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ABSTRACT

In this work, we explore the merits of joint source-channel

coding (JSCC) versus traditional tandem coding, which con-

sists of separately performing and concatenating source and

channel coding, from the point of view of the error exponent

(or reliability function). For a communication system with

a discrete stationary ergodic Markov (SEM) source Q and

a discrete channel W with additive SEM noise, we present

sufficient conditions under which the JSCC error exponent

E

J

(Q;W) strictly outperforms the tandem coding error ex-

ponent E
T

(Q;W). We observe that these conditions are

satisfied by a large class of SEM source-channel pairs. Nu-

merical examples also indicate thatE
J

(Q;W) can be nearly

twice as large as E
T

(Q;W) for many source-channel pairs

even thoughE
J

(Q;W) is upper bounded by 2E
T

(Q;W).

1. INTRODUCTION

In [8], we investigate the joint source-channel coding (JSCC)

error exponent E
J

(Q;W) for a communication system with

memory. Specifically, we derive an upper bound for E
J

(Q;W)

for a system consisting of a stationary ergodic Markov (SEM)

source Q and a channel W with additive SEM noise P
W

(for

the sake of brevity, we hereafter refer to this channel as the

SEM channel W). We also examine Gallager’s lower bound for

E

J

(Q;W) [3] (which is valid for arbitrary source-channel pairs

with memory), when specialized to the SEM source-channel sys-

tem. By comparing the upper and lower bounds, we provide the

condition under which they coincide, hence exactly determining

E

J

(Q;W). We note that this condition holds for many SEM

source-channel pairs.

In this paper, we focus our interests on the comparison of

the JSCC error exponent E
J

(Q;W) with the tandem coding er-

ror exponent E
T

(Q;W), the exponent resulting by separately

performing and concatenating optimal source and channel cod-

ing. As in [6, 7], which consider the JSCC error exponent for

discrete memoryless systems, we investigate the situation where

E

J

(Q;W) > E

T

(Q;W) for the same SEM source-channel

pair. Indeed, as pointed out in [6], this inequality, when it holds,

provides a theoretical underpinning and justification for JSCC

design as opposed to the widely used classical tandem or sepa-

rate coding approach, since the former method provides a faster

exponential rate of decay for the error probability, which often

translates into substantial reductions in complexity and delay for

real world applications. We herein establish sufficient condi-

tions for which E
J

(Q;W) > E

T

(Q;W), and we observe via

This work was supported in part by NSERC and PREA.

numerical examples that such conditions are satisfied by a wide

class of SEM source-channel pairs.

2. PRELIMINARIES

Without loss of generality, we only deal with first-order Markov

sources since any k-th order Markov source can be converted

to a first-order Markov source by k-step blocking it. For the

sake of convenience (since we will apply the following results

to both the SEM source and the SEM channel), throughout this

section, we use P to denote a first-order SEM source with finite

alphabet U = f1; 2; :::;Mg and transition distribution matrix

P , [p

ij

℄

M�M

. The entropy rate of source P is given by

H(P) = �

X

i

X

j

�

i

p

ij

log

2

p

ij

;

where � = (�

1

; �

2

; :::; �

M

) is the stationary distribution of the

stochastic matrix P .

For any � 2 [0; 1℄, we set P (�) ,

�

p

�

ij

�

M�M

, which is

nonnegative and irreducible. The Perron-Frobenius Theorem [4]

asserts that the matrix P (�) possesses a maximal positive eigen-

value �
�

(P) with positive (right) eigenvector

v(�) , (v

1

(�); :::; v

M

(�))

T

such that
P

i

v

i

(�) = 1. As in [5], we define the artificial

Markov source eP
�

with respect to the original source P such

that the transition matrix eP (�) , [ep

ij

(�)℄

M�M

, where

ep

ij

(�) ,

p

�

ij

v

j

(�)

�

�

(P)v

i

(�)

:

(It can be easily verified that
P

j

ep

ij

(�) = 1.) We emphasize

that the artificial source retains the stochastic characteristics (er-

godicity) of the original source because ep
ij

(�) = 0 if and only

if p
ij

= 0. The entropy rate of the artificial Markov source is

hence given by

H(

e

P

�

) = �

X

i

X

j

�

i

(�)ep

ij

(�) log

2

ep

ij

(�);

where �(�) , (�(�)

1

; �(�)

2

; :::; �(�)

M

) is the stationary dis-

tribution of the stochastic matrix eP (�).

