
A Comparative Study of Burst-Noise CommuniationChannel Models*L. Zhong, F. Alajaji and G. TakaharaDepartment of Mathematis and StatistisQueen's UniversityKingston, Ontario K7L 3N6, CanadaEmail: flibo,fadyg�shannon.mast.queensu.a, takahara�glen.mast.queensu.aAbstrat | In a previous work [7℄, we introduedand studied the properties of a binary ommuniationhannel with memory whose additive noise proessis generated aording to a �nite queue. The queueoperates in two modes { a uniform mode and anon-uniform mode { resulting in uniform and non-uniform queue-based hannels, respetively. In thiswork, the apaities of the uniform and non-uniformqueue-based hannels are ompared analytially andnumerially with the apaity of the Gilbert-Elliottburst-noise hannel. We also onsider the problem of�tting our queue-based hannels to a typial binarymodulated orrelated Rayleigh fading hannel. Thisis ahieved by estimating the parameters of thequeue-based hannels that best haraterize the errorsequene generated by the Rayleigh fading hannel.Keywords: Channel modeling, binary hannels withadditive burst-noise, error statistis, apaity, orrelatedRayleigh fading hannel.1 IntrodutionIt is well known that the real-world ommuniationhannel has memory, often introduing noise distortionin a bursty fashion. In order to design e�etive ommu-niation systems for suh a hannel, it is important tothoroughly understand its behavior. This is ahievedvia hannel modeling, where the primary objetive isto provide a model whose properties are both omplexenough to losely apture the real hannel statistialharateristis and simple enough to allow mathemati-ally tratable system analysis.In an attempt to address the above hallenging problem,Gilbert initiated in [4℄ the study of �nite-state Markov�This work was supported in part by NSERC of Canada and PREAof Ontario.
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- -- -HHHHHHj������* HHHHHHj������*0 01 1 0 01 11� pG1� pGpG 1� pB1� pBpBFigure 1: The Gilbert-Elliott hannel model.models for hannels with memory by proposing a simpletwo-state (with one good state and one bad state) model.In the bad state, the hannel behaves like a binary sym-metri hannel (BSC) with a high rossover probability,and in the good state, it behaves like a noiseless BSC.The transitions between the states are governed by aMarkov hain. Elliott [2℄ then suggested a modi�ationto Gilbert's model by introduing a parameter, whihdenotes the probability of orret reeption when thehannel is in the good state. The Gilbert-Elliott hannel(GEC) is thus a time varying BSC as designed in Fig. 1,where pG and pB are the rossover probabilities inthe good and bad states, respetively, and g and b arethe Markov hain transition probabilities. In a relatedwork, Mushkin and Bar-David introdued a methodfor alulating tight upper and lower bounds for theapaity of the GEC [5℄. Furthermore, Pimentel andBlake expressed the parameters of the GEC as a simplefuntion of the probability of the basis sequenes andused the GEC to model a nonfrequeny-seletive Riianfading hannel [6℄.In this paper, we extend our investigation of a binary



