to correct the
inconsistency of xi being perceived as sequentially rational.

Lemma 5.7: (Outcome z): Consider a 1-level hypergame
between players A and B. Suppose B takes an action that
changes the outcome from xi to xj , where xi �PBA

xj ,
and suppose both xi and xj are perceived as sequentially
rational for B in (PAA,SwA

xi,xj
(PBA)). Then there ex-

ists an improvement z ∈ Sotcm|πB(xj) from xj for A in
(PAA,SwA

xi,xj
(PBA)).

Proof: Suppose otherwise; then xj is an improvement
from xi for B in (PAA,SwA

xi,xj
(PBA)) such that there is

no sanction of A against it, i.e., xi is unstable for B in
(PAA,SwA

xi,xj
(PBA)), which is a contradiction.

We are now ready to introduce the modified swap learning
method.

Definition 5.8 (Modified swap learning): Consider a 1-
level hypergame between players A and B. Suppose B takes
an action that changes the outcome from xi ∈ Sotcm to
xj ∈ Sotcm, where xi �PBA

xj . The modified swap learning
map MSwA

xi,xj
: SP → SP is

• if xi ∈ Seqc
B(PAA,SwA

xi,xj
(P)) and xj ∈

SeqB(PAA,SwA
xi,xj

(P)), then

MSwA
xi,xj

(P) = SwA
xi,xj

(P),
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• if xi, xj ∈ Seqc
B(PAA,SwA

xi,xj
(P)), then

MSwA
xi,xj

(P) = SwA
w,xj

◦SwA
xi,xj

(P),

where w is defined in Definition 5.6.
• if xi, xj ∈ SeqB(PAA,SwA

xi,xj
(P)), then

MSwA
xi,xj

(P) = SwA
xi,z ◦SwA

xi,xj
(P),

where z ∈ Sotcm|πB(xj) is the outcome with the highest
rank, with respect to SwA

xi,xj
(P), which satisfies the

conditions of Lemma 5.7.
According to Lemma 5.1, the case xi ∈

SeqB(PAA,SwA
xi,xj

(P)) and xj ∈ Seqc
B(PAA,SwA

xi,xj
(P))

will never occur.
In Definition 5.8, the choice of y with highest rank makes

the perception of player A consistent with the least amount of
change in its preference vector. However, the choice of z with
the highest rank is necessary for the following result to hold.

Proposition 5.9: (Modified swap learning results in no in-
consistency): Consider a 1-level hypergame between players
A and B. Suppose B takes an action which shifts the outcome
from xi to xj , where xi �PBA

xj . Then, under the modified
swap learning, outcomes xi and xj are perceived by A,
respectively, as unstable and sequentially rational for player
B in (PAA,MSwA

xi,xj
(PBA)).

Proof: By Definition 5.8, we need to consider three
cases. If xi ∈ Seqc

B(PAA,SwA
xi,xj

(PBA)) and xj ∈
SeqB(PAA,SwA

xi,xj
(PBA)), the result holds trivially. If

xi, xj ∈ Seqc
B(PAA,SwA

xi,xj
(PBA)), then the action of

SwA
w,xj

does not have any impact on the stability of xi.
Note that the rank of xj in SwA

w,xj
◦SwA

xi,xj
(PBA) is lower

than in SwA
xi,xj

(PBA). Moreover, by Definition 5.6, for each
improvement perceived for B in (PAA,MSwA

xi,xj
(PBA)),

there exists a sanction perceived by A, since w has the
lowest rank among all outcomes {wy | y ∈ IBA

xj
}. Thus

we conclude that xj is perceived as sequentially rational
for B in (PAA,MSwA

xi,xj
(PBA)). Finally, suppose xi, xj ∈

SeqB(PAA,SwA
xi,xj

(PBA)). The action of SwA
xi,z does not

have any impact on the stability of xj (note that xi, xj are
preferred by A to z in SwA

xi,xj
(PBA)). Moreover, since z is

the outcome with highest rank in SwA
xi,xj

(PBA) which is an
improvement from xj for A, the improvement xj from xi is
perceived as sanction free in (PAA,MSwA

xi,xj
(PBA)) for B.

