
FEEDBACK CAPACITY OF DISCRETE ADDITIVE CHANNELS

�

Fady Alajaji

Eletrial Engineering Department

Institute for Systems Researh

University of Maryland

College Park, MD 20742

ABSTRACT

We onsider disrete hannels with stationary additive

noise. We show that output feedbak does not inrease the

apaity of suh hannels. This is shown for both ergodi

and non-ergodi additive stationary hannels.

1. INTRODUCTION

We onsider disrete hannels with stationary additive

noise. Note that suh hannels need not be memoryless; in

general, they have memory. The Gilbert burst-noise han-

nel [1℄, as well as the Polya-ontagion hannel [2℄, belong to

the lass of suh hannels. We assume that these hannels

are eah aompanied by a noiseless, delayless feedbak

hannel with large apaity. We show that the apaity of

the hannels with feedbak does not exeed their respetive

apaity without feedbak. This is shown for both ergodi

and non-ergodi additive stationary hannels.

In earlier related work, Shannon [3℄ showed that feed-

bak does not inrease the apaity of disrete memory-

less hannels. The same result was proven to be true for

ontinuous hannels with additive white Gaussian noise.

Later, Cover and Pombra [4℄ and others onsidered on-

tinuous hannels with additive non-white Gaussian noise

and showed that feedbak inreases their apaity by at

most half a bit; similarly, it's been shown [4℄ that feedbak

an at most double the apaity of a non-white Gaussian

hannel.

2. DISCRETE CHANNELS WITH

STATIONARY ERGODIC ADDITIVE

NOISE

2.1. Capaity with no Feedbak

Consider a disrete hannel with ommon input, noise and

output alphabet A = f0; 1; : : : ; q�1g, desribed by the fol-

lowing equation: Y

n

= X

n

� Z

n

, for n = 1; 2; 3; : : : where:

� � represents the addition operation modulo q.

� The random variables X

n

, Z

n

and Y

n

are respetively

the input, noise and output of the hannel.

�
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� fX

n

g ? fZ

n

g, i.e. the input and noise sequenes are

independent from eah other.

� The noise proess fZ

n

g

n=1

n=1

is stationary and ergodi.

Note that additive hannels de�ned as above, are \non-

antiipatory" hannels; where by \non-antiipatory" we

mean hannels with no input memory (i.e., historyless)

and no antiipation (i.e., ausal) [5℄. A hannel is said to

have no antiipation if for a given input and a given input-

output history, its urrent output is independent of future

inputs. Furthermore, a hannel is said to have no input

memory if its urrent output is independent of previous

inputs. Refer to [5℄ for more rigorous de�nitions of ausal

and historyless hannels. We speify these onditions so

as to be able to use well-established formulas [5,6℄ for the

non-feedbak apaity of the resulting hannels.

A hannel ode with bloklength n and rate R onsists

of an enoder

f : f1; 2; : : : ; 2

nR

g ! A

n

and a deoder

g : A

n

! f1; 2; : : : ; 2

nR

g:

The enoder represents the message W 2 f1; 2; : : : ; 2

nR

g

with the odeword f(W ) = X

n

= [X

1

; X

2

; : : : ; X

n

℄ whih

is then transmitted over the hannel; at the reeiver, the

deoder observes the hannel output Y

n

= [Y

1

; Y

2

; : : : ; Y

n

℄,

and hooses as its estimate of the message

^

W = g(Y

n

). A

deoding error ours if

^

W 6=W .

For additive hannels, Y

i

= X

i

�Z

i

for all i. We assume

that W is uniformly distributed over f1; 2; : : : ; 2

nR

g. The

probability of deoding error is thus given by:

P

(n)

e

=

1

2

nR

2

nR

X

k=1

Prfg(Y

n

) 6=W jW = kg

= Prfg(Y

n

) 6=Wg

We say that a rate R is ahievable (admissable) if there

exists a sequene of odes with bloklength n and rate R

suh that

lim

n!1

P

(n)

e

= 0:



We denote the apaity of the hannel with no feedbak

by C

NFB

. The objetive, of ourse, is to transmit an ar-

bitrary message W at a high rate and low probability of

error. If we de�ne C

NFB

to be the supremum of all admiss-

able ode rates, then C

NFB

is the apaity of the hannel.