ommuniation hannel with memory introdued in [7℄.The additive noise proess of the hannel is based on a�nite queue with length M . The hannel is onsideredin two ases: a uniform queue-based mode (UQBC)where we experiment on the ells of the queue withequal probability 1=M , and a non-uniform queue-basedmode (NQBC) where we experiment on the ells ofthe queue with di�erent probabilities, q1 on ell 1 andql = (1 � q1)=(M � 1), for ells l = 2; 3; : : :M . It wasshown in [7℄ that the resulting binary noise proessfZig is a stationary ergodi Mth-order Markov sourewith the property that eah noise sample Zi dependsonly on the sum of the previous M noise samples(Zi�1; Zi�2; � � � ; Zi�M ). The UQBC is ompletely har-aterized by three parameters (", p and M), while theNQBC is desribed by four parameters (", p, M and q1)[7℄. It was also demonstrated in [7℄ that for the same biterror rate, orrelation oeÆient and memory, the UQBCis atually statistially equivalent to the �nite-memoryPolya ontagion hannel introdued in [1℄.This paper has the following organization. Setion 2ompares the apaities of the UQBC and the NQBCwith the apaity of the GEC analytially and numer-ially. The problem of �tting our queue-based hannelsto a typial binary modulated orrelated Rayleigh fadinghannel (RayFC) is onsidered in Setion 3. We estimatethe parameters of the queue-based hannel models thatbest haraterize the error sequene generated by theRayFC and ompare the queue-based hannel modelswith the GEC model based on two distane measures. Asummary is given in Setion 4.2 Capaity Comparisons with the GEC2.1 UQBC vs GECWe ompare the apaity CGEC of the GEC with theapaity CMUQBC of the UQBC. CGEC an be omputedby evaluating the (asymptotially) tight upper and lowerbound introdued in [5℄. Unlike the GEC, the apaity(as well as the blok transition probability) of the UQBCadmits a simple analytial expression [7℄ in terms of itsthree parameters (", p and M). We �rst get the followingtheorem.Theorem 1 For M = 1, and for the same bit errorrate (BER) and noise orrelation oeÆient (Cor),CGEC � CM=1UQBC .When M > 1, only numerial results are obtained. Forexample, the apaity CM=2UQBC of the UQBC is slightlylarger than CGEC for Cor = 0:1 (see Figure 2) and

CM=2UQBC is less than CGEC for Cor = 0:9 (see Figure 3).Thus, for the same BER, the apaity of the UQBCan be either smaller or bigger than that of the GEC,depending on the value of Cor. To see the e�et of Cormore learly, we plot apaity vs Cor in Figure 4 for theGEC and UQBC hannels. From Figure 4, we see thatCM=2UQBC < CGEC when Cor > 0:87 and CM=2UQBC � CGECwhen Cor � 0:87.2.2 NQBC vs GECWe next ompare numerially the apaity CM=2UQBC ofthe UQBC and the apaity CGEC of the GEC withthe apaity CM=2NQBC of the NQBC (with all hannelshaving the same BER and Cor). The results of apaityvs BER are shown in Figures 2 and 3. At a low Cor(Cor = 0:1), the three hannels have almost identialapaities. For a high Cor (Cor = 0:9), the NQBC hasthe smallest apaity. Additional results are providedin Table 1. Finally, we remark that in the extreme asewhere the ell probability q1 tends to one, we get thefollowing two results.Theorem 2 For q1 ! 1, for the same BER andCor,and for any M = 1; 2; � � �,CMNQBC � CM 0UQBC ; M 0 = 1; 2; � � � : (1)Proof Eq. (1) an be obtained diretly by observ-ing that NQBC (with any value of M) onverges tothe UQBC with memory M 0 = 1 as q1 ! 1 [7℄ (soCMNQBC ! CM 0=1UQBC as q1 ! 1) and from the fat thatmemory inreases apaity for hannels with stationaryergodi Markov additive noise (CM 0=1UQBC � CM 0UQBC for allM 0 � 1). �Theorem 3 For q1 ! 1, for the same BER andCor,and for any M = 1; 2; � � �,CMNQBC � CGEC : (2)Proof Eq. (2) an be obtained diretly from Theorem1 and Theorem 2 (with M 0 = 1). �The above two theorems are illustrated in Figure4 where q1 = 0:999. Indeed, we remark that theurves for CM=2NQBC and CM=1UQBC are idential and thatCM=2NQBC � CM=2UQBC and CM=2NQBC � CGEC (exat apaityvalues for Cor = 0:1 and 0:9 are given in Table 1).



