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ABSTRACT

The reliability function of arbitrary single-user communi-

cation channels is analyzed. A general formula for the par-

titioning upper bound to the reliability function of chan-

nels without feedback is �rst established. This bound is

indeed a consequence of the recently derived general ex-

pression for the Neyman-Pearson type-II error exponent

subject to an exponential bound on the type-I error prob-

ability. A general lower bound to the non-feedback chan-

nel reliability function is also obtained using Feinstein's

Lemma. Finally, the above bounds are extended to arbi-

trary channels with feedback.

1. INTRODUCTION

We investigate the reliability function E(R) of arbitrary

single-user channels (not necessarily memoryless, station-

ary, ergodic, information stable, etc.). A generalized parti-

tioning upper bound to R(E) (the dual function of E(R))

for channels without feedback is �rst established. We de-

note the upper bound by R(E). This bound is indeed a

consequence of the recently derived general expression for

the Neyman-Pearson hypothesis testing type-II error expo-

nent subject to an exponential bound on the type-I error

probability [1].

A general lower bound to the non-feedback channel reli-

ability function is also obtained using Feinstein's Lemma.

It is shown that in general, there exists a gap between the

channel capacity and R(0+), and a necessary and su�cient

condition for eliminating this gap is derived.

Finally, the above bounds on the channel reliability func-

tion are extended to arbitrary single-user channels with

output feedback.
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2. RELIABILITY FUNCTION OF CHANNELS

WITHOUT FEEDBACK

Consider an arbitrary single-user channel with input al-

phabet X and output alphabet Y. Let

X = fX

n

= (X

(n)

1

;X

(n)

2

; : : : ;X

(n)

n

)g

1

n=1

denote the channel input process in the form of a sequence

of �nite dimensional distributions, and let

Y = fY

n

= (Y

(n)

1

; Y

(n)

2

; : : : ; Y

(n)

n

)g

1

n=1

be the corresponding output process induced by X via the

channel n-dimensional transition distribution given by

fP

Y

n

jX

n
: X

n

! Y

n

g

1

n=1

:

A channel code with blocklength n and rate R consists

of an encoder f(�)

f : f1; 2; : : : ; 2

nR

g ! X

n

;

and a decoder g(�)

g : Y

n

! f1; 2; : : : ; 2

nR

g:

The encoder represents the message V 2 f1; 2; : : : ; 2

nR

g

with the codeword f(V ) = X

n

= [X

1

;X

2

; : : : ; X

n

] which

is then transmitted over the channel; at the receiver, the

decoder observes the channel output Y

n

= [Y

1

; Y

2

; : : : ; Y

n

],

and chooses as its estimate of the message

^

V = g(Y

n

)

(cf. Figure 1). A decoding error occurs if

^

V 6= V . Assum-

ing that V is uniformly distributed over f1; 2; : : : ; 2

nR

g, the

(average) probability of decoding error is then given by

P

e

(n;R) =

1

2

nR

2

nR

X

k=1

Prfg(Y

n

) 6= V jV = kg

= Prfg(Y

n

) 6= V g:

We say that a rate R is achievable (admissible) if there

exists a sequence of codes with blocklength n and rate R

such that

lim

n!1

P

e

(n;R) = 0:
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Figure 1. Block diagram of a channel without feedback.

The (non-feedback) capacity, C, of the channel is de�ned

as the supremum of all achievable code rates.

In [2], Verd�u and Han derived a general formula for the

non-feedback capacity of arbitrary channels. It is shown

to equal the supremum, over all input processes, of the

input-output inf-information rate de�ned as the liminf in

probability of the normalized information density:

C = sup

X

I (X;Y);

where I (X;Y) is the inf-information rate between X and

Y and is de�ned as the liminf in probability of the sequence

of normalized information densities

1

n

i

X

n

Y

n

(X

n

;Y

n

),

where

i

X

n

Y

n

(a

n

; b

n

) = log

2

P

Y

n

jX

n
(b

n

ja

n

)

P

Y

n

(b

n

)

:

The liminf in probability of a sequence of random vari-

ables is de�ned as follows [2]: if A

n

is a sequence of ran-

dom variables, then its liminf in probability is the largest

extended real number � such that for all � > 0,

lim sup

n!1

Pr[A

n

� �� �] = 0:

Similarly, its limsup in probability is the smallest extended

real numbers � such that for all � > 0,

lim sup

n!1

Pr[A

n

� � + �] = 0:

Note that these two quantities are always de�ned; if they

are equal, then the sequence of random variables converges

in probability to a constant (which is �).

We now de�ne the reliability function of channels with-

out feedback, which we denote by E(R). The channel re-

liability function is the largest exponent, among all pos-

sible (non-feedback) codes of rate R and codebook size

expfnRg, of the probability of decoding error with respect

to the codeword length n [3]. More speci�cally,

E(R) = lim sup

n!1

sup

X

n

�

1

n

log P

e

(n;R);

where the supremum is taken over all possible non-feedback

codes. It follows by the de�nition of channel capacity

(or the converse to the channel coding theorem) that

E(R) = 0; for R > C: Furthermore, E(R) is a non-

increasing function of the rate R.

