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Abstract

A new lower bound on the probability of
P(A;U---UAN) is established in terms of only
the individual event probabilities P(A;)’s and
the pairwise event probabilities P(A;N Aj)’s.
This bound is shown to be always at least
as good as two similar lower bounds, one by
de Caen (1997) and the other by Dawson and
Sankoff (1967). Numerical examples for the
computation of this inequality are also pro-
vided. Finally, the application of this re-
sult to the symbol error probability of an un-
coded communication system used in conjunc-
tion with M-ary Phase-Shift Keying (M-PSK)
modulation and maximum a posteriori (MAP)
decoding is examined.

1 Introduction

We establish a new lower bound on the probability
of the union of a finite family of events in terms of
only the individual and pairwise event probabilities.
We also demonstrate that this inequality is always at
least as good as a recent bound by de Caen [4] that
uses the same information. We illustrate the bound
by means of several numerical examples. Finally, we
examine the application of this bound to the proba-
bility of symbol error of non-uniform coherent M-PSK
signaling in the presence of additive white Gaussian
noise.

2 Main Results

Consider a finite family of events Ay, As,..., Ay in
a finite! probability space (02, P), where N is a fixed

positive integer. For each z € , let p(m)éP({az}),

*This work was supported in part by NSERC and TRIO.
LFor a general probability space, the problem can be directly
reduced to the finite case since there are only finitely many
Boolean atoms specified by the A;’s [4].

and let the degree of  — denoted by deg(x) — be the
number of A4;’s that contain x. Define

Bi(k)2{z € A; : deg(z) = k}

and N

ai(k)=P(Bi(k)),
where s =1,2,...,N and £k =1,2,...,N. We obtain
the following lemma.

Lemma 1

P (CJA) e im(k)
i=1 ) ko
Proof: Cf [6].

This brings us to our main result.

Theorem 1
N ol 0;P(A;)?
! (H Ai) 2@':21 (Z;'V_l P(A; N A;j) + (1 - 0;)P(4)
R 8,)P(A;)? ) )
Zj:l P(Ai n Aj) - HiP(Ai)

where
(67 (677
N
a2 ailk) = P(4y),

k=1

and
R
Bi=> (k—1ai(k) = Y P(A; N Aj).
k=1 Jij#i

Proof: Cf [6].



3 Comparison with Other Bounds

In a recent work [4], de Caen also presented a lower
bound on P(UY, 4;) in terms of the P(4;)’s and the
P(Az N Aj)’S.

Lemma 2 (de Caen [4]) Let A;,As,...,An be any
finite family of events in a probability space (Q, P).

Then
N
P(i:LJlAz) ZZJ 1P(A ﬂA) (2)

We demonstrate that our new bound is always at least
as good as de Caen’s bound.

Lemma 3 Let Ay, Ao, ..., Ax be any finite family of
events in a probability space (2, P). Then

ol 0;P(A;)?
; (Z;'V_1 P(A; N Aj) + (1 —6;)P(A;)

(1—0;)P(A4;)*
YL P(AiNAj) — 0;P(4;)
o P(A;)?
= YL, P(Ain4;)

20 _ FJ .

Qg Q;

>

where

Proof: Cf [6].

We next prove that our bound is also always at least
as good as the Dawson-Sankoff bound [3].

Lemma 4 (Dawson-Sankoff [3])
Let Ay, As,..., Axy be any finite family of events in
a probability space (2, P). Then

p(Ua) > St
e} ¢ - (2—0)S1+252

_ 2
_(=05
(1-16)S; + 25,
where
A N
Si= P(Ay),
i=1
A N i—1
$=3 ) P(Ain 4y,
i=1 j=1
and
pa2% |25
S, S, |-

Lemma 5 Let Ay, Ao, ..., Ay be any finite family of
events in a probability space (2, P). Then (1) is al-
ways sharper than (3); i.e.,

al 0, P(A;)?
2:21 (Z LV P(AINA) +(1—
(

(1—6;)P(A:)? )
TSN P(A:n 4y - 0:P(4)

. 952 N (1 0)S?
- (2-6)S1+2S5,  (1-

Proof: Cf [6].