3. JSCC ERROR EXPONENT

Definition 1 A joint source-channel code with blocklength n

for a discrete source with finite alphabet S described by the

sequence of k(n)-dimensional distributions Q , fQ

(k(n))

:

S

k(n)

g

1

k(n)=1

and a discrete channel described by the sequence



of n-dimensional transition distributions W , fW

(n)

: X

n

!

Y

n

g

1

n=1

with common input and output alphabets X = Y =

f0; 1; :::; B� 1g is a pair of mappings: f
n

: S

k(n)

�! X

n and

'

n

: Y

n

�! S

k(n).

In this work, we confine our attention to discrete channels

with (modulo B) additive noise of n-dimensional distribution

P

W

, fP

(n)

W

: Z

n

g

1

n=1

. The channels are described by

Y

i

= X

i

� Z

i

(modulo B);

where Y
i

, X
i

and Z

i

are the output, input and noise symbols

at time i, and Z
i

2 Z = f0; 1; :::; B � 1g is independent of

X

i

, i = 1; 2; :::; n. The average probability of error of the code

(f
n

; '

n

) is

P

(n)

e

(Q

(k(n))

;W

(n)

)

=

X

s

Q

(k(n))

(s)
X

y:'
n

(y) 6=s

W

(n)

(yjf
n

(s)):

Since k(n) source symbols are mapped to n channel symbols,

R

t

, k(n)=n source symbols/channel use is called the code’s

transmission rate, which is assumed to be independent of n.

Definition 2 The JSCC error exponent E
J

(Q;W) for source

Q and channel W is defined as the largest number E for which

there exists a sequence of joint source-channel codes (f

n

; '

n

)

with

E � lim inf

n!1

�

1

n

log

2

P

(n)

e

(Q

(k(n))

;W

(n)

):

Proposition 1 [8] For an SEM source Q and an SEM channel

W with noise P
W

such that the entropy rates of Q and P
W

satisfy R
t

H(Q) + H(P

W

) < log

2

B, E
J

(Q;W) is positive

and determined exactly by

E

J

(Q;W) = �

�

log

2

B � (1 + �

�

)

� log

2

�

�

R

t

1

1+�

�

(Q)�
1

1+�

�

(P

W

)

�

if �� � 1, where �� satisfies the equation

R

t

H

�

e

Q
1

1+�

�

�

+H

�

e

P

W

1

1+�

�

�

= log

2

B:

Otherwise (if �� > 1), the following bounds hold

E

J

(Q;W) � �

�

log

2

B � (1 + �

�

)

� log

2

[�

R

t

1

1+�

�

(Q)�
1

1+�

�

(P

W

)℄;

and

E

J

(Q;W) � log

2

B � 2 log

2

[�

R

t

1

2

(Q)�
1

2

(P

W

)℄:

Remarks:

1. For an SEM source-channel pair (Q,W) withR
t

H(Q)+

H(P

W

) � log

2

B, E
J

(Q;W) = 0.

2. As a byproduct, the lower and upper bounds of the error

exponent for SEM sources/channels directly follow from

Proposition 1, cf. [8].

3. It is also shown in [8] that the lower and upper bounds

for E
J

(Q;W) enjoy a form that is similar to Csiszár’s

bounds for discrete memoryless source-channel pairs [1],

which are expressed as the minimum of the sum of the

source error exponent and the lower/upper bounds of the

channel error exponent.