Theorem 1 ([1]) Let R(E) be the dual function of the

channel reliability function E(R) of an arbitrary channel

(if it exists). Then for E > 0,

�

E + sup

X

inffD : L

X

(D) < Eg

�

_ 0 � R(E);

and

R(E) �

�

sup

X

inffD : L

X

(D+E) < Eg

�

_ 0;

where

L

X

(D) = lim inf

n!1

�

1

n

log Pr

n

1

n

i

X

n

Y

n

(X

n

;Y

n

) � D

o

:

The upper bound to R(E) in Theorem 1 is the general-

ized version of the partitioning upper bound to the channel

reliability function [3]. It is derived as a direct consequence

of Theorem 3 in [1] which presents a general expression of

the Neyman Pearson type-II error exponent subject to an

exponential bound to the type-I error probability. This

is achieved by transforming the channel reliability prob-

lem into a hypothesis testing problem and applying the

result of Theorem 3 [1]. The lower bound to R(E) in The-

orem 1 is obtained using Feinstein's Lemma (Theorem 1 in

[2]) which establishes the existence of a block code with a

guaranteed decoding error probability as a function of its

size. This bound constitutes the generalized version of the

random coding lower bound to E(R) presented in [3].

Lemma 1 ([1]) De�ne

R(E)

4

= E + sup

X

inffD : L

X

(D) < Eg:

Then

R(0

+

) = lim

E#0

R(E) � C = sup

X

I (X;Y): (2.1)

Furthermore, R(0

+

) = C if and only if

8 � > 0; sup

X

L

X

(C � �) > 0: (2.2)

Observations:

� Note that for discrete memoryless channels (DMC),

the partitioning upper bound to R(E) is tight at rates

close to C.

� For DMC's, R(0

+

) = C. However, this is not true in

general (cf. (2.1)). That is, there exits a gap between

R(0

+

) and C for arbitrary channels.

� It is important to point out that condition (2.2) is not

equivalent to information stability

1

. This is shown by

the following counterexample.

1

Information stable channels have the property that the in-

put that maximizes mutual information and its corresponding

output behave ergodically [2, 5]. The class of information sta-

ble channels is the most general class of channels for which the

expression

C = lim

n!1

1

n

sup

(X

1

;:::;X

n

)

I ((X

1

; : : : ; X

n

); (Y

1

; : : : ; Y

n

))

represents the operational capacity.

2



Example: The Polya Contagion Channel. Consider the

discrete binary additive channel of [6] described by:

Y

i

= X

i

� Z

i

; i = 1; 2; � � � ;

where the � represents the modulo-2 addition operation,

random variables X

i

, Z

i

, and Y

i

are, respectively, the i'th

input, noise, and output of the channel. The input and

noise sequences are assumed to be independent from each

other. The noise sequence fZ

i

g is generated according to

Polya's contagion urn scheme [6]. The Polya additive noise

fZ

i

g forms an exchangeable (hence stationary) non-ergodic

process [6]; resulting in an information unstable channel.

It is shown in [6] that the channel capacity of this channel

is C = 0. However, condition (2.2) holds for this channel.

This is demonstrated in the following proposition.

Proposition 1 Consider the Polya channel described

above. Then,

8 � > 0; sup

X

L

X

(��) > 0;

which is equivalent to the fact that R(0

+

) = C = 0.

Proof: Take an input process

~

X to be Bernoulli(1/2)

(i.e., IID and uniform):

Prf

~

X

n

= x

n

g =

�

1

2

�

n

; for all x

n

2 f0; 1g

n

:

Now recall that the channel large-deviation spectrum

L

~

X

(D) for input

~

X is de�ned by:

L

~

X

(D) = lim inf

n!1

�

1

n

log Pr

n

1

n

i

~

X

n

Y

n

(

~

X

n

;Y

n

) � D

o

:

We can write:

1

n

i

~

X

n

Y

n

(

~

X

n

;Y

n

) = 1 +

1

n

log

2

P (Z

n

):

So

Pr

n

1

n

i

~

X

n

Y

n

(

~

X

n

;Y

n

) � D

o

= Pr

�

P (Z

n

) � 2

n(D�1)

	

� 2

n(D�1)

2

n

= 2

nD

:

Hence,

1

n

log Pr

n

1

n

i

~

X

n

Y

n

(

~

X

n

;Y

n

) � D

o

�

1

n

log

2

2

nD

= D;

and L

~

X

(D) � �D: Therefore, for all � > 0;

sup

X

L

X

(C � �) = sup

X

L

X

(��) � L

~

X

(��) � � > 0:

Condition (2.2) is hence satis�ed and R(0

+

) = C = 0. 2

Finally, we observe that the generalized partitioning up-

per bound to the channel reliability function in Theorem 1

can be tightened by replacing the sup operation by the inf

operation in the upper bound expression. This yields the

following result.