4 Numerical Examples

Example 1 We first give an example in which our
proposed bound is tight. Let 3|n (n is a multiple of 3)
and

A = {3@}7—173@';1}7 if 7 is odd,
B 31,3, ifiis even,
where 1 < i < %, Then 4; N A; # ¢ if and only

if [£] = [%] If the points are uniformly distributed
with probability %, then

P(4;) Z%

)

ZP(AZ'QA]')Z Z

g J#E[51=[5]

P(AiﬂA]')Z—

and

Clearly
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Thus, in this case, (1) is stronger than (2).



Example 2 We next consider several systems and
compare our bound to the de Caen and Dawson-
Sankoff bounds. The different systems are described
in Tables 1-4. The lower bounds for each system
are computed in Table 5. It can be clearly observed
from Table 5 that the new bound ((1)) is sharper
than the de Caen ((2)) bound and the Dawson-Sankoff
bound ((3)).

Observation: de Caen’s bound is tight (i.e., (2) is an
equality) if and only if the degrees deg(x) are constant
on each A; [4]; this condition includes the case where
all the events are disjoint. Since (1) is stronger than
(2), we conclude that the above condition is only a
sufficient (but not necessary, cf. Example 1) condition
for the tightness of (1).

5 Applications to Communication Sys-
tems

In [8], Séguin employed de Caen’s inequality (given
by (2)) to derive a lower bound on the probability of
error for M-ary signals derived from a binary linear
code. He assumed an additive white Gaussian noise
(AWGN) channel with a maximum likelihood (ML)
decoding criterion. He showed that de Caen’s bound
converges to the union upper bound as the signal-to-
noise ratio (SNR) increases to infinity, and that it pro-
vides fairly good results at low SNR.

We similarly apply the new lower bound as well as
the De Caen and the Dawson-Sankoff lower bounds to
estimate the symbol error probability of a non-uniform
M-PSK modulation system. More specifically, the
problem formulation is as follows. We consider a
non-uniform? independent and identically distributed
(ii.d.) Dbinary source {X;}, with P{X = 0} = p,
that is transmitted via M-PSK modulation (with Gray
mapping) over an AWGN channel [7]. The source
stream is grouped in blocks of log, M bits which are
each subsequently mapped to an M-PSK signal for
transmission over the channel. At the receiver, op-
timal maximum a posteriori decoding (MAP) is per-
formed in estimating the transmitted M-ary signal.

The computation of all three lower bounds to the
probability of symbol error Py for M = 8 and p = 0.5,
0.7 and 0.9 are displayed in terms of the SNR Ej /Ny,

2The justification for the non-uniformity assumption of the
source is as follows. In many practical data compression
schemes such as image or speech coding, after some transfor-
mation, the transform coefficients are turned into bit streams
(binary source) [1, 2]. Due to the suboptimality of the compres-
sion algorithm, the bit stream often exhibits some redundancy.
This embedded residual redundancy can be characterized by
modeling the bitstream as an i.i.d. non-uniform process or as a
Markov process [1, 2].

where Ej is the energy per information bit, in Fig-
ures 1, 2 and 3 respectively. Note that when p = 0.5,
then MAP decoding reduces to ML decoding. The
chosen values of Ej/Ny correspond to a very noisy
channel environment (e.g. FEp/Ny < 6 dB). In Fig-
ures 1-3, two additional upper bounds are also calcu-
lated: the union upper bound and an upper bound
by Kounias [5] which uses the individual and pair-
wise error probabilities. More specifically, given events

A1, Ay, ..., AN, Kounias’ upper bound is
N N
P (U Ai) < ZP(Ai)
i=1 i=1
N
_ szﬁa}fﬂ,;ﬂ P(A;NAL). (4)

We first observe from Figures 1-3 that all bounds
start to converge at E/No = 6 dB, and that all three
lower bounds are fairly good over the entire consid-
ered range of SNR. The best improvement of (1) over
bounds (2) and (3) occurs when the channel is very
noisy and p = 0.5 (i.e., when the source is totally uni-
form). Furthermore, we remark that when the source
is very redundant (p = 0.9), our lower bound (1) and
Kounias’ upper bound (4) are very close for all values
of SNR, thus providing a very good estimate of the
exact error probability.

