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ABSTRACT

In this work, we explore the merits of joint source-channel
coding (JSCC) versus traditional tandem coding, which con-
sists of separately performing and concatenating source and
channel coding, from the point of view of the error exponent
(or reliability function). For a communication system with
a discrete stationary ergodic Markov (SEM) source Q and
a discrete channel W with additive SEM noise, we present
sufficient conditions under which the JSCC error exponent
E;(Q, W) strictly outperforms the tandem coding error ex-
ponent E1+(Q, W). We observe that these conditions are
satisfied by a large class of SEM source-channel pairs. Nu-
merical examples also indicate that E; (Q, W) can be nearly
twice as large as E1(Q, W) for many source-channel pairs
even though E; (Q, W) is upper bounded by 2E1(Q, W).

1. INTRODUCTION

In [8], we investigate the joint source-channel coding (JSCC)
error exponent E;(Q, W) for a communication system with
memory. Specifically, we derive an upper bound for E;(Q, W)
for a system consisting of a stationary ergodic Markov (SEM)
source Q and a channel W with additive SEM noise Pw (for
the sake of brevity, we hereafter refer to this channel as the
SEM channel W). We also examine Gallager’s lower bound for
E;(Q, W) [3] (which is valid for arbitrary source-channel pairs
with memory), when specialized to the SEM source-channel sys-
tem. By comparing the upper and lower bounds, we provide the
condition under which they coincide, hence exactly determining
E;(Q, W). We note that this condition holds for many SEM
source-channel pairs.

In this paper, we focus our interests on the comparison of
the JSCC error exponent E;(Q, W) with the tandem coding er-
ror exponent E7(Q, W), the exponent resulting by separately
performing and concatenating optimal source and channel cod-
ing. As in [6, 7], which consider the JSCC error exponent for
discrete memoryless systems, we investigate the situation where
E;(Q,W) > Er(Q, W) for the same SEM source-channel
pair. Indeed, as pointed out in [6], this inequality, when it holds,
provides a theoretical underpinning and justification for JSCC
design as opposed to the widely used classical tandem or sepa-
rate coding approach, since the former method provides a faster
exponential rate of decay for the error probability, which often
translates into substantial reductions in complexity and delay for
real world applications. We herein establish sufficient condi-
tions for which E;(Q, W) > Er(Q, W), and we observe via
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numerical examples that such conditions are satisfied by a wide
class of SEM source-channel pairs.

2. PRELIMINARIES

Without loss of generality, we only deal with first-order Markov
sources since any k-th order Markov source can be converted
to a first-order Markov source by k-step blocking it. For the
sake of convenience (since we will apply the following results
to both the SEM source and the SEM channel), throughout this
section, we use P to denote a first-order SEM source with finite
alphabet Y = {1,2,..., M} and transition distribution matrix
P 2 [pi;]arx a1 The entropy rate of source P is given by

H(P)=—> > mpi;log, pij,
t g
where m = (w1, w2, ..., mar) is the stationary distribution of the
stochastic matrix P.
A

For any o € [0, 1], we set P(a) = [p‘fj]MxM,
nonnegative and irreducible. The Perron-Frobenius Theorem [4]
asserts that the matrix P(«) possesses a maximal positive eigen-
value A\ (P) with positive (right) eigenvector

v(a) S (1 (), ..., UM(a))T

such that . vi(a) = 1. As in [5], we define the artificial

which is

Markov source P, with respect to the original source P such
L

that the transition matrix P(cv) £ [pi; ()] asxas, where
~ a b5 (@)
pl] (Oé) - )\a (P)Uz (Oé) ‘

(It can be easily verified that ) pi;j (o) = 1.) We emphasize
that the artificial source retains the stochastic characteristics (er-
godicity) of the original source because p;;(«) = 0 if and only
if p;; = 0. The entropy rate of the artificial Markov source is
hence given by