Beause the hannel is non-antiipatory and stationary

ergodi, the nonfeedbak apaity C

NFB

of this hannel is

known and is equal to [5℄:

C

NFB

= lim

n!1

sup

X

n

1

n

I(X

n

; Y

n

) (1)

= log

2

(q) � lim

n!1

1

n

H(Z

n

) (2)

where

X

n

= (X

1

; X

2

; : : : ; X

n

);

Y

n

= (Y

1

; Y

2

; : : : ; Y

n

);

Z

n

= (Z

1

; Z

2

; : : : ; Z

n

);

I(X

n

;Y

n

) is the mutual information between the input

vetor X

n

and the output vetor Y

n

, and the supremum

is taken over the input distributions of X

n

. H(Z

n

) is the

entropy of the noise vetor Z

n

.

2.2. Capaity with Feedbak

We now onsider the orresponding problem for the dis-

rete additive hannel with omplete output feedbak. By

this we mean that there exists a \return hannel" from the

reeiver to the transmitter; we assume this return hannel

is noiseless, delayless, and has large apaity. The reeiver

uses the return hannel to inform the transmitter what

letters were atually reeived; these letters are reeived at

the transmitter before the next letter is transmitted, and

therefore an be used in hoosing the next transmitted let-

ter.

A feedbak ode with bloklength n and rate R onsists

of sequene of enoders

f

i

: f1; 2; : : : ; 2

nR

g �A

i�1

! A

for i = 1; 2; : : : ; n, along with a deoding funtion

g : A

n

! f1; 2; : : : ; 2

nR

g:

The interpretation is simple: If the user wishes to on-

vey message W 2 f1; 2; : : : ; 2

nR

g then the �rst ode sym-

bol transmitted is X

1

= f

1

(W ); the seond ode symbol

transmitted is X

2

= f

2

(W;Y

1

), where Y

1

is the hannel's

output due to X

1

. The third ode symbol transmitted

is X

3

= f

3

(W;Y

1

; Y

2

), where Y

2

is the hannel's output

due to X

2

. This proess is ontinued until the enoder

transmits X

n

= f

n

(W;Y

1

; Y

2

; : : : ; Y

n�1

). At this point

the deoder estimates the message to be g(Y

n

), where

Y

n

= [Y

1

; Y

2

; : : : ; Y

n

℄.

Assuming our additive hannel, Y

i

= X

i

�Z

i

where fZ

i

g

is a stationary ergodi noise proess. Again, we assume

that W is uniformly distributed over f1; 2; : : : ; 2

nR

g, and

we de�ne the probability of error and ahievability as in

Setion 2.1.

Note, however, that beause of the feedbak, X

n

and Z

n

are no longer independent; X

i

may depend on Z

i�1

.

We will denote the apaity of the hannel with feedbak

by C

FB

. As before, C

FB

is the supremum of all admissable

ode rates.

Proposition 1 Feedbak does not inrease the apaity of

hannels with additive stationary ergodi noise:

C

FB

= C

NFB

= log

2

(q) � lim

n!1

1

n

H(Z

n

) (3)

Proof 1 Sine W is uniformly distributed over

f1; 2; : : : ; 2

nR

g, we have that H(W ) = nR. Furthermore,

H(W ) = H(W jY

n

)+I(W ;Y

n

). Now by Fano's inequality,

H(W jY

n

) � h

b

(P

(n)

e

) + P

(n)

e

log

2

(2

nR

� 1)

� 1 + P

(n)

e

log

2

(2

nR

)

= 1 + P

(n)

e

nR

sine h

b

(P

(n)

e

) � 1, where h

b

() is the binary entropy fun-

tion. Thus

H(W jY

n

) � 1 + P

(n)

e

nR (4)

We then have:

nR = H(W )

= H(W jY

n

) + I(W ;Y

n

)

� 1 + P

(n)

e

nR+ I(W ;Y

n

)

where R is any admissable rate.

