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Abstract

A new lower bound on the probability of

P(A

1

[ � � � [A

N

) is established in terms of only

the individual event probabilities P(A

i

)'s and

the pairwise event probabilities P(A

i

\A

j

)'s.

This bound is shown to be always at least

as good as two similar lower bounds, one by

de Caen (1997) and the other by Dawson and

Sanko� (1967). Numerical examples for the

computation of this inequality are also pro-

vided. Finally, the application of this re-

sult to the symbol error probability of an un-

coded communication system used in conjunc-

tion with M-ary Phase-Shift Keying (M-PSK)

modulation and maximum a posteriori (MAP)

decoding is examined.

1 Introduction

We establish a new lower bound on the probability

of the union of a �nite family of events in terms of

only the individual and pairwise event probabilities.

We also demonstrate that this inequality is always at

least as good as a recent bound by de Caen [4] that

uses the same information. We illustrate the bound

by means of several numerical examples. Finally, we

examine the application of this bound to the proba-

bility of symbol error of non-uniform coherent M-PSK

signaling in the presence of additive white Gaussian

noise.

2 Main Results

Consider a �nite family of events A

1

; A

2

; : : : ; A

N

in

a �nite

1

probability space (
; P ), where N is a �xed

positive integer. For each x 2 
, let p(x)

4

=P (fxg),

�
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For a general probability space, the problem can be directly

reduced to the �nite case since there are only �nitely many

Boolean atoms speci�ed by the A

i

's [4].

and let the degree of x { denoted by deg(x) { be the

number of A

i

's that contain x. De�ne

B

i

(k)

4

=fx 2 A

i

: deg(x) = kg

and

a

i

(k)

4

=P (B

i

(k));

where i = 1; 2; : : : ; N and k = 1; 2; : : : ; N . We obtain

the following lemma.

Lemma 1

P

 

N

[

i=1

A

i

!

=

N

X

i=1

N

X

k=1

a

i

(k)

k

:

Proof: Cf [6].

This brings us to our main result.

Theorem 1

P

 

N

[

i=1

A

i

!

�

N

X

i=1

 

�

i

P (A

i

)

2

P

N

j=1

P (A

i

\A

j

) + (1� �

i

)P (A

i

)

+

(1� �

i

)P (A

i

)

2

P

N

j=1

P (A

i

\A

j

)� �

i

P (A

i

)

!

; (1)

where

�

i

4

=

�

i

�

i

�

�

�

i

�

i

�

;

�

i

4

=

N

X

k=1

a

i

(k) = P (A

i

);

and

�

i

4

=

N

X

k=1

(k � 1)a

i

(k) =

X

j:j 6=i

P (A

i

\A

j

):

Proof: Cf [6].
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3 Comparison with Other Bounds

In a recent work [4], de Caen also presented a lower

bound on P ([

N

i=1

A

i

) in terms of the P (A

i

)'s and the

P (A

i

\ A

j

)'s.

Lemma 2 (de Caen [4]) Let A

1

,A

2

,: : :,A

N

be any

�nite family of events in a probability space (
; P ).

Then

P

 

N

[

i=1

A

i

!

�

N

X

i=1

P (A

i

)

2

P

N

j=1

P (A

i

\ A

j

)

: (2)

We demonstrate that our new bound is always at least

as good as de Caen's bound.

Lemma 3 Let A

1

; A

2

; : : : ; A

N

be any �nite family of

events in a probability space (
; P ). Then

N

X

i=1

 

�

i

P (A

i

)

2

P

N

j=1

P (A

i

\ A

j

) + (1� �

i

)P (A

i

)

+

(1� �

i

)P (A

i

)

2

P

N

j=1

P (A

i

\A

j

)� �

i

P (A

i

)

!

�

N

X

i=1

P (A

i

)

2

P

N

j=1

P (A

i

\A

j

)

;

where

�

i

4

=

�

i

�

i

�

�

�

i

�

i

�

:

Proof: Cf [6].

We next prove that our bound is also always at least

as good as the Dawson-Sanko� bound [3].

Lemma 4 (Dawson-Sanko� [3])

Let A

1

; A

2

; : : : ; A

N

be any �nite family of events in

a probability space (
; P ). Then

P

 

N

[

i=1

A

i

!

�

�S

2

1

(2� �)S

1

+ 2S

2

+

(1� �)S

2

1

(1� �)S

1

+ 2S

2

; (3)

where

S

1

4

=

N

X

i=1

P (A

i

);

S

2

4

=

N

X

i=1

i�1

X

j=1

P (A

i

\ A

j

);

and

�

4

=

2S

2

S

1

�

�

2S

2

S

1

�

:

Lemma 5 Let A

1

; A

2

; : : : ; A

N

be any �nite family of

events in a probability space (
; P ). Then (1) is al-

ways sharper than (3); i.e.,

N

X

i=1

 

�

i

P (A

i

)

2

P

N

j=1

P (A

i

\ A

j

) + (1� �

i

)P (A

i

)

+

(1� �

i

)P (A

i

)

2

P

N

j=1

P (A

i

\ A

j

)� �

i

P (A

i

)

!