H(Po) = — Z Z mi()pij (a) log, pij(a),
where 7(a) £ (7(a)1, m(a)2, -y () ar) is the stationary dis-

tribution of the stochastic matrix P(c).
3. JSCC ERROR EXPONENT

Definition 1 A joint source-channel code with blocklength 7
for a discrete source with finite alphabet S described by the
sequence of k(n)-dimensional distributions Q 2 {Q*(™) .
S k(”)}f(’n):l and a discrete channel described by the sequence



of n-dimensional transition distributions W 2 {W (") ; x™ —
Y"}52, with common input and output alphabets X = Y =
{0,1,..., B — 1} is a pair of mappings: f,, : S¥™) — X™ and
On 1 YV — S,

In this work, we confine our attention to discrete channels
with (modulo B) additive noise of n-dimensional distribution
Pw 2 {Pélf ) Z"™}52,. The channels are described by

Y =X; ® Z; (modulo B),

where Y;, X; and Z; are the output, input and noise symbols
at time ¢, and Z; € Z = {0,1,..., B — 1} is independent of
Xi,©=1,2,...,n. The average probability of error of the code
(fn; (Pn) is

Pe(n) (Q(k(n)), W(n))
= 3T ST W fas)).

s yipn (¥)#s

Since k(n) source symbols are mapped to n channel symbols,
R: = k(n)/n source symbols/channel use is called the code’s
transmission rate, which is assumed to be independent of 7.

Definition 2 The JSCC error exponent E;(Q, W) for source
Q and channel W is defined as the largest number E for which
there exists a sequence of joint source-channel codes (fy, pn)
with
E < liminf — log, P Q") w ™)y,

n— oo n
Proposition 1 [8] For an SEM source Q and an SEM channel
‘W with noise Pw such that the entropy rates of Q and Pw
satisfy R¢H(Q) + H(Pw) < log, B, E;(Q, W) is positive
and determined exactly by

E;(Q,W) = plog, B—(1+p")

x log, {)\}L(Q))\ 1 (PW)]
T+p* I+p

B3

if p* < 1, where p™ satisfies the equation

RH (QHIP*) +H <Pw . ) = log, B.

1+p%
Otherwise (if p* > 1), the following bounds hold
E;(QW) < pilog,B—(1+p")
xlog, A" (QA_L_(Pw)],
T+p* 1+p

=

and

Es(Q,W) > log, B — 2logy[A] (Q)A; (Pw)].

1
2

Remarks:

1. For an SEM source-channel pair (Q,W) with R H(Q)+
H(Pw) >log, B, E;(Q,W) = 0.

2. As a byproduct, the lower and upper bounds of the error
exponent for SEM sources/channels directly follow from
Proposition 1, cf. [8].

3. It is also shown in [8] that the lower and upper bounds
for E;(Q, W) enjoy a form that is similar to Csiszar’s
bounds for discrete memoryless source-channel pairs [1],
which are expressed as the minimum of the sum of the
source error exponent and the lower/upper bounds of the
channel error exponent.

4. TANDEM CODING ERROR EXPONENT

Definition 3 A tandem code (f;;, ©7,) = (fen © fsn, Psn ©Pen)
for a discrete source QQ and a discrete channel W' is composed
independently of a (k(n), M) block source code (fsn, psn) de-
fined by for, : S¥™ — {1,2, ..., M} and ¢, : {1,2,..., M}
— S*™ with source code rate Rs = log, M /k(n) source
code bits/source symbol, and an (n, M) block channel code ( fen,
¢en) defined by fer : {1,2,..., M} — X" and per, : V" —
{1,2,..., M} with channel code rate R. = log, M /n source
code bits/channel use, where “o” denotes composition and R,
and R, are independent of n.

The transmission rate for the tandem code is R; = k(n)/n =
R./R. source symbols/channel use. The code’s average error
probability is given by

P Q) ()
= > Q") Y W)

s yips (¥)#s

Definition 4 The tandem error exponent E1(Q, W) for source

Q and channel W is defined as the largest number E for which
there exists a sequence of tandem codes (f,;, ¢}, ) such that

~ 1
E < liminf —= log, P (Q®* ™) W (™),
n— 00 n
Since the tandem coding exponent results from separately
performing and concatenating optimal source and channel cod-
ing, it can be easily shown that

Er(Q,W) = supmin{Rte <R£’Q> ,E(R,W)} , (D
R t

where e(R, Q) and E(R, W) are the source and channel error
exponents, respectively. To evaluate E7(Q, W) for an SEM
source-channel pair Q and W, we recall the fact that e(R, Q)
is 0 for R < H(Q), strictly increasing in H(Q) < R <
log, Ao(Q) and infinity for R > log Ao (Q)," while E(R, W) is
decreasing in R, and vanishes at R = C(W), where C(W) =
log, B—H (Pw ) is the capacity of the SEM channel W. There-
fore, if Rie(log, Ao(Q), Q) > E(R:log, Ao(Q), W), then
the graphs of R:e (R%, Q) and E(R, W) must have exactly
one intersection R, and by (1)

Er(Q,W) = Ree (% Q) = E(Ro, W).