Corollary 1 [Tighter upper bound] Let R(E) be the dual

function of the channel reliability function E(R) of an ar-

bitrary channel (if it exists). Then for E > 0,

�

E + inf

X

inffD : L

X

(D) < Eg

�

_ 0 � R(E);

and

R(E) �

�

sup

X

inffD : L

X

(D+E) < Eg

�

_ 0;

where

L

X

(D) = lim inf

n!1

�

1

n

log Pr

n

1

n

i

X

n

Y

n

(X

n

;Y

n

) � D

o

:

3. RELIABILITY FUNCTION OF CHANNELS

WITH FEEDBACK

We next consider arbitrary single-user channels with out-

put feedback as depicted in Figure 2.
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Figure 2. Block diagram of a channel with feedback.

As seen in the above diagram, there exists a \return"

(or feedback) channel from the receiver to the transmitter;

we assume this return channel is instantaneous, noiseless,

and has large capacity. The receiver employs the feedback

channel to inform the transmitter what letters were actu-

ally received; these letters are received at the transmitter

before the next letter is sent, and therefore can be used in

choosing the next transmitted letter.

A feedback code with blocklength n and rate R consists

of sequence of encoders

f

i

: f1; 2; : : : ; 2

nR

g � Y

i�1

! X

for i = 1; 2; : : : ; n, along with a decoding function

g : Y

n

! f1; 2; : : : ; 2

nR

g;

where X and Y are the input and output alphabets, re-

spectively. The interpretation is simple: If the user wishes

to convey message V 2 f1; 2; : : : ; 2

nR

g then the �rst code

symbol transmitted is X

1

= f

1

(V ); the second code symbol

transmitted is X

2

= f

2

(V; Y

1

), where Y

1

is the channel's

output due to X

1

. The third code symbol transmitted

is X

3

= f

3

(V; Y

1

; Y

2

), where Y

2

is the channel's output

due to X

2

. This procedure is continued until the encoder

transmits X

n

= f

n

(V; Y

1

; Y

2

; : : : ; Y

n�1

). At this point

the decoder estimates the message to be g(Y

n

), where

Y

n

= [Y

1

; Y

2

; : : : ; Y

n

].

3



Again, we assume that V is uniformly distributed over

f1; 2; : : : ; 2

nR

g, and we de�ne the probability of error and

achievability as in the previous section. The capacity of the

channel with feedback, C

FB

, is de�ned to be the supremum

of all achievable feedback code rates.

In [4], the general capacity formula of arbitrary channels

with feedback is derived. It is given by

C

FB

= sup

X

I(V;Y);

where the supremum is taken over all possible feedback

encoding schemes

2

.

The channel reliability function with feedback, denoted

by E

FB

(R), is the largest exponent, among all possible

feedback codes of rateR and codebook size expfnRg, of the

probability of decoding error with respect to the codeword

length n. In other words,

E

FB

(R) = lim sup

n!1

sup

X

n

�

1

n

log P

e

(n;R);

where the supremum is taken over all possible feedback

codes.

We herein extend the results of the previous section for

the case of channels with feedback.

Theorem 2 Let R

FB

(E) be the dual function of the reli-

ability function E

FB

(R) of an arbitrary channel with feed-

back (if it exists). Then for E > 0,

�

E + sup

X

inffD : L

X

(D) < Eg

�

_ 0 � R

FB

(E);

and

R

FB

(E) �

�

sup

X

inffD : L

X

(D+ E) < Eg

�

_ 0;

where

L

X

(D) = lim inf

n!1

�

1

n

log Pr

n

1

n

i

V Y

n

(V ;Y

n

) � D

o

;

and supremum is taken over all feedback codes.

Lemma 2 De�ne

R

FB

(E)

4

= E + sup

X

inffD : L

X

(D) < Eg:

Then

R

FB

(0

+

) = lim

E#0

R

FB

(E) � C

FB

= sup

X

I (V;Y):

Furthermore, R

FB

(0

+

) = C

FB

if and only if

8 � > 0; sup

X

L

X

(C

FB

� �) > 0: (3.3)

2

sup

X

n

I(V ;Y

n

) = sup

X

n

=(f

1

(V );f

2

(V;Y

1

);:::;f

n

(V;Y

n�1

))

I(V ;Y

n

)

= sup

(f

1

;f

2

;:::;f

n

)

I(V ;Y

n

):

Corollary 2 [Tighter upper bound] Let R

FB

(E) be the

dual function of the reliability functionE

FB

(R) of an arbi-

trary channel with feedback (if it exists). Then for E > 0,

�

E + inf

X

inffD : L

X

(D) < Eg

�

_ 0 � R

FB

(E);

and

R

FB

(E) �

�

sup

X

inffD : L

X

(D+ E) < Eg

�

_ 0;

where

L

X

(D) = lim inf

n!1

�

1

n

log Pr

n

1

n

i

V Y

n

(V ;Y

n

) � D

o

;

and supremum is taken over all feedback codes.

4. FUTURE WORK

Current e�orts focus on the comparison of the general

bounds to the channel reliability function derived in this

paper with previously known bounds for the case of simple

channels such as DMC's [3]. Another issue worth exploring

is the e�ect of feedback on the channel reliability function.

Future work may address the analysis of the properties

of R(E) and condition (2.2), and the determination of the

class of channels for which R(0

+

) < C:
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