�

�S

2

1

(2� �)S

1

+ 2S

2

+

(1� �)S

2

1

(1� �)S

1

+ 2S

2

:

Proof: Cf [6].

4 Numerical Examples

Example 1 We �rst give an example in which our

proposed bound is tight. Let 3jn (n is a multiple of 3)

and

A

i

=

�

f

3i�1

2

;

3i+1

2

g; if i is odd,

f

3i

2

� 1;

3i

2

g; if i is even,

where 1 � i �

2n

3

. Then A

i

\ A

j

6= � if and only

if d

i

2

e = d

j

2

e. If the points are uniformly distributed

with probability

1

n

, then

P (A

i

) =

2

n

;

X

j:j 6=i

P (A

i

\ A

j

) =

X

j 6=i:d

i

2

e=d

j

2

e

P (A

i

\ A

j

) =

1

n

;

and

�

i

=

1

2

:

Clearly

P

0

@

2n

3

[

i=1

A

i

1

A

= 1:

(1) gives

2n

3

X

i=1

�

1

2

(

2

n

)

2

3

n

+

1

2

2

n

+

1

2

(

2

n

)

2

3

n

�

1

2

2

n

�

=

2n

3

X

i=1

3

2n

= 1:

However (2) gives

2n

3

X

i=1

(

2

n

)

2

3

n

=

2n

3

X

i=1

4

3n

=

8

9

:

Thus, in this case, (1) is stronger than (2).
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Example 2 We next consider several systems and

compare our bound to the de Caen and Dawson-

Sanko� bounds. The di�erent systems are described

in Tables 1-4. The lower bounds for each system

are computed in Table 5. It can be clearly observed

from Table 5 that the new bound ((1)) is sharper

than the de Caen ((2)) bound and the Dawson-Sanko�

bound ((3)).

Observation: de Caen's bound is tight (i.e., (2) is an

equality) if and only if the degrees deg(x) are constant

on each A

i

[4]; this condition includes the case where

all the events are disjoint. Since (1) is stronger than

(2), we conclude that the above condition is only a

su�cient (but not necessary, cf. Example 1) condition

for the tightness of (1).

5 Applications to Communication Sys-

tems

In [8], S�eguin employed de Caen's inequality (given

by (2)) to derive a lower bound on the probability of

error for M -ary signals derived from a binary linear

code. He assumed an additive white Gaussian noise

(AWGN) channel with a maximum likelihood (ML)

decoding criterion. He showed that de Caen's bound

converges to the union upper bound as the signal-to-

noise ratio (SNR) increases to in�nity, and that it pro-

vides fairly good results at low SNR.

We similarly apply the new lower bound as well as

the De Caen and the Dawson-Sanko� lower bounds to

estimate the symbol error probability of a non-uniform

M-PSK modulation system. More speci�cally, the

problem formulation is as follows. We consider a

non-uniform

2

independent and identically distributed

(i.i.d.) binary source fX

i

g, with PfX = 0g = p,

that is transmitted via M-PSK modulation (with Gray

mapping) over an AWGN channel [7]. The source

stream is grouped in blocks of log

2

M bits which are

each subsequently mapped to an M-PSK signal for

transmission over the channel. At the receiver, op-

timal maximum a posteriori decoding (MAP) is per-

formed in estimating the transmitted M-ary signal.

The computation of all three lower bounds to the

probability of symbol error P

E

forM = 8 and p = 0:5,

0.7 and 0.9 are displayed in terms of the SNR E

b

=N

0

,

2

The justi�cation for the non-uniformity assumption of the

source is as follows. In many practical data compression

schemes such as image or speech coding, after some transfor-

mation, the transform coe�cients are turned into bit streams

(binary source) [1, 2]. Due to the suboptimality of the compres-

sion algorithm, the bit stream often exhibits some redundancy.

This embedded residual redundancy can be characterized by

modeling the bitstream as an i.i.d. non-uniform process or as a

Markov process [1, 2].

where E

b

is the energy per information bit, in Fig-

ures 1, 2 and 3 respectively. Note that when p = 0:5,

then MAP decoding reduces to ML decoding. The

chosen values of E

b

=N

0

correspond to a very noisy

channel environment (e.g. E

b

=N

0

� 6 dB). In Fig-

ures 1-3, two additional upper bounds are also calcu-

lated: the union upper bound and an upper bound

by Kounias [5] which uses the individual and pair-

wise error probabilities. More speci�cally, given events

A

1

; A

2

; : : : ; A

N

, Kounias' upper bound is

P

 

N

[

i=1

A

i

!