3 Modeling of Correlated RayFCWe onsider modeling a binary orthogonal frequeny-shift keying (FSK) modulated orrelated RayFC usingour queue-based hannels. The same RayFC was studiedin [6℄. This is ahieved by deriving an expression for theprobability of an error sequene of length n for the over-all RayFC (used with non-oherent demodulation) andhoosing the parameters of the queue-based hannels thatyield the losest statistial behavior. For example, if theUQBC is used, we need to hoose the UQBC parame-ters that minimize the Kullbak-Leibler distane (or di-vergene) D(PMUQBC k PRayFC)4= Xen2f0;1gn PMUQBC(en) log PMUQBC(en)PRayFC(en) ; (3)and the variational distaned�(PMUQBC(en); PRayFC(en))= Xen2f0;1gn j PMUQBC(en)� PRayFC(en) j; (4)where PMUQBC(en) is the blok transition probability ofthe UQBC [7℄. PRayFC(en) is the probability of an errorsequene of length n generated by the orrelated RayFC,obtained diretly from Eq. (44) [6℄ (with KR = �1 dB),and is expressed byPRayFC(en) = 1Xl1=e1 � � � 1Xln=en nYk=1 (�1)lk+eklk + 1 !� 1det(I + EsN0 �C � F ) ; (5)where I is the identity matrix, F is a diagonal matrixde�ned as F = diag( l1l1+1 ; � � � ; lnln+1 ) and �C is the normal-ized ovariane matrix with entries �Cij = J0(2�fDT ji�jj), 1 � i; j � n, where J0(x) = P1k=0(�1)k( xk2kk! )2 isthe zero-order Bessel funtion of the �rst kind, fD is themaximum Doppler frequeny experiened by the movingvehile, T is the symbol interval, Es is the symbol en-ergy and N0=2 denotes the variane per dimension of theadditive Gaussian noise [6℄.We onsider two ases by hoosing the normalizedDoppler frequeny fDT = 0:03 (whih is a representa-tive value for fast fading [6℄) and fDT = 10�4 (slow fad-ing) with the average signal-to-noise ratio Es=N0 equalto 15 dB. For these two ases, the evaluated parame-ters of the queue-based hannel models minimizing theKullbak-Leibler distane and the variational distanewhen n = 13 are given in Tables 2 and 3.

We also ompare the queue-based hannel models withthe GEC model [6℄ under the same above onditions. Weestimate the parameters of the GEC by �tting the orre-lated RayFC aording to the method mentioned in [6℄.The exat GEC parameter values are given in Tables 2and 3. The omparison is based on the Kullbak-Leiblerand variational distane measures between the probabil-ity of error sequenes generated by the model and theone generated by the RayFC. The smaller the values ofeah distane are, the better the model agrees with theRayFC.The omparison results, shown in Figures 5 and 6, areonsistent with respet to the two distane measures.In all ases the GEC model is the best approximationto the RayFC and the UQBC with M = 1 is the worstone. This an be explained by the fat that we havelimited the memory to M = 2 in our queue-basedhannel models while the GEC (whose noise proess is ahidden Markov soure) has in�nite memory. We expetthat the queue-based models will better approximatethe RayFC for larger values of M (whih neessitatethe use of larger values of the blok length n). Inthe ase of fast fading the NQBC with M = 2 doesslightly better than the UQBC with M = 2 (see Figures5 and 6). For slow fading an interesting situationours. The urves for the UQBC and the NQBC withM = 2 are almost idential (see Figures 7 and 8);this is due to the fat that in this ase the NQBC be-haves like the UQBC sine q1 is lose to 1=2 (see Table 3).4 SummaryIn this work we extended our investigation of a binaryburst-noise hannel based on a �nite queue. First, weompared the apaities of the UQBC and the NQBCwith the apaity of the GEC analytially and numer-ially. We observed that the apaity of the UQBC(CMUQBC) is smaller than that of the GEC (CGEC) forthe same BER and Cor when memory is 1. In the ex-treme ase where the ell probability q1 ! 1, we observedthat the apaity of the NQBC (CMNQBC) is smaller thanthat of the UQBC (CMUQBC) and that of the GEC (CGEC)for the same BER and Cor and for any memory.Finally, we onsidered the problem of �tting our queue-based hannels to a typial binary modulated orrelatedRayFC. We estimated the parameters of the queue-basedhannel models that best haraterize the error sequenegenerated by the RayFC and ompared the queue-basedhannel models with the GEC model based on two dis-tane measures.In future work, we intend to systematially evaluate thee�etiveness of the hannel models (inluding the GEC)