If Ree (log, A0(Q), Q) < E(R¢log, Ao(Q), W), then there
is no intersection between R;e (}%, Q) and E(R, W). In this
case, it follows by (1) that

Er(Q, W) = E(R;log, Mo(Q), W).

In general, we know that E;(Q, W) > Er(Q, W) since
by definition tandem coding is a special case of JSCC. Mean-
while, Proposition 1 states that F;(Q, W) = E7(Q, W) =0
if RyH(Q) > C(W) for SEM source-channel pairs.

Tt can be shown that log, A\o(Q) < logs |S| with equality iff the
stochastic matrix @ is strictly positive.



We are hence interested in determining the conditions for
which E;(Q, W) > Er(Q,W) when R:H(Q) < C(W).
Although both E;(Q, W) and E(Q, W) are not always deter-
mined, we can still provide some sufficient conditions for which
E;(Q,W) > Er(Q, W). Before we proceed, we first show
that JSCC exponent can at most be equal to double the tandem
coding exponent for SEM source-channel systems.

Theorem 1 For an SEM source Q and an SEM channel W, the
JSCC exponent is upper bounded by

EJ(Q: W) < 2ET(Q7 W)

Proof: 1t can be shown as in [1] (by introducing Markov types
[2]) that for an SEM source Q and an SEM channel W, the
JSCC error exponent satisfies

EAQW) <ujn [Ree (1,Q) + ERW)|, @

where e(R, Q) is the source error exponent for Q and E(R, W
is the channel error exponent for W. We know that R.e R% ,Q

is an increasing function when R < Ry log, Ao(Q) and is infin-
ity when R > R;log, Ao(Q), and E(R, W) is a decreasing
function of R. We thereby denote
the rate satisfying Rte(g—t", )= E(R,, W),
poa ) iR (log, 20(Q), Q) > E(R:log; 2o(Q), W),
R; 10g2 )‘O(Q):
if Ree (logy 20(Q), Q) < E(R¢log, Mo(Q), W),

and according to (1) we can always write that
Er(Q, W) = E(Ro, W).

Suppose the minimum of (2) is attained at R,,,; then we have

E5(Q,W) Rie (%,Q) + E(Rm, W)

2 Re (%,Q) + E(R., W)
t

(Cg) 2E(R,, W)
= 2Er(Q,W),
where equality in (a) holds if R,,, > R.,, where
Re, £log, B — H(Pw,)

is the critical rate of the SEM channel. Equality in (b) holds iff
R.. = R,, and equality in (c) holds iff Rie (log, A0(Q), Q) >
E(Rt 10g2 )\o(Q),W) O

5. SUFFICIENT CONDITIONS FOR WHICH JSCC
OUTPERFORMS TANDEM CODING

For an SEM source Q, if its entropy rate is equal to log, Ao(Q),
then its error exponent is reduced to

B 0, if R <log,Ao(Q)
e(R,Q) = { 400, ifR> lzogz Ao(Q).

In this case, the source is incompressible and only channel cod-
ing is performed in both JSCC and tandem coding; as a result,
E;(QW) = Br(Q,W) = (R log, \o(Q), W). Thus,
we assume in the rest of the section that H(Q) < log, Ao(Q)
and R:H(Q) < C(W) =log, B — H(Pw). We also assume
that the source and channel are both SEM.

Theorem 2 If R;H (Q%) + H <13w1> > log, B, then
i
E;(Q,W) > Er(Q,W).

Theorem 2 states that if E;(Q, W) is determined exactly,
no matter whether E7(Q, W) is known or not, then the JSCC
exponent is larger than the tandem coding exponent.