4. TANDEM CODING ERROR EXPONENT

Definition 3 A tandem code (f

�

n

; '

�

n

) , (f

n

Æf

sn

; '

sn

Æ'

n

)

for a discrete source Q and a discrete channel W is composed

independently of a (k(n);M) block source code (f

sn

; '

sn

) de-

fined by f
sn

: S

k(n)

�! f1; 2; :::;Mg and '
sn

: f1; 2; :::;Mg

�! S

k(n) with source code rate R
s

, log

2

M=k(n) source

code bits/source symbol, and an (n;M) block channel code (f
n

;

'

n

) defined by f
n

: f1; 2; :::;Mg �! X

n and '
n

: Y

n

�!

f1; 2; :::; Mg with channel code rate R


, log

2

M=n source

code bits/channel use, where “Æ” denotes composition and R
s

and R


are independent of n.

The transmission rate for the tandem code isR
t

= k(n)=n =

R



=R

s

source symbols/channel use. The code’s average error

probability is given by

P

(n)

e

�

(Q

(k(n))

;W

(n)

)

=

X

s

Q

(k(n))

(s)
X

y:'�
n

(y) 6=s

W

(n)

(y j f
�

n

(s)):

Definition 4 The tandem error exponent E
T

(Q;W) for source

Q and channel W is defined as the largest number bE for which

there exists a sequence of tandem codes (f�
n

; '

�

n

) such that

b

E � lim inf

n!1

�

1

n

log

2

P

(n)

e

�

(Q

(k(n))

;W

(n)

):

Since the tandem coding exponent results from separately

performing and concatenating optimal source and channel cod-

ing, it can be easily shown that

E

T

(Q;W) = sup

R

min

�

R

t

e

�

R

R

t

;Q

�

; E(R;W)

�

; (1)

where e(R;Q) and E(R;W) are the source and channel error

exponents, respectively. To evaluate E
T

(Q;W) for an SEM

source-channel pair Q and W, we recall the fact that e(R;Q)

is 0 for R < H(Q), strictly increasing in H(Q) � R �

log

2

�

0

(Q) and infinity forR > log �

0

(Q),1 whileE(R;W) is

decreasing in R, and vanishes at R = C(W), where C(W) =

log

2

B�H(P

W

) is the capacity of the SEM channelW. There-

fore, if R
t

e(log

2

�

0

(Q);Q) � E(R

t

log

2

�

0

(Q);W); then

the graphs of R
t

e

�

R

R

t

;Q

�

and E(R;W) must have exactly

one intersection R
o

and by (1)

E

T

(Q;W) = R

t

e

�

R

o

R

t

;Q

�

= E(R

o

;W):

If R
t

e (log

2

�

0

(Q);Q) < E(R

t

log

2

�

0

(Q);W), then there

is no intersection between R
t

e

�

R

R

t

;Q

�

and E(R;W). In this

case, it follows by (1) that

E

T

(Q;W) = E(R

t

log

2

�

0

(Q);W):

In general, we know that E
J

(Q;W) � E

T

(Q;W) since

by definition tandem coding is a special case of JSCC. Mean-

while, Proposition 1 states that E
J

(Q;W) = E

T

(Q;W) = 0

if R
t

H(Q) � C(W) for SEM source-channel pairs.

1It can be shown that log
2

�

0

(Q) � log

2

jSj with equality iff the
stochastic matrix Q is strictly positive.



We are hence interested in determining the conditions for

which E
J

(Q;W) > E

T

(Q;W) when R

t

H(Q) < C(W).

Although bothE
J

(Q;W) andE
T

(Q;W) are not always deter-

mined, we can still provide some sufficient conditions for which

E

J

(Q;W) > E

T

(Q;W). Before we proceed, we first show

that JSCC exponent can at most be equal to double the tandem

coding exponent for SEM source-channel systems.