Therefore, xi is unstable in (PAA,MSwA
xi,xj

(PBA)).
Remark 5.10: (No change of action by the opponent): Con-

sider the case when B does not change its action and hence
xj = xi. If xi was perceived by A as sequentially rational,
then no inconsistency arises. On the contrary, if A perceived
xi as unstable for B, then an inconsistency arises with the
observation that xi is sequentially rational for B. Player A
can still use the modified swap map to make her perception
consistent. According to Definition 5.8, this case corresponds
to the second bullet. After the modified swap update, xi is
perceived by A as sequentially rational for B, resolving the
inconsistency. •

Remark 5.11: (The case of multiple observations): The
modified swap update method can also be extended to the case

of multiple observations. Since the perception of players about
the stability of the outcomes can change along the evolution, in
our definition of the modified swap map MSwA

OBA
, players

only remove inconsistencies related to the last action taken
by their opponents. After implementing the modified swap
update on the latest preference vector using the last observed
action, the player uses SwA

OBA
to make her preference vector

compatible with OBA. •
Example 5.12: (Consistent perception under modified swap

update): Consider a 1-level hypergame H1 = {H0
A,H0

B} be-
tween A and B with outcome set Sotcm = {x1, x2, x3, x4}. Let

PAA = (x2, x3, x1, x4)T , PBA = (x2, x3, x1, x4)T ,

PBB = (x1, x3, x2, x4)T , PAB = PAA

Figures 3(a) and (b) show the H-digraphs associated to these
hypergames. Initially, suppose A takes the action πA(x2) and

x1

��

// x2

x3 x4

OO

oo

(a)

x1

��

x2
oo

x3 x4

OO

oo

(b)

x1

��

x2
oo

x3 x4

OO

oo

(c)

Fig. 3. H-digraphs associated to (a) H0
A, (b) H0

B , and (c) H0
A after applying

MSwA
x1,x1

, respectively.

B takes the action πB(x1) and thus the first outcome is x1.
Suppose players play this game sequentially and B is the first
one to move. Based on her preferences, B does not take any
action from x1. Hence, A observes that x1 is sequentially
rational for B, unlike its initial perception. If A uses swap
learning (the identity map in this case), this will result in an
inconsistent perception. However, if A uses modified swap
learning, then MSwA

x1,x1
(PBA) = (x1, x3, x2, x4)T , which

is consistent with the action taken by B. Figure 3(c) shows
the new H-digraph for A, which coincidentally matches the
one associated to H0

B . •

C. Decreasing misperception via modified swap learning

In general, the modified swap learning method is not
guaranteed to decrease the misperception function. This is
a consequence of the fact that player A is convinced that
any inconsistency is due to her lack of knowledge about B’s
game, whereas indeed such inconsistencies may be due to B’s
misperception about A’s game. The following result shows
that, under the assumption that B has perfect information
about A’s game and always chooses the sequentially rational
outcome, then A, using the modified swap learning method,
decreases her misperception in the sense of Definition 4.6,
while preventing inconsistency in her perceptions.

Theorem 5.13: (Misperception function and modified swap
learning): Consider a 1-level hypergame between players A
and B, where PAB = PAA. Suppose B takes an action which
changes the outcome from xi to xj , where xi �PBA

xj . If xj

is perceived as sequentially rational in (PAA,SwA
xi,xj

(PBA)),
then the misperception function LBA does not increase under
modified swap learning.
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Proof: If xi ∈ Seqc
B(PAA,SwA

xi,xj
(PBA)), since xj ∈

SeqB(PAA,SwA
xi,xj

(PBA)), the result follows from The-
orem 4.7 since, in this case, the actions of the modified
swap map and the swap map coincide. Otherwise, suppose
xi ∈ SeqB(PAA,SwA

xi,xj
(PBA)) and let z be given as

in Definition 5.8. By Lemma 5.7, z ∈ Sotcm|πB(xj) is an
improvement from xj for player A in (PAA,SwA

xi,xj
(PBA)).