�

N

X

i=1

P (A

i

)

� max

k=1;2;:::;N

N

X

i=1;i 6=k

P (A

i

\ A

k

): (4)

We �rst observe from Figures 1-3 that all bounds

start to converge at E

b

=N

0

= 6 dB, and that all three

lower bounds are fairly good over the entire consid-

ered range of SNR. The best improvement of (1) over

bounds (2) and (3) occurs when the channel is very

noisy and p = 0:5 (i.e., when the source is totally uni-

form). Furthermore, we remark that when the source

is very redundant (p = 0:9), our lower bound (1) and

Kounias' upper bound (4) are very close for all values

of SNR, thus providing a very good estimate of the

exact error probability.

6 Conclusion

A new lower bound on the probability of a �nite

union of events was proven in terms of only the indi-

vidual and pairwise event probabilities. This bound

was shown to be always sharper than two similar in-

equalities by de Caen and by Dawson and Sanko�.

The goodness of this bound was illustrated via nu-

merical examples and in the estimation of the error

probability of non-uniform M-PSK signaling over very

noisy AWGN communication channels.
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Comparison of Bounds For Symbol Error
Using 8-PSK Modulation, p=0.7
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Figure 2: Bounds for P

E

using 8-PSK modulation and

p = 0:7 (MAP decoding).

x p(x) A

1

A

2

A

3

A

4

A

5

A

6

x

0

0.012 � � �

x

1

0.022 � � �

x

2

0.023 � � �

x

3

0.033 �

x

4

0.034 � � �

x

5

0.044 � � �

x

6

0.045 � � �

x

7

0.055 � � � �

x

8

0.056 � �

x

9

0.066 � �

x

10

0.067 � � �

x

11

0.077 � �

x

12

0.078 � � �

x

13

0.088 �

x

14

0.089 � � � �

Table 1: Description of System I with N = 6 and

j [

N

i=1

A

i

j = 15. An � in the (i; j)'th entry indicates

that outcome x

i

2 A

j

.
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Comparison of Bounds For Symbol Error
Using 8-PSK Modulation, p=0.9
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Figure 3: Bounds for P

E

using 8-PSK modulation and

p = 0:9 (MAP decoding).

x p(x) A

1

A

2

A

3

A

4

A

5

A

6

x

0

0.023 � � �

x

1

0.034 � �

x

2

0.045 � � �

x

3

0.056 �

x

4

0.067 � � �

x

5

0.078 � � �

x

6

0.067 � � �

x

7

0.056 � � �

x

8

0.045 � �

x

9

0.038 � �

x

10

0.011 � � �

x

11

0.022 �

x

12

0.033 � � �

x

13

0.044 �

x

14

0.055 � � � �

Table 2: Description of System II with N = 6 and

j [

N

i=1

A

i

j = 15. An � in the (i; j)'th entry indicates

that outcome x

i

2 A

j

.

x p(x) A

1

A

2

A

3

A

4

A

5

A

6

x

0

0.012 � � �

x

1

0.022 � �

x

2

0.023 � � �

x

3

0.033 �

x

4

0.034 � � �

x

5

0.044 � � �

x

6

0.045 � � �

x

7

0.055 � � �

x

8

0.056 � �

x

9

0.066 � �

x

10

0.067 � � �

x

11

0.077 �

x

12

0.078 � � �

x

13

0.088 �

x

14

0.089 � � � �

Table 3: Description of System III with N = 6 and

j [

N

i=1

A

i

j = 15. An � in the (i; j)'th entry indicates

that outcome x

i

2 A

j

.

x p(x) A

1

A

2

A

3

A

4

A

5

A

6

A

7

x

0

0.0329 �

x

1

0.1076 � � � �

x

2

0.0599 �

x

3

0.1108 � �

x

4

0.0420 �

x

5

0.0055 � � �

x

6

0.0508 � � �

x

7

0.1142 � �

x

8

0.0480 � �

x

9

0.0235 � �

x

10

0.0676 � � �

x

11

0.0295 � �

x

12

0.0441 � � �

x

13

0.1265 � � �

x

14

0.1058 � � �

Table 4: Description of System IV with N = 7 and

j [

N

i=1

A

i

j = 15. An � in the (i; j)'th entry indicates

that outcome x

i

2 A

j

.

Syst. P ([

i

A

i

) (2) (3) (1)

I 0.7890 0.7087 0.7007 0.7247

II 0.6740 0.6154 0.6150 0.6227

III 0.7890 0.7048 0.6933 0.7222

IV 0.9689 0.8759 0.8881 0.8911

Table 5: Bounds for the di�erent systems.
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