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ABSTRACT

Joint soure-hannel oding for real-valued memoryless

soures and binary Markov hannels is onsidered. The

hannel is an additive-noise hannel where the noise pro-

ess is an M -th order Markov hain. We examine the

speial ase where the noise sample Z

i

depends only on

the sum of the previous M noise samples. Two joint

soure-hannel oding shemes are onsidered. The �rst is

a hannel-optimized vetor quantizer { optimized for both

soure and hannel. The seond sheme onsists of a simple

salar quantizer and a maximum a posteriori (MAP) dete-

tor. In this sheme, it is assumed that the salar quantizer

output has residual redundany that an be exploited by

the MAP detetor to ombat the orrelated hannel noise.

These two shemes are then ompared against two shemes

whih use interleaving. Numerial results show that the

proposed shemes outperform the interleaving shemes. In

some instanes, the gain is more than 5 dB.

I. Introdution

Soure and hannel oding are two problems that have

traditionally been dealt with independently. This is due

mainly to Shannon's soure-hannel separation priniple

[1℄, [2℄, whih states that the two problems an be treated

separately without loss of optimality. However, the sepa-

ration priniple holds only in the asymptoti ase | when

delay and omplexity are not onstrained. Reent works

[3℄, [4℄, [5℄ have shown that, when delay and/or omplex-

ity are onstrained, treating these problems jointly (i.e.,

joint soure-hannel oding) may result in improved per-

formane over the traditional tehnique of tandem soure-

hannel oding.

Most of the previous work on joint soure-hannel oding

have assumed that the hannel is memoryless, disregarding

the fat that real-world ommuniation hannels often have

memory. In this work, we will onsider two joint soure-

hannel oding shemes for memoryless soures and for

hannels with memory. More spei�ally, the soure is

assumed to be a real-valued, independent and identially

distributed (i.i.d.) sequene of random variables and the

hannel is assumed to be a binary stationary ergodi M -th

y
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order Markov hannel derived from the Polya ontagion

urn model [6℄. This is an additive-noise hannel where the

noise sample, Z

i

, depends only on the sum of the previous

M noise samples (Z

i�1

; Z

i�2

; : : : ; Z

i�M

).

We �rst onsider the design of a k-dimensional, rate R

bits/sample hannel-optimized vetor quantizer (COVQ)

[7℄, [8℄ for the given soure and hannel. The COVQ en-

oder output is transmitted over the Markov hannel. For

eah blok of k soure samples, the COVQ enoder pro-

dues kR bits for transmission. We assume that kR is

large enough with respet to M so that the memory in the

hannel an have an e�et in kR hannel uses. Thus, by

a proper design of the COVQ, we exploit the intra-blok

memory of the hannel | but not the inter-blok memory.

The COVQ design algorithm is a straightforward exten-

sion of the algorithm desribed in [7℄ and [8℄, where the

2

kR

� 2

kR

hannel transition matrix is now given in terms

of the transition probabilities of the Markov hannel.

We then exploit both intra-blok and inter-blok mem-

ories of the hannel. Here, we onsider a salar quantizer

(SQ) designed for the noiseless hannel. The SQ output

distribution is assumed to be non-uniform so that its en-

tropy (in bits/hannel use) is stritly less than the hannel

apaity (bits/hannel use). After a proper assignment of

binary indies to the SQ output, we transmit the indies

diretly over the hannel. At the reeiver, we exploit the

non-uniformity of the SQ output and the memory of the

hannel through the use of a sequene maximum a poste-

riori (MAP) detetor. The output of the MAP detetor

is then fed to the SQ deoder. This is analogous to pre-

vious works on MAP detetion of a Markov soure over a

memoryless hannel [9℄, [10℄.

The performanes of the two proposed shemes are

ompared against the performanes of two interleaving

shemes. In the interleaving systems, the Markov han-

nel is rendered memoryless by an interleaver and de-

interleaver

3

. Here, we assume that the soure and han-

nel odes are designed for the memoryless hannel. Thus,

the purpose of the interleaver and de-interleaver is to on-

vert the Markov hannel (with memory) into a memory-

less hannel. In the �rst interleaving sheme, we onsider

3�

It is assumed that the interleaver and de-interleaver

are ideal so that the Markov hannel is perfetly rendered

memoryless.
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a COVQ designed for a memoryless hannel with the same

bit error rate as the Markov hannel. This COVQ is then

used over the interleaved hannel (ombination of inter-

leaver, Markov hannel and de-interleaver). This system

is ompared against the COVQ designed for the Markov

hannel. In the seond interleaving system, we onsider

an SQ with its output transmitted over a memoryless (in-

terleaved) hannel. We all this system \SQ-Interleaved".

This is ompared against \SQ-MAP" where the MAP de-

tetor is designed for the Markov hannel.

The rest of this paper is organized as follows. In Se-

tion II, we present the Markov hannel model. The two

joint soure-hannel oding shemes are desribed in Se-

tion III. Simulation results for i.i.d. generalized Gaussian

soures are provided in Setion IV. In Setion V, ompar-

isons between the proposed shemes and the orresponding

interleaving shemes are made. Finally, the onlusions are

given in Setion VI.