Dividing both sides by n and taking n to in�nity, we get:

C

FB

� lim

n!1

1

n

I(W ;Y

n

) (5)

Let us thus study I(W ;Y

n

):

I(W ;Y

n

) =

n

X

i=1

I(W ;Y

i

jY

i�1

) (6)

but

I(W ;Y

i

jY

i�1

) = H(Y

i

jY

i�1

)�H(Y

i

jW;Y

i�1

) (7)

= H(Y

i

jY

i�1

)�H(X

i

� Z

i

jW;Y

i�1

) (8)

Now the fat that X

i

= f

i

(W;Y

1

; : : : ; Y

i�1

) implies that

H(X

i

� Z

i

jW;Y

i�1

) = H(Z

i

jW;Y

i�1

; X

i

) (9)

= H(Z

i

jW;Y

i�1

; X

i

; Z

i�1

) (10)

= H(Z

i

jZ

i�1

): (11)

Here,



� Equation (9) follows from the fat that given W

and Y

i�1

, X

i

is known deterministially and H(Z +

XjX) = H(ZjX).

� Equations (10) follows from the fat that given W

and Y

i�1

, we know all the previous transmitted let-

ters X

1

; X

2

; : : : ; X

i�1

and thus we an reover all the

previous noise letters Z

j

= Y

j

� X

j

(mod q) for

j = 1; 2; : : : ; i � 1.

� Equation (11) follows from the fat that Z

i

and

(W;Y

i�1

; X

i

) are onditionally independent given

Z

i�1

.

Therefore

I(W ;Y

i

jY

i�1

) = H(Y

i

jY

i�1

) � H(Z

i

jZ

i�1

) (12)

and

I(W ;Y

n

) =

n

X

i=1

�

H(Y

i

jY

i�1

) � H(Z

i

jZ

i�1

)

�

(13)

= H(Y

n

) � H(Z

n

) (14)

But H(Y

n

) � log

2

q

n

beause the hannel is disrete.

Therefore, if we divide both sides of (14) by n, and take n

to in�nity, we obtain that

C

FB

� C

NFB

But by de�nition of a feedbak ode, C

FB

� C

NFB

sine

a non-feedbak ode is a speial ase of a feedbak ode.

Thus we get:

C

FB

= C

NFB

= log

2

(q) � lim

n!1

1

n

H(Z

n

) (15)

Observations:

1. It is important to note that for additive hannels, the

noise entropy (given in equations (9)-(11)) remain the

same with or without feedbak. This is beause addi-

tion is invertible; in general H(X) � H(f(X)) with

equality holding for invertible funtions f(�). This is

true for both disrete and ontinuous alphabet addi-

tive hannels.

2. The reason why output feedbak potentially inreases

the apaity of additive non-white Gaussian han-

nels [4℄ is beause for ontinuous hannels we have

power onstraints on the input, whih upon optimiza-

tion may inreases lim

n!1

1

n

H(Y

n

) when feedbak

is used; while for disrete hannels this quantity is

upperbounded by log

2

(q) and annot be inreased

with feedbak. It is therefore suspeted that feed-

bak might inrease the apaity of disrete additive

hannels if we impose power onstraints on the input.

3. The result given in Proposition 1 an be easily ex-

tended to disrete non-antiipatory hannels with ad-

ditive asymptotially mean stationary (AMS) ergodi

noise proess. Suh lass of noise proesses inlude

time-homogeneous ergodi Markov hains with arbi-

trary initial distributions. The proof is idential to

that of Proposition 1, sine the non-feedbak apa-

ity for the hannel with AMS ergodi additive noise is

still given by equation (2) [7℄. A random proess has

the AMS property (or is an AMS proess) if its sample

averages onverge for a suÆiently large lass of mea-

surements (e.g., the indiator funtions of all events);

furthermore, there exists a stationary measure, alled

the \stationary mean" of the proess, that has the

same sample averages. A neessary and suÆient on-

dition for a random proess to possess ergodi proper-

ties with respet to the lass of all bounded measure-

ments is that it be AMS [8℄.

Finally, with the result of Proposition 1 in mind, it would

be interesting to investigate disrete non-additive station-

ary ergodi hannels with known non-feedbak apaities,

and see whether output feedbak would inrease their a-

paities.

3. DISCRETE CHANNELS WITH

STATIONARY NON-ERGODIC ADDITIVE

NOISE

3.1. Capaity with no Feedbak

Consider a disrete hannel similar to the one onsidered

in setion 2 with the exeption that the additive noise pro-

ess fZ

n

g to the hannel is stationary but non-ergodi. We

will show in proposition 2 that the resulting hannel is an

averaged hannel with additive stationary ergodi ompo-

nents.