Theorem 1 For an SEM sourceQ and an SEM channel W, the

JSCC exponent is upper bounded by

E

J

(Q;W) � 2E

T

(Q;W):

Proof: It can be shown as in [1] (by introducing Markov types

[2]) that for an SEM source Q and an SEM channel W, the

JSCC error exponent satisfies

E

J

(Q;W) � min

R

�

R

t

e

�

R

R

t

;Q

�

+E(R;W)

�

; (2)

where e(R;Q) is the source error exponent forQ andE(R;W)

is the channel error exponent forW. We know thatR
t

e

�

R

R

t

;Q

�

is an increasing function when R � R

t

log

2

�

0

(Q) and is infin-

ity when R > R

t

log

2

�

0

(Q), and E(R;W) is a decreasing

function of R. We thereby denote

R

o

,

8

>

>

<

>

>

:

the rate satisfying R

t

e(

R

o

R

t

; Q) = E(R

o

;W );

if R
t

e (log

2

�

0

(Q);Q) � E(R

t

log

2

�

0

(Q);W);

R

t

log

2

�

0

(Q);

if R
t

e (log

2

�

0

(Q);Q) < E(R

t

log

2

�

0

(Q);W);

and according to (1) we can always write that

E

T

(Q;W) = E(R

o

;W):

Suppose the minimum of (2) is attained at R
m

,; then we have

E

J

(Q;W)

(a)

� R

t

e

�

R

m

R

t

;Q

�

+E(R

m

;W)

(b)

� R

t

e

�

R

o

R

t

;Q

�

+E(R

o

;W)

()

� 2E(R

o

;W)

= 2E

T

(Q;W);

where equality in (a) holds if R
m

� R

r

, where

R

r

, log

2

B �H(P

W

1

2

)

is the critical rate of the SEM channel. Equality in (b) holds iff

R

m

= R

o

, and equality in (c) holds iff R
t

e (log

2

�

0

(Q);Q) �

E(R

t

log

2

�

0

(Q);W). �

5. SUFFICIENT CONDITIONS FOR WHICH JSCC

OUTPERFORMS TANDEM CODING

For an SEM source Q, if its entropy rate is equal to log

2

�

0

(Q),

then its error exponent is reduced to

e(R;Q) =

�

0; if R � log

2

�

0

(Q)

+1; if R > log

2

�

0

(Q):

In this case, the source is incompressible and only channel cod-

ing is performed in both JSCC and tandem coding; as a result,

E

J

(Q;W) = E

T

(Q;W) = E(R

t

log

2

�

0

(Q);W). Thus,

we assume in the rest of the section that H(Q) < log

2

�

0

(Q)

and R
t

H(Q) < C(W) = log

2

B �H(P

W

). We also assume

that the source and channel are both SEM.

Theorem 2 If R
t

H

�

e

Q
1

2

�

+H

�

e

P

W

1

2

�

� log

2

B, then

E

J

(Q;W) > E

T

(Q;W):

Theorem 2 states that if E
J

(Q;W) is determined exactly,

no matter whether E
T

(Q;W) is known or not, then the JSCC

exponent is larger than the tandem coding exponent.

Conversely, if E
T

(Q;W) is determined exactly, irrespec-

tive of whether E
J

(Q;W) is determined or not, the strict in-

equality also holds, as shown by the following result.

Theorem 3 (a). If R
t

H(Q) +H(

e

P

W

1

2

) � logB; then

E

J

(Q;W) > E

T

(Q;W):

(b). Otherwise, if R
t

H(Q) +H(

e

P

W

1

2

) < logB and

R

t

log �

0

(Q) +H(

e

P

W

1

2

) > logB;

there must exist a unique �
1

satisfying

R

t

H(

e

Q
1

1+�

1

) = logB �H(

e

P

W

1

2

):

For such �
1

, if

(1 + �

1

)R

t

[H(

e

Q
1

1+�

1

)� log �
1

1+�

1

(Q)℄

� logB � 2 log �
1

2

(P

W

);

then E
J

(Q;W) > E

T

(Q;W).