for a wide range of signal-to-noise ratios and for vari-ous values of fading bandwidth. We are also interestedin omparing our proposed queue-based models with theFrithman hannel model [3℄.Referenes[1℄ F. Alajaji and T. Fuja, \A Communiation ChannelModeled on Contagion," IEEE Trans. Inform. The-ory, Vol. 40, No. 6, pp. 2035{2041, Nov. 1994.[2℄ E. O. Elliott, \Estimates of Error Rates for Codes onBurst-Noise Channel," Bell Syst. Teh. J., Vol. 42,pp. 1977-1997, Sept. 1963.[3℄ B. D. Frithman, \A Binary Channel Charateriza-tion Using Partitioned Markov Chains," IEEE Trans.Inform. Theory, Vol. 13, No. 2, pp. 221{227, Apr.1967.[4℄ E. N. Gilbert, \Capaity of a Burst-Noise Channel,"Bell Syst. Teh. J., Vol. 39, pp. 1253-1266, Sept. 1960.[5℄ M. Mushkin and I. Bar-David, \Capaity and Codingfor the Gilbert-Elliott Channel," IEEE Trans. Inform.Theory, Vol. 35, No. 6, pp. 1277-1290, Nov. 1989.[6℄ C. J. L. Pimentel and I. F. Blake, \Modeling BurstChannels Using Partitioned Frithman's MarkovModels," IEEE Trans. on Vehiular Tehnology,Vol. 47, No. 3, pp. 885-899, Aug. 1998.[7℄ L. Zhong, F. Alajaji and G. Takahara, \A Modelfor a Binary Burst-Noise Channel Based on a FiniteQueue," Pro. Canadian Workshop on InformationTheory, Vanouver, pp. 60-63, June 2001.
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Figure 2: Capaity vs BER for Cor=0.1; M=2 (for UQBCand NQBC), q1=0.9 (for NQBC), and pG=0.00002 andpB=0.92 (for GEC).
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Figure 3: Capaity vs BER for Cor=0.9; M=2 (for UQBCand NQBC), q1=0.9 (for NQBC), and pG=0.00002 andpB=0.92 (for GEC).
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Figure 4: Capaity vs Cor for BER=0.03; q1=0.999 (forNQBC), and pG=0.00002 and pB=0.92 (for GEC).
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Figure 7: Kullbak-Leibler distane for fDT = 10�4.
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Figure 8: Variational distane for fDT = 10�4.

Channelmodels M = 1 M = 2 M = 3CMUQBC 0.8098 0.8133 0.8162CMNQBC 0.8098 0.8098 0.8098Cor (q1 ! 1) (q1 = 0:999) (q1 = 0:999)=0.1 CMNQBC 0.8098 0.8123 0.8141(q1 = 0:55) (q1 = 0:4)CGEC 0.8098CMUQBC 0.9576 0.9699 0.9747CMNQBC 0.9576 0.9576 0.9576Cor (q1 ! 1) (q1 = 0:999) (q1 = 0:999)=0.9 CMNQBC 0.9576 0.9681 0.9727(q1 = 0:55) (q1 = 0:4)CGEC 0.9759Table 1: Capaity results for various values of q1, M andCor; BER = 0:03.Queue-based Minimizing Kullbak- Minimizing Varia-models Leibler Distane tional DistaneUQBC p = 0:02974 p = 0:02974M = 1 " = 0:2420 " = 0:3449UQBC p = 0:02974 p = 0:02974M = 2 " = 0:3135 " = 0:3565NQBC p = 0:02974 p = 0:02974M = 2 " = 0:3099 " = 0:3528q1 = 0:6145 q1 = 0:6378b = 0:02338433266528GEC g = 0:27367536719134pB = 0:34225066080835pG = 0:00303925823200Table 2: Parameters of queue-based hannel models andGEC for Rayleigh fading and fDT = 0:03.Queue-based Minimizing Kullbak- Minimizing Varia-models Leibler Distane tional DistaneUQBC p = 0:02974 p = 0:02974M = 1 " = 0:2507 " = 0:6542UQBC p = 0:02974 p = 0:02974M = 2 " = 0:4905 " = 0:6681NQBC p = 0:02974 p = 0:02974M = 2 " = 0:5116 " = 0:6689q1 = 0:4182 q1 = 0:4799b = 0:00000033902448GEC g = 0:00000479118095pB = 0:33925727777651pG = 0:00784038925804Table 3: Parameters of queue-based hannel models andGEC for Rayleigh fading and fDT = 10�4.