An averaged hannel with stationary ergodi ompo-

nents is de�ned as follows:

Consider a family of stationary ergodi hannels param-

eterized by �:

n

W

(n)

�

(Y

n

= y

n

j X

n

= x

n

); � 2 �

o

1

n=1

(16)

where Y

n

and X

n

are respetively the input and output

bloks of the hannel, eah of length n. W

(n)

�

() is the blok

transition probabilities of the stationary ergodi hannels,

onditioned on a parameter � 2 �.

De�nition 1 We de�ne a hannel to be an \averaged"

ommuniation hannel with stationary ergodi ompo-

nents if its blok transition probability W

(n)

a

(Y

n

=

y

n

j X

n

= x

n

) (where \a" stands for averaged hannel) is

just the expeted value of the blok transition probability

fW

(n)

�

(Y

n

= y

n

jX

n

= x

n

)g taken with respet to some

distribution on � { i.e., if it's of the form:

W

(n)

a

(Y

n

= y

n

jX

n

= x

n

)

4

= E

�

[W

(n)

�

(y

n

jx

n

)℄ (17)

=

Z

�

W

(n)

�

(y

n

jx

n

) dG(�) (18)



where (�; �(�);G) is the probability spae on whih the

random variable � is de�ned.

Note that the averaged hannel has memory and is sta-

tionary. The averaged hannel funtions as follows: among

the (ountable or unountable) stationary ergodi ompo-

nents, nature selets one of these omponents aording to

some probability distribution G. This omponent is then

used for the entire transmission. However this seletion is

unknown to both the enoder and the deoder.

In order to show that we an write the blok transi-

tion probability of the hannel with additive stationary

non-ergodi noise (whih is equal to the blok transition

probability of the noise) as a mixture of the probabilities

of the additive stationary ergodi hannels (proposition 2),

we need to state �rst the ergodi deomposition theorem

for stationary proesses [9℄.

Notation: Consider a disrete time random proess

with an alphabet D, an event spae (�-�eld) �(D

1

) on-

sisting of subsets of the spae D

1

of sequenes u =

(u

1

; u

2

; : : :), u

i

2 D, a probability measure � on the spae

(D

1

; �(D

1

)) forming a probability spae (D

1

; �(D

1

); �)

and a oordinate or sampling funtion U

n

: D

1

�! D

de�ned by U

n

(u) = u

n

. The sequene of random vari-

ables fU

n

;n = 1; 2; : : :g de�ned on the probability spae

(D

1

; �(D

1

); �) is a disrete time random proess. As

onvenient, random proesses will be denoted by either

fU

n

g (to emphasize the sequene of random variables), by

[D; �;U℄ (to emphasize alphabet, probability measure, and

name of the random variable).

Lemma 1 (Ergodi Deomposition Theorem)

Let [D; �;U℄ be a stationary, disrete time random pro-

ess. There exists a lass of stationary ergodi measures

f�

�

; � 2 �g and a probability measure G on a event spae

of � suh that for every event F � �(D

1

) we an write:

�(F ) =

Z

�

�

�

(F ) dG(�) (19)

Remark: The ergodi deomposition theorem states

that, in an appropriate sense, all stationary nonergodi

random proesses have the form of equation (19) of being

a mixture of stationary ergodi proesses; that is if we are

viewing a stationary non-ergodi proess, we are in real-

ity viewing a stationary ergodi proess seleted by nature

aording to some probability measure G. Therefore, by

diretly applying the ergodi deomposition theorem we

get the following result:

Proposition 2 A disrete hannel with stationary non-

ergodi additive noise proess is an averaged hannel with

additive stationary ergodi omponents.

Proof 2 Sine the additive noise proess is independent

of the input proess, we an write:

W

(n)

(Y

n

= y

n

j X

n

= x

n

) =W

(n)

(Z

n

= y

n

�x

n

(mod q))

Now, applying the ergodi deomposition theorem on the

non-ergodi noise proess fZ

n

g, we get our result with eah

of the stationary ergodi hannels being an additive noise

hannel:

W

(n)

(Y

n

= y

n

jX

n

= x

n

) =

Z

�

W

(n)

�

(Z

n

= y

n

� x

n

) dG(�)

The strong apaity of averaged hannels does not exist

[10℄, sine the strong onverse to the hannel oding theo-

rem does not hold. However it was shown by Ahlswede [10℄

that the weak onverse holds for these hannels. Realling

from Setion 2.1 the de�nitions of a hannel blok ode and

the operational (weak) apaity of the hannel (the supre-

mum of all ahievable rates), we state the formula for the

non-feedbak operational apaity of an averaged hannel

[6℄,[10℄:

Lemma 2 (Capaity of Averaged Channel)

Consider the averaged hannel with stationary er-

godi omponents desribed by (17), with ommon in-

put and output alphabet A; input probability spae

(A

n

; �(A

n

); Q

n

) and general averaging probability distri-

bution G() -i.e. � an be either a disrete or ontinuous

parameter spae.