For the case when E
J

(Q;W) and E
T

(Q;W) are both un-

known, if the lower bound for E
J

(Q;W) is strictly bigger than

the upper bound forE
T

(Q;W), thenE
J

(Q;W) > E

T

(Q;W)

automatically holds. This yields the following condition.

Theorem 4 Assume that (�
1

,�
2

) is a pair of finite numbers sat-

isfying

8

>

>

>

>

>

<

>

>

>

>

>

:

�

1

R

t

H

�

e

Q
1

1+�

1

�

�R

t

(1 + �

1

) log

2

�
1

1+�

1

(Q)

= �

2

H

�

e

P

W

1

1+�

2

�

� (1 + �

2

) log

2

�
1

1+�

2

(P

W

);

R

t

H

�

e

Q
1

1+�

1

�

+H

�

e

P

W

1

1+�

2

�

= log

2

B:

If

log

2

B � 2 log

2

[�

R

t

1

2

(Q)�
1

2

(P

W

)℄

> �

1

R

t

H

�

e

Q
1

1+�

1

�

� (1 + �

1

)R

t

log

2

�
1

1+�

1

(Q);

then E
J

(Q;W) > E

T

(Q;W).

We next illustrate Theorems 2-4 for the following simple

example. Suppose the transmission rate R
t

= 1. Consider a

binary SEM source Q and a ternary SEM channel W, both with

symmetric transition matrices given by

Q =

�

q 1� q

1� q q

�

and

P

W

=

2

4

p (1� p)=2 (1� p)=2

(1� p)=2 p (1� p)=2

(1� p)=2 (1� p)=2 p

3

5

;
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Fig. 1. When is E
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(Q;W) satisfied?
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Fig. 2. Comparison of E
J

(Q;W) and E

T

(Q;W) for p =

0:05.

such that 0 < p; q < 0:5.2 If (q; p) satisfies any one of the

conditions of Theorems 2-4, then E
J

(Q;W) > E

T

(Q;W).

The range for which the inequality holds is summarized in Fig. 1.

For the channel p = 0:05 and p = 0:025, we plot the JSCC

and tandem coding exponents against q whenever they are ex-

actly determined, see Figs. 2 and 3. We see that for these source-

channel pairs,E
J

(Q;W) substantially outperformsE
T

(Q;W)

(indeed E
J

(Q;W) t 2E

T

(Q;W)) for a large class of (q; p)

pairs. For other SEM source-channel pairs (not necessarily with

binary source alphabets or ternary channel alphabets) and trans-

mission rates not equal to one, we have similar results; this in-

dicates that the JSCC exponent is strictly better than the tandem

coding exponent for a wide family of SEM systems.

6. CONCLUSION

We study the advantages of JSCC over the traditional tandem

coding by providing a systematic comparison of the JSCC expo-

2
P

W

is not the channel probability transition matrix; it is the transi-
tion matrix of the SEM channel noise.
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JSCC error exponent, p=0.025.
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Fig. 3. Comparison of E
J

(Q;W) and E

T

(Q;W) for p =

0:025.

nent E
J

(Q;W) and the tandem coding exponent E
T

(Q;W)

for communication systems with Markovian memory.

We first show that E
J

(Q;W) � 2E

T

(Q;W) and give

the conditions for equality, and we then provide sufficient con-

ditions for which E

J

(Q;W) > E

T

(Q;W). Numerical re-

sults indicate that the inequality holds for many SEM source-

channel pairs, and that E
J

(Q;W) t 2E

T

(Q;W) in many

cases, which means that for the same error probability P
e

, JSCC

would require around half the delay of tandem coding, that is,

P

e

� 2

�nE

T

(Q;W)

= 2

�

n

2

E

J

(Q;W)

for n sufficiently large.
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