Conversely, if E7(Q, W) is determined exactly, irrespec-
tive of whether E;(Q, W) is determined or not, the strict in-
equality also holds, as shown by the following result.

Theorem 3 (a). If ReH(Q) + H(Pw, ) > log B, then
2
E;(Q,W)>Er(Q,W).

(b). Otherwise, if R;H(Q) + H(Pw, ) < log B and

[V

Rilog Mo(Q) + H(Pw, ) > log B,

[V

there must exist a unique p; satisfying

RtH(Qﬁ)ZlOgB—H(iSW )

1
2
For such py, if
(1+p)R[H(Q 2 ) —log A 1 (Q)]
<log B —2log Ay (Pw),

then E_](Q, W) > ET(Q, W)

For the case when E;(Q, W) and E7(Q, W) are both un-
known, if the lower bound for E;(Q, W) is strictly bigger than
the upper bound for E7(Q, W), then E; (Q, W) > Er(Q, W)
automatically holds. This yields the following condition.

Theorem 4 Assume that (p1,p2) is a pair of finite numbers sat-
isfying

p1ReH ( ) (1+P1)10g2/\ m(Q)
—sz( . ) (14 p2)log: A 2 (Pw),

R.H (Q%)—i—H(Pw ) ):long.

+r1 T+po

If
log, B —2 10g2[)‘1§t (Q)A
2

> letH(Q%)—(l

1+py

(Pw)]

1
2

+ p1)Relog, i (Q),

P1
then E;(Q, W) > Er(Q, W).

We next illustrate Theorems 2-4 for the following simple
example. Suppose the transmission rate R; = 1. Consider a

binary SEM source Q and a ternary SEM channel W, both with
symmetric transition matrices given by

S

1-¢ ¢
and
p (1-p)/2 (1-p)/2
Pw = (1 p)/2 p 1 _p)/2 )
(1-p)/2 (1-p)/2 P



E (QW)=E,(Q,W)=0

E (QW)>E (Q,W)

.
0 0.05 0.1 0.15 0.2 0.25 0.3
Unkown p

Fig. 1. When is E;(Q, W) > E7r(Q, W) satisfied?
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Fig. 2. Comparison of E;(Q, W) and E7(Q, W) for p =
0.05.

such that 0 < p,q < 0.5.% If (¢, p) satisfies any one of the
conditions of Theorems 2-4, then E;(Q, W) > Er(Q, W).
The range for which the inequality holds is summarized in Fig. 1.

For the channel p = 0.05 and p = 0.025, we plot the JSCC
and tandem coding exponents against ¢ whenever they are ex-
actly determined, see Figs. 2 and 3. We see that for these source-
channel pairs, E;(Q, W) substantially outperforms E7(Q, W)
(indeed E;(Q, W) = 2E7(Q, W)) for a large class of (g, p)
pairs. For other SEM source-channel pairs (not necessarily with
binary source alphabets or ternary channel alphabets) and trans-
mission rates not equal to one, we have similar results; this in-
dicates that the JSCC exponent is strictly better than the tandem
coding exponent for a wide family of SEM systems.

6. CONCLUSION

We study the advantages of JSCC over the traditional tandem
coding by providing a systematic comparison of the JSCC expo-

2 Py is not the channel probability transition matrix; it is the transi-
tion matrix of the SEM channel noise.

0.25 T

—e— JSCC error exponent, p=0.025.
—— Tandem error exponent, p=0.025.
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Fig. 3. Comparison of E;(Q, W) and E7(Q, W) for p =
0.025.

nent E;(Q, W) and the tandem coding exponent E7(Q, W)
for communication systems with Markovian memory.

We first show that E;(Q, W) < 2E7(Q, W) and give
the conditions for equality, and we then provide sufficient con-
ditions for which E;(Q, W) > Er(Q, W). Numerical re-
sults indicate that the inequality holds for many SEM source-
channel pairs, and that E;(Q, W) = 2E7(Q, W) in many
cases, which means that for the same error probability P., JSCC
would require around half the delay of tandem coding, that is,

P. ~ 2—7’LET(Q,W) — 2—%E‘J(Q,W)
for n sufficiently large.
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