Note that necessarily

rank(z,SwA
xi,xj

(PBA)) > rank(xi,SwA
xi,xj

(PBA)),

since otherwise, xj would be perceived as a sanction-free
improvement for B from xi in (PAA,SwA

xi,xj
(PBA)) and

thus xi would be unstable for B in (PAA,SwA
xi,xj

(PBA)),
a contradiction. The outcome xi is unstable for B in H0

B and
there exists an improvement xj from xi for B in H0

B without
any sanction by player A in H0

B . Since, by assumption, PAB =
PAA, we deduce that rank(z,PBB) < rank(xi,PBB), other-
wise xi would be sequentially rational for B in H0

B . Thus, by
Theorem 4.7, the function LBA does not increase.

If the assumptions of Theorem 5.13 hold at every step, then
one can establish a similar result to Theorem 4.9 regarding the
convergence of the perceptions under modified swap learning.

VI. HOW DO CHANGES IN PERCEPTION AFFECT THE
H-DIGRAPH?

Here, we study the effect that the changes in the play-
ers’ perceptions have in the structure of their respective H-
digraphs. In contrast to the previous discussion, we study the
impact in the preferences on the whole set of outcomes, instead
of only on the outcomes that are swapped. One byproduct
of this study is computational efficiency for regenerating an
H-digraph after changes have occurred. We only consider
changes in the preference vectors due to a swap update since
the effect of any learning mechanism can be described as a
composition of swaps.

Let us introduce some notation. We denote by GH0
A
(0) the

initial H-digraph associated to player A’s hypergame. Suppose
at round l ∈ Z≥1 the outcome changes from x(l) to x(l + 1)
by an action of B. If A does not change the order of these two
outcomes, then the H-digraph remains the same. If, instead, A
swaps the order of the two outcomes to update her perception
about B, then a new H-digraph GH0

A
(l + 1) is formed. For

convenience, we denote by N in
l (x) and N out

l (x), respectively,
the set of in- and out-neighbors of x ∈ Sotcm in GH0

A
(l). In this

discussion, the term ‘new hypergame’ refers to the hypergame
associated to A’s new perception once a change has been done.
To study the changes of the H-digraph, it is enough to describe
how the in- and out-neighbors of each outcome change. The
following result captures the outcomes whose in-neighbors are
not affected by the changes in A’s perception.

Proposition 6.1: (Sufficient conditions for invariance of in-
neighboring structure of an outcome): Suppose player B takes
an action that changes the outcome from x(l) to x(l +1). Let

MBA(x(l), x(l + 1)) = {y ∈ Sotcm |
x(l) �PBA(l) y �PBA(l) x(l + 1)}.

If y /∈ (MBA(x(l), x(l+1))∩Sotcm|πA(x(l)))∪Sotcm|πB(x(l))∪
Sotcm|πB(x(l+1)), then N in

l (y) = N in
l+1(y).

Proof: We start by showing that the statement holds
for y /∈ Sotcm|πA(x(l)) ∪ Sotcm|πB(x(l)) ∪ Sotcm|πB(x(l+1)).
Figure 4(a) shows such an outcome y in a generic H-digraph.
Let z ∈ N in

l (y). If z ∈ Sotcm|πA(y), then y is an improvement

x(ℓ) x(ℓ+1)

z

z

y

(a)

x(ℓ) x(ℓ+1)z zz

zz

yy

(b)

Fig. 4. Part of an H-digraph GH0
A

, where A and B play rows and columns,
respectively. (a) shows a case where y /∈ Sotcm|πA(x(l)) ∪ Sotcm|πB(x(l)) ∪
Sotcm|πB(x(l+1)) and (b) shows cases where y ∈ Sotcm|πA(x(l)) with
y �PBA(l) x(l) or y ≺PBA(l) x(l + 1).