II. Channel Model

Consider a disrete hannel with memory, with ommon

input, noise and output binary alphabet and desribed by

the following equation: Y

i

= X

i

� Z

i

, for i = 1; 2; 3; : : :

where:

� � represents the addition operation modulo 2.

� The random variables X

i

, Z

i

and Y

i

are respetively

the input, noise and output of the hannel.

� fX

i

g ? fZ

i

g, i.e., the input and noise sequenes are

independent from eah other.

� The noise proess fZ

i

g

1

i=1

is a homogeneous station-

ary mixing (hene ergodi) Markov proess of order

M . By this we mean that the noise sample, Z

i

, de-

pends only on the previous M noise samples, i.e.,

PrfZ

i

= e

i

jZ

1

= e

1

; : : : ; Z

i�1

= e

i�1

g =

PrfZ

i

= e

i

jZ

i�M

= e

i�M

; : : : ; Z

i�1

= e

i�1

g:

We assume that the marginal distribution of the noise

proess is given by

PrfZ

i

= 1g = � = 1� PrfZ

i

= 0g;

where � 2 [0; 1=2) is the hannel bit error rate (BER).

Furthermore, we assume that the proess fZ

i

g is generated

by the �nite-memory ontagion urn model desribed in [6℄.

Aording to this model, the noise sample Z

i

depends only

on the sum of the previous M noise samples. Thus, for

i �M + 1,

PrfZ

i

= 1jZ

i�M

= e

i�M

; : : : ; Z

i�1

= e

i�1

g

= PrfZ

i

= 1j

i�1

X

j=i�M

Z

j

=

i�1

X

j=i�M

e

j

g

=

� + (

P

i�1

j=i�M

e

j

)Æ

1 +MÆ

;

where e

j

= 0 or 1, for j = i �M; : : : ; i � 1. The positive

parameter Æ determines the amount of orrelation in fZ

i

g.

The orrelation oeÆient of the noise proess is Æ=(1+ Æ).

Note that if Æ = 0, the noise proess fZ

i

g beomes i.i.d.

and the resulting additive noise hannel beomes a binary

symmetri hannel (BSC).

A. Distribution of the Noise

For an input blok X = (X

1

; X

2

; : : : ; X

n

) and an out-

put blok Y = (Y

1

; Y

2

; : : : ; Y

n

), we denote the blok han-

nel transition probability matrix PrfY = yjX = xg by

Q(yjx).

� For blok length n �M , we have [6℄:

Q(yjx) = L(n; d; �; Æ);

where

L(n; d; �; Æ) =

h

Q

d�1

i=0

(�+ iÆ)

ih

Q

n�d�1

j=0

(1� � + jÆ)

i

�

Q

n�1

l=0

(1 + lÆ)

� ;

and d = d

H

(x;y) is the Hamming distane between x

and y.

� For n �M + 1, we obtain [6℄:

Q(yjx) = PrfZ = eg

= L(M; s; �; Æ)

n

Y

i=M+1

h

�+ s

i

Æ

1 +MÆ

i

e

i

h

1�

�+ s

i

Æ

1 +MÆ

i

1�e

i

(1)

where e = (e

1

; e

2

; : : : ; e

n

), e

i

= x

i

� y

i

, s = e

1

+ � � �+

e

M

and s

i

= e

i�1

+ � � �+ e

i�M

:

Note that the hannel is entirely desribed by �, Æ and M .

B. Capaity of the Channel

The apaity C of this hannel is given by [6℄:

C = 1�

M

X

s=0

�

M

s

�

L(M; s; �; Æ)h

b

�

� + sÆ

1 +MÆ

�

where h

b

(x) = �x log

2

(x)�(1�x) log

2

(1�x) is the binary

entropy funtion. Note that C is monotonially inreasing

with Æ (for �xed �;M) and M (for �xed �; Æ). It is mono-

tonially dereasing with � (for �xed Æ;M).

III. Joint Soure-Channel Coding Shemes

A. COVQ and COSQ

The ensuing formulation of COVQ follows that of [8℄.

Consider a real-valued i.i.d. soure, V = fV

i

g

1

i=1

, with

probability density funtion (p.d.f.) f(v). The soure is to

be enoded by a k-dimensional, n-bit COVQ whose out-

put is to be transmitted over the binary Markov hannel.

The enoding system, depited in Figure 1, onsists of an

enoder mapping, , and a deoder mapping, �. The en-

oder mapping  : IR

k

7! f0; 1g

n

is desribed in terms of

a partition P = fS

x

� IR

k

: x 2 f0; 1g

n

g of IR

k

aording

to

(v) = x if v 2 S

x

; x 2 f0; 1g

n

;

2



COVQ

Enoder

Markov

Channel
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Deoder

- - - -

V2 IR

k

X Y

^

V

Figure 1. Blok Diagram of a COVQ System.

where v = (v

1

; v

2

; : : : ; v

k

) is a blok of k suessive soure

samples. The hannel takes an input sequene x and pro-

dues and output sequene y. It is given in terms of the

blok hannel transition matrix Q(yjx). Finally, the de-

oder mapping � : f0; 1g

n

7! IR

k

is desribed in terms of a

odebook C = f

y

2 IR

k

: y 2 f0; 1g

n

g aording to

�(y) = 

y

; y 2 f0; 1g

n

:

The enoding rate of the above system is R = n=k

bits/sample and its average squared-error distortion per

sample is given by [8℄:

D =

1

k

X

x

Z

S

x

f(v)

8

<

:

X

y

Q(yjx)jjv� 

y

jj

2

9

=

;

dv; (2)

where f(v) =

Q

k

i=1

f(v

i

) is the k-dimensional soure p.d.f.