6 Conclusion

A new lower bound on the probability of a finite
union of events was proven in terms of only the indi-
vidual and pairwise event probabilities. This bound
was shown to be always sharper than two similar in-
equalities by de Caen and by Dawson and Sankoff.
The goodness of this bound was illustrated via nu-
merical examples and in the estimation of the error
probability of non-uniform M-PSK signaling over very
noisy AWGN communication channels.
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Figure 1: Bounds for Pg using 8-PSK modulation and
p = 0.5 (ML decoding). Figure 2: Bounds for Pg using 8-PSK modulation and

p = 0.7 (MAP decoding).
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Table 1: Description of System I with NV = 6 and
|UN, A;| = 15. An x in the (i,7)’th entry indicates
that outcome x; € A;.



(o T pl@) [A A [ A [ Ay [ A5 [ Ag]

Comparison of Bounds For Symbol Error zo | 0.012 | x X X
Using 8-PSK Modulation, p=0.9 z, | 0.022 ; <
S zo | 0.023 | x X X
z3 | 0.033 X
3 | N za | 0.034 | x X X
° x5 | 0.044 X | x X
zg | 0.045 X X X
z7 | 0.055 X X X
zg | 0.056 | x X
. z9 | 0.066 X X
3 z1 | 0.067 X x | x
g z11 | 0.077 X
g B z12 | 0.078 X X X
3 3 z13 | 0.088 X
5 214 | 0.089 | x X X | x
S New Lower Bound Table 3: Description of System III with NV = 6 and
g || De Gaen's Lower Bound |UN, A;| = 15. An x in the (i,7)’th entry indicates
o Dawson'’s Lower Bound
——— Union Upper Bound that outcome x; € A]’.
g | Kounias’ Upper Bound
Lz [ p@) [A[As | A5 [ A [ A5 [ A [ Ar]
S zo | 0.0329 X
w w w I z1 | 0.1076 | x X X X
0 2 4 6 z2 | 0.0599 X
SNR (Eb/NO) z3z | 0.1108 X X
Figure 3: Bounds for Pg using 8-PSK modulation and z4 | 0.0420 x
p = 0.9 (MAP decoding). x5 | 0.0055 X | X X
zg | 0.0508 X X X
x7 | 0.1142 | x X
[ [ ple) TATA [As [ A [ A5 | A | s | 0.0480 x | x
zo | 0.023 | x X X z9 | 0.0235 ~ %
z1 | 0.034 X X z19 | 0.0676 | x | x x
zo | 0.045 | x X X z11 | 0.0295 ~ ~
z3 | 0.056 X T12 | 0.0441 | x X X
rq | 0.067 | X x | X z13 | 0.1265 | x X X
x5 | 0.078 X X X x14 | 0.1058 X X X
zg | 0.067 X X X
x7 | 0.056 x x x Table 4: Description of System IV with N = 7 and
rg | 0.045 | x X |UN, A;| = 15. An x in the (i,7)’th entry indicates
zg9 | 0.038 X | X that outcome z; € A;.
z10 | 0.011 X X X
I11 0.022 X
T12 0.033 X X X
213 | 0.044 x [Syst. [PUA) ] @ [ B [ @) |
14 | 0.055 | x X X X I 0.7890 | 0.7087 | 0.7007 | 0.7247
I 0.6740 | 0.6154 | 0.6150 | 0.6227
Table 2: Description of System II with N = 6 and II1 0.7890 | 0.7048 | 0.6933 | 0.7222
|UN, A;| = 15. An x in the (i,;)’th entry indicates v 0.9689 | 0.8759 | 0.8881 | 0.8911

that outcome x; € A;.

Table 5: Bounds for the different systems.