from z for player B in the hypergame (PAA,PBA(l)) without
any sanction of player A. Since, by assumption, z 6= x(l),
x(l + 1), player B is also perceived to have an improvement
y from z, with respect to the preference vector PBA(l + 1),
without any sanction from player A; thus z ∈ N in

l+1(y). Now
suppose z ∈ Sotcm|πB(y). Since, by assumption, the ranking
of the outcomes in Sotcm|πA(y) is the same with respect to
PBA(l) and PBA(l + 1), player A still has an improvement
y from z, with respect to the preference vector PAA, without
any perceived sanction from player B; thus z ∈ N in

l+1(y). This
proves that N in

l (y) ⊆ N in
l+1(y). A similar argument shows the

converse inclusion; thus N in
l (y) = N in

l+1(y).
To complete the proof, we show that if y ∈ Sotcm|πA(x(l))

such that y �PBA(l) x(l) or y ≺PBA(l) x(l + 1), then
N in

l (y) ⊆ N in
l+1(y), see Figure 4(b). Let z ∈ N in

l (y). If
z ∈ Sotcm|πA(y), since by assumption y �PBA(l) x(l) or
y ≺PBA(l) x(l + 1), the possible sanctions of player A
against the perceived improvement y of player B from z stay
the same after swapping x(l) and x(l + 1), and therefore
z ∈ N in

l+1(y). If z ∈ Sotcm|πB(y), since y �PBA(l) x(l) or
y ≺PBA(l) x(l+1), the perceived sanctions of player B are the
same in hypergames (PAA,PBA(l)) and (PAA,PBA(l + 1));
thus we conclude that z ∈ N in

l+1(y). A similar argument shows
that the converse holds, yielding N in

l (y) = N in
l+1(y).

Next, we identify the outcomes whose out-neighbors in the
H-digraph do not change.

Proposition 6.2: (Sufficient conditions for invariance of out-
neighboring structure of an outcome): Suppose player B
takes an action that changes the outcome from x(l) to
x(l + 1). Let xmin

AA = argminz∈{x(l),x(l+1)}{rank(z,PAA)},
and xmax

AA = argmaxz∈{x(l),x(l+1)}{rank(z,PAA)}. If y /∈
MBA(x(l), x(l + 1)) and any of the following holds,

(i) y �PAA
xmin

AA;
(ii) y ≺PAA

xmax
AA and y /∈ Sotcm|πB(xmin

AA) ∪ Sotcm|πB(xmax
AA);

(iii) y ∈ Sotcm|πB(xmax
AA) and xmax

AA ∈ N out
l (y);

(iv) y ∈ Sotcm|πB(xmin
AA) and xmin

AA /∈ N out
l (y);

then N out
l (y) = N out

l+1(y).
Proof: We present the proof for the case x(l) �PAA

x(l + 1) (the proof for the case x(l + 1) �PAA
x(l) follows

similarly). Thus xmin
AA = x(l) and xmax

AA = x(l+1). We begin by
noting that if y /∈ MBA(x(l), x(l + 1)), any outcome which
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is perceived as a sanction-free improvement from y for B in
(PAA,PBA(l)) is also perceived as a sanction-free improve-
ment from y for this player in (PAA,PBA(l + 1)). Thus, to
complete the proof, we need to show that an outcome z is a
sanction-free improvement from y for A in (PAA,PBA(l)) if
and only if z is a sanction-free improvement from y for A in
(PAA,PBA(l+1)). We prove this result for each of the cases
identified in the statement. Let z be an improvement from y
for A in (PAA,PBA(l)).

Consider case (i). If z /∈ Sotcm|πA(x(l)), since the
new perceived improvements for B can only change in
Sotcm|πA(x(l)), B has a perceived sanction against the improve-
ment z from y for A in (PAA,PBA(l)) if and only if such
sanction exists in (PAA,PBA(l + 1)). If z ∈ Sotcm|πA(x(l)),
since y �PAA

x(l), the perceived sanctions of B against the
improvement z from y are the same in (PAA,PBA(l)) and
(PAA,PBA(l + 1)).

Consider case (ii). Since y /∈ Sotcm|πB(x(l)) ∪
Sotcm|πB(x(l+1)), we have that z 6= x(l), x(l + 1). If
z �PBA(l) x(l) or z ≺PBA(l) x(l + 1), then it is clear that
there exists a perceived sanction against the improvement
z of A in (PAA,PBA(l)) if and only if such a sanction
exists against this improvement in (PAA,PBA(l + 1)). Next,
suppose x(l) �PBA(l) z �PBA(l) x(l + 1). Note that the
only new perceived improvement from z for B is x(l + 1)
and since y ≺PAA

x(l + 1), this does not affect the set of
sanction-free improvements from y.