Then the non-feedbak (weak) apaity of the averaged

hannel is given by

C

(a)

NFB

= lim

�!0

C(�) (20)

where

C(�) = max

Q

sup

fE2�(�): G(E)�1��g

inf

�2E

i(Q;W

�

) (21)

where the mutual information rate i(Q;W

�

) is given by

i(Q;W

�

) = lim

n!1

1

n

I(Q

(n)

;W

(n)

�

)

with

I(Q

(n)

;W

(n)

�

)=

X

x

n

;y

n

2A

n

W

(n)

�

(y

n

jx

n

)Q

(n)

(x

n

) log

2

W

(n)

�

(y

n

jx

n

)

q

(n)

(y

n

)

and q

(n)

(y

n

)

4

=

P

~x

n

2A

n

W

(n)

�

(y

n

j~x

n

) Q

(n)

(~x

n

):

Non-Feedbak Capaity of the Channel with Ad-

ditive Noise: As we mentioned earlier, the hannel with

additive stationary non-ergodi noise is an averaged han-

nel with additive stationary ergodi omponents (Proposi-

tion 2). Sine the hannel has an additive noise proess

that is independent of the input proess, we will have that

the maximization over the input distribution Q in equation

(21) is realized for uniform input distribution (symmetry

property). We an therefore interhange the max and the

inf in (21) and we get:

max

Q

i(Q;W

�

) = log(q)� h(W

�

)



The resulting non-feedbak apaity of the hannel with

additive non-ergodi noise is:

C

NFB

= log

2

(q)� ess

�

sup h(W

�

) (22)

where

� the noise entropy rate h(W

�

) is given by

h(W

�

)

4

= lim

n!1

1

n

H

n

(W

(n)

�

) (23)

with

H

n

(W

(n)

�

)

4

= �

X

x

n

;y

n

2A

n

W

(n)

�

(y

n

jx

n

)Q

(n)

(x

n

) log

2

W

(n)

�

(y

n

jx

n

)

� and the essential supremum is de�ned by

ess

�

sup f(�)

4

= inf [r : dG(f(�) � r) = 1℄ (24)

3.2. Capaity with Feedbak

As in the previous setion, we onsider the orresponding

problem for the disrete additive hannel with omplete

output feedbak. Similarly, we de�ne a feedbak ode with

bloklength n and rate R, as a sequene of enoders

f

i

: f1; 2; : : : ; 2

nR

g �A

i�1

! A

for i = 1; 2; : : : ; n, along with a deoding funtion

g : A

n

! f1; 2; : : : ; 2

nR

g:

The interpretation of the funtions is idential to those in

setion 2.2.

Assuming our additive hannel, Y

i

= X

i

�Z

i

where fZ

i

g

is a stationary non-ergodi noise proess.

Here again, we assume that W is uniformly distributed

over f1; 2; : : : ; 2

nR

g and we use the same de�nitions of

ahievable rates, probability of deoding error and apaity

as in setion 2.2.

Beause of the feedbak, X

n

and Z

n

are no longer in-

dependent; X

i

depends ausally on Z

i�1

. We will denote

the apaity of the hannel with feedbak by C

FB

. We now

get the following result:

Proposition 3 Feedbak does not inrease the apaity of

hannels with additive stationary non-ergodi noise:

C

FB

= C

NFB

= log

2

(q)� ess

�

sup h(W

�

)

Proof 3 We will show that the (weak) onverse to the

hannel oding theorem still holds with feedbak. The

oding theorem itself obviously holds sine a non-feedbak

ode is a speial ase of a feedbak ode, and thus any

rate that an be ahieved without feedbak, an also be

ahieved with feedbak; i.e. for any R < C

NFB

, there ex-

ists feedbak odes with bloklength n and rate R, suh

that lim

n!1

P

(n)

e

= 0.