For a given soure, hannel, k and n, we wish to minimize

D by proper hoie of P and C.

From (2), we see that for a �xed C the optimal partition

P

�

= fS

�

x

g is given by [8℄:

S

�

x

=

8

<

:

v :

X

y

Q(yjx)jjv� 

y

jj

2

�

X

y

Q(yj
~
x)jjv� 

y

jj

2

; 8
~
x 2 f0; 1g

n

9

=

;

; (3)

x 2 f0; 1g

n

. Similarly, the optimal odebook C

�

= f

�

y

g

for a given partition is [8℄:



�

y

=

P

x

Q(yjx)

R

S

x

vf(v)dv

P

x

Q(yjx)

R

S

x

f(v)dv

: (4)

The COVQ design algorithm is a straightforward exten-

sion of the iterative algorithm in [11℄. The algorithm starts

out with an initial odebook, C

(0)

. With this �xed, it �nds

the optimal partition, P

(1)

, using (3). With P

(1)

�xed, it

uses (4) to �nd the optimal odebook, C

(1)

. This proe-

dure is repeated until the relative hange in distortion is

suÆiently small. Note that the average distortion, D, de-

reases monotonially at eah step. Thus, the algorithm is

guaranteed to onverge to a loally optimal solution (sine

D � 0). For k = 1, the above system is referred to as

hannel-optimized salar quantizer (COSQ). We will as-

sume that n �M + 1. Therefore, the blok hannel tran-

sition matrix, Q(yjx), will always be given by (1).

V

i

2 IR

SQ

Enoder

Markov

Channel

MAP

Detetor

SQ

Deoder

^

V

i

-

?

���

X

i

2 f0; 1g

n

Y

i

^

X

i

Figure 2. Blok Diagram of Joint Soure-Channel Coding

System Using MAP Detetion.

B. MAP Detetion

Next onsider the system depited in Figure 2. Here,

instead of using COVQ we use a salar quantizer (SQ).

The SQ is also desribed by  and � as above | exept

that k = 1 and R = n bits/sample. Instead of optimizing

the SQ for the Markov hannel, we make use of the residual

redundany of the SQ to ombat hannel noise. This is in

the spirit of the approahes in [5℄, [9℄ and [10℄.

The SQ in Figure 2 is designed using the Lloyd-Max

formulation [12℄, [13℄ whih assumes the hannel is noise-

free. Sine the soure, V = fV

i

g

1

i=1

, is i.i.d., the SQ en-

oder output, fX

i

g

1

i=1

, is also i.i.d. Therefore, there is no

memory at the enoder output. However, there may be

redundany in the form of a non-uniform distribution on

X. Let p(x) = PrfX = xg, x 2 f0; 1g

n

be the enoder

output distribution and H(X) = �

P

p(x) log p(x) be the

entropy of this distribution. Let �

D

= n�H(X) be the re-

dundany (due to the non-uniform distribution) of X. We

will assume that �

D

> 0, i.e., p(x) is non-uniform. For a

Lloyd-Max salar quantizer, this is often the ase when the

soure distribution, f(v), is non-uniform (assuming that

R > 1 bit/sample).

The SQ enoder output is transmitted diretly over the

hannel. At the reeiver, a sequene MAP detetor is used

to exploit the redundany of X and the memory of the

noise. The MAP detetor output is then fed to the SQ

deoder. The sequene MAP detetor observes a sequene

y

N

= (y

1

;y

2

; : : : ;y

N

) 2 f0; 1g

nN

and makes an estimate

of the sequene x

N

= (x

1

;x

2

; : : : ;x

N

) 2 f0; 1g

nN

aord-

ing to

^
x

N

= argmax

x

N

PrfX

N

= x

N

jY

N

= y

N

g:

It an be easily shown that if n �M ,

^
x

N

= argmax

x

N

�

log [Q(y

1

jx

1

)p(x

1

)℄

+

N

X

i=2

log

�

~

Q(e

i

je

i�1

)p(x

i

)

�

)

; (5)

where e

i

= x

i

� y

i

2 f0; 1g

n

; i = 1; 2; : : : ; N , and

~

Q(e

i

je

i�1

) = PrfZ

i

= e

i

jZ

i�1

= e

i�1

g. Note that for

3



i � 2,

~

Q(e

i

je

i�1

) =

ni

Y

j=n(i�1)+1

h

�+ s

j

Æ

1 +MÆ

i

e

j

h

1�

�+ s

j