Consider case (iii). If z 6= x(l + 1), then, since the
new perceived improvements of B can only change in
Sotcm|πA(x(l)), B has a perceived sanction against the im-
provement z from y for A in (PAA,PBA(l)) if and only
if such sanction exists in (PAA,PBA(l + 1)). By assump-
tion, x(l + 1) ∈ N out

l (y), i.e., there exists no sanction of
B against the improvement x(l + 1) from y for A. Since
rank(x(l + 1),PBA(l + 1)) < rank(x(l + 1),PBA(l)), we
conclude that x(l + 1) ∈ N out

l+1(y).
Finally, consider case (iv). If z 6= x(l), then, since

the new perceived improvements of B can only change in
Sotcm|πA(x(l)), B has a perceived sanction against the improve-
ment z from y for A in (PAA,PBA(l)) if and only if such
sanction exists in (PAA,PBA(l + 1)). It remains to show that
x(l) /∈ N out

l+1(y). This holds since rank(x(l),PBA(l + 1)) >
rank(x(l),PBA(l)) and x(l) /∈ N out

l (y).
Propositions 6.1 and 6.2 give necessary conditions for an

outcome to have different in- or out-neighbors under a change
in A’s perception about B. These results are important in the
sense that B, without having access to the belief structure of A,
can a priori establish which outcomes are guaranteed not to
be affected in A’s perception by an action of B. Conversely, if
an outcome belongs to either one of the sets identified in the
results, it is possible for A to update her belief structure in such
a way that the neighboring structure of the outcome changes.
Therefore, the results capture the best conclusion that B can
draw without having access to the belief structure of A.

Remark 6.3: (Reducing the complexity of recomputing H-
digraphs): A consequence of Proposition 6.1 is the simpli-
fication in the complexity of computing the new H-digraph
that results from the changes in A’s perception. Assuming the

original H-digraph is available, one only needs to compute the
changes in the in-neighboring structure of the outcomes char-
acterized in Proposition 6.1. The number of these outcomes
is O(2n + m), where n and m are the number of actions
available to A and B, respectively. Therefore, the complexity
of modifying the H-digraph is O(nm(2n + m)), which is
smaller that the complexity of computing it from scratch, cf.
Lemma 2.12. •

Next, we turn our attention to the outcomes whose in- and
out-neighbors are susceptible of change. Since the new out-
neighbors can be identified via the new in-neighbors, we only
study how the in-neighboring structure changes.

Theorem 6.4 (Changes of the in-neighboring structure):
Suppose player B takes an action that changes the outcome
from x(l) to x(l + 1). The following holds,

(i) if y ∈ Sotcm|πB(x(l)), then N in
l+1(y) ⊆ N in

l (y);
(ii) if y ∈ Sotcm|πB(x(l+1)), then N in

l (y) ⊆ N in
l+1(y);

(iii) if y ∈MBA(x(l), x(l + 1)) ∩ Sotcm|πA(x(l)), then
(a) x(l) ∈ N in

l+1(y) if and only if x(l + 1) ∈ N in
l (y);

(b) for z ∈ Sotcm|πA(y), z ∈ N in
l (y)\{x(l +1)} if and

only if z ∈ N in
l+1(y) \ {x(l)};

(c) for z ∈ Sotcm|πB(y),
• if z �PAA

xmin
AA, then z /∈ N in

l (y) ∪N in
l+1(y);

• if z ≺PAA
xmax

AA, then z ∈ N in
l (y) if and only if

z ∈ N in
l+1(y);

• if xmin
AA �PAA

z �PAA
xmax

AA and xmin
AA = x(l),

then z /∈ N in
l+1(y);

• if xmin
AA �PAA

z �PAA
xmax

AA and xmin
AA = x(l+1),

then z /∈ N in
l (y).