The additive hannel is a mixture of additive stationary

ergodi hannels, thus by Proposition 1, we obtain that for

eah of these omponents: C

(�)

FB

= C

(�)

NFB

. Now, examin-

ing equation (22), we have: h(W

�

) � ess

�

sup h(W

�

) a.e.

Then for some small � > 0, there exists omponents � 2 �

suh that:

h(W

�

) > ess

�

sup h(W

�

)� �

or

log

2

(q)� h(W

�

) < log

2

(q)� ess

�

sup h(W

�

) + �

or

C

(�)

NFB

< C

NFB

+ �

And the probability of suh �'s is Æ > 0.

By this we mean, that we an �nd among the additive

stationary ergodi omponents, with probability Æ > 0,

omponents with apaity C

(�)

NFB

< C

NFB

+ � for some

small � > 0; i.e. Æ = Prf� 2 � : C

(�)

NFB

< C

NFB

+ �g > 0.

Now, suppose there exists a sequene of feedbak odes

with bloklength n and rate R, suh that R > C

NFB

+2�,

then we an write

P

(n)

e

=

X

fy

n

:g(y

n

) 6=kg

W

(n)

(Y

n

= y

n

jX

n

= x

n

k

) (25)

where x

n

k

is the feedbak odeword of length n that or-

responds to the message W = k 2 f1; 2; : : : ; 2

nR

g. And

using Proposition 2, we an write:

P

(n)

e

=

Z

�

P

(n)

e

(�) dG(�) (26)

where

P

(n)

e

(�) =

X

fy

n

:g(y

n

) 6=kg

W

(n)

�

(Z

n

= y

n

� x

n

k

(mod q))

Thus we have:

P

(n)

e

=

Z

�

P

(n)

e

(�) dG(�) (27)

�

Z

f�2�:C

(�)

NFB

<C

NFB

+�g

P

(n)

e

(�) dG(�) (28)

We now reall the weak onverse to the hannel oding

theorem for stationary ergodi hannels: if R > C

NFB

+�

0

,

for some small �

0

> 0, then there exists  > 0 , suh that

P

(n)

e

>  for suÆiently large n. This is shown by using

Fano's inequality. Note that  depends only on �

0

and is

independent of the harateristis of the hannel.

Therefore, applying the weak onverse of the oding

theorem for stationary ergodi hannels, we get that for

R > C

NFB

+ 2� > C

(�)

NFB

+ �, there exists some small

 > 0, suh that P

(n)

e

(�) > , as n ! 1. As mentioned

above,  is independent of � and depends only on �.



Then

lim

n!1

P

(n)

e

> Prf� 2 � : C

(�)

NFB

< C

NFB

+ �g = Æ  > 0

Therefore the weak onverse is proved and C

FB

= C

NFB

.

Observation: It should be noted that for general av-

eraged hannels, i.e. non-additive averaged hannels, feed-

bak might inrease apaity. For example, if we on-

sider an averaged hannel with a �nite number of non-

additive disrete memoryless hannels (DMC's), then the

non-feedbak apaity of the averaged hannel is equal to

the apaity of the orresponding ompound memoryless

hannel [10℄:

C

(a)

NFB

= max

Q

(1)

inf

�2�

I(Q

(1)

;W

(1)

�

) (29)

Note that:

C

(a)

NFB

� inf

�2�

max

Q

(1)

I(Q

(1)

;W

(1)

�

) (30)

= inf

�2�

C

(�)

where C

(�)

= max

Q

(1)

I(Q

(1)

;W

(1)

�

) is the non-feedbak

apaity of eah of the DMC omponents.

Now, if we use output feedbak, the enoder knows the

previous reeived outputs, and thus an determine by some

statistial means, whih one of the DMC omponents is

being used. In the most pessimisti ase, the apaity of

this DMC omponent may be equal to inf

�2�

C

(�)

. Thus

the apaity with feedbak of the averaged hannel will be:

C

(a)

FB

= inf

�2�

C

(�)

(31)

Therefore C

(a)

FB

� C

(a)

NFB

. This result (equation (31)) is

equivalent to the result already derived by Ahlswede for

the disrete averaged hannel with sender informed [11℄.

Finally, in the ase for whih the inequality in (30) holds

with the strit inequality, we obtain that feedbak inreases

apaity: C

(a)

FB

> C

(a)

NFB

. Refer to [12℄ for an example of

a �nite olletion of DMC's for whih (30) holds with the

strit inequality.
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