Proof: We first show (i). Let y ∈ Sotcm|πB(x(l)) and z /∈
N in

l (y). Two things can happen:
• when z ∈ Sotcm|πB(y), two further possibilities might

arise. If y 6= x(l), then either y is not an improvement
from z for A or there is a perceived sanction of B against
the improvement y from z. Either of the cases will still
hold after swapping x(l) and x(l+1) by A, and therefore
z /∈ N in

l+1(y). If y = x(l), the same reasoning plus the
fact that rank(x(l),PBA(l)) < rank(x(l),PBA(l + 1))
implies that z /∈ N in

l+1(y).
• when z ∈ Sotcm|πA(y), then either y is not an improve-

ment from z for B or there is a perceived sanction by
A against the improvement y from z. Either of the cases
will still hold after the swap and thus z /∈ N in

l+1(y).
Next we show (ii). Let y ∈ Sotcm|πB(x(l+1)) and suppose z ∈
N in

l (y). Two things can happen:
• when z ∈ Sotcm|πB(y), two further possibilities might

arise. If y 6= x(l + 1), then it is clear that z ∈ N in
l+1(y),

since there is no new sanction for B for the improvement
y from z of A. If y = x(l + 1), the same reasoning
plus the fact that rank(x(l + 1),PBA(l)) > rank(x(l +
1),PBA(l + 1)) implies that z ∈ N in

l+1(y).
• when z ∈ Sotcm|πA(y), then, since the improvement y

from z for B remains free of sanctions, we conclude that
z ∈ N in

l+1(y).
Finally, we show part (iii). We start by (a). Suppose a
perceived improvement y from x(l + 1) exists for B in
the game (PAA,PBA(l)) without sanction of A. Then, since
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rank(x(l),PBA(l + 1)) = rank(x(l + 1),PBA(l)), the im-
provement y from x(l) with respect to the preference vector
PBA(l + 1) is also sanction free. The converse follows simi-
larly. Thus x(l) ∈ N in

l+1(y) if and only if x(l + 1) ∈ N in
l (y).

A similar argument shows that (b) holds. To end the proof,
we show that (c) holds. Let z ∈ Sotcm|πB(y). Note that if
y ≺PAA

z, all the statements hold trivially, since y is not
an improvement from z for A. Thus we need to prove the
results for y �PAA

z. If z �PAA
xmin

AA, then any improvement
y from z for A is sanctioned by the perceived improvement
x(l) from y for B in the game (PAA,PBA(l)). Similarly,
any improvement y from z for A is sanctioned by the
perceived improvement x(l + 1) from y for B in the game
(PAA,PBA(l+1)); thus z /∈ N in

l (y)∪N in
l+1(y). Now, suppose

z ≺PAA
xmax

AA. The only new perceived improvement from y
for B is x(l+1). Since x(l+1) �PAA

z, this improvement does
not create any new sanction against the improvement y from
z for A. Similarly, the only removed perceived improvement
from y for B is x(l). Since x(l) �PAA

z, x(l) is not a sanction
of B in (PAA,PBA(l + 1)); thus z ∈ N in

l (y) if and only if
z ∈ N in

l+1(y). Next, suppose xmin
AA �PAA

z �PAA
xmax

AA. If
xmin

AA = x(l), then x(l + 1) is a perceived sanction of B in
(PAA,PBA(l +1)) and thus z /∈ N in

l+1(y). If xmin
AA = x(l +1),

then x(l) is a perceived sanction of B in (PAA,PBA(l)) and
thus z /∈ N in

l (y). This completes the proof.
If the action taken by B is aligned with B’s game as

perceived by A, i.e., if x(l + 1) �PBA(l) x(l), then in Propo-
sitions 6.1 and 6.2, and in Theorem 6.4, the sets prescribed
by �PBA

are empty. This is consistent with the fact that no
change in A’s perception occurs in this case.

Remark 6.5 (Belief manipulation and deception): If B has
complete information about A’s game H0

A, then she can use
the H-digraph algorithm to study the changes in the
belief structure of A and possibly manipulate it. The results
presented above are helpful because they narrow down the
outcomes on which an action of B would have an effect
on. This opens the way for algorithmic approaches to belief
manipulation in hypergames. Also importantly, the results
capture the outcomes that B does not have direct control over
and for which she may need a sequence of actions, instead of
a single one, to manipulate A’s belief. •

Example 6.6 (An example of deception): Here, we present
an example in which one of the players has perfect information
about the other player’s game and is aware of this fact, while
the second player is trying to update his misperceptions by
observing the actions of her opponent. We show how the
player with perfect information may be able to deceive the
opponent. Our discussion follows the scenario presented in
Example 5.12. Note that in the 1-level hypergame introduced
in the example, B has perfect information about A but is
not aware of it. To model this fact, we consider instead a
2-level hypergame H2 = {H0

A,H1
B}, with H1

B = {H0
A,H0

B}.
In particular, PABB = PAAB = PAB = PAA, PBAB = PBA.
We assume that A is using a modified swap learning scheme
to update her perceptions about B. We show that B can
deceive A so that eventually A believes that the outcome x1,
the best outcome for B, is an equilibrium. As in Example 5.12,
the initial outcome is x1. B gets the first chance to move and

does not take any action. A observes this and uses modified
swap learning to update her perception as MSwA

x1,x1
(PBA) =

(x1, x3, x2, x4)T . Note that x1 is unstable for A and hence,
in her turn, takes an action that changes the outcome from x1

to x3. Outcome x3 is sequentially rational for B in H0
B , but

x1

��

x2
oo

x3 x4

OO

oo

(a)

x1 x2

x3
// x4

OO

(b)

x1 x2
oo

x3 x4

OO

(c)

Fig. 5. H-digraph of H0
A after applying (a) MSwA

x1,x1
, (b) MSwA

OBA(1),
and (c) MSwA

OBA(2), respectively.

B prefers the outcome x1 to x3. Therefore, with the intention
of deceiving A, B takes an irrational action that changes the
outcome to x4. Since there is no prior observation about B,
by adding this information to her observation set OBA(1), A
updates her perception about B as follows,

MSwA
OBA(1)(PBA) = MSwA

x3,x4

(
MSwA

x1,x1
(PBA)

)
= (x1, x4, x2, x3)T .

As a result, x1 becomes sequentially rational for A. Next, A
takes an action that changes the outcome to x2. Finally, B
takes an action that changes the outcome to x1. Therefore, A
changes her perception about B to

MSwA
OBA(2)(PBA) = MSwA

x2,x1

(
MSwA

OBA(1)(PBA))
)

= (x1, x4, x3, x2)T ,

where the map MSwA
x2,x1

is compatible with the observation
set OBA(1). Thus the hypergame converges to x1. This
evolution is shown in Figure 5(a)-(c). This example raises
some interesting questions, including the potential use by B
of general algorithmic techniques to perform deception and by
A of an analysis similar to the one in Section VI to detect the
possibility of deception. •

VII. CONCLUSIONS

We have studied adversarial situations where players’ per-
ceptions about the game they are involved in might be incon-
sistent and evolving. We have introduced the swap learning
method to allow players to incorporate into their beliefs the
information gained from observing the opponents’ actions.
A player that uses this method decreases her misperception
at the cost of potentially incurring in inconsistencies in her
perception. This has motivated the introduction of the modified
swap learning method, which yields consistent beliefs and,
under the assumption that the opponent has perfect information
and plays her best strategy, also decreases the misperception.
Using the newly introduced notion of H-digraph, we have
fully characterized how a player’s perception is affected by
the actions taken by other players.

The methods discussed here attribute the origin of the
misperception on the player doing the update. Numerous
avenues for future research appear open, including the explo-
ration of other learning schemes and extensions to high-level
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hypergames. Learning methods at the other extreme of the
spectrum, where inconsistencies are blamed on the opponents’
misperceptions, and in the middle of the spectrum, via the
construction of hypergames of higher level, are also worth
exploring. Another direction of research is the study of learn-
ing under imperfect observation and the use of probabilistic
methods to update the preference vectors for the opponents. It
is also worth investigating how misperception can be decreased
by departing from sequentially rational outcomes when the
cost of such irrational actions is not prohibitive. We also plan
to use our results on the evolution of H-digraphs in the design
of deception and deception-robust strategies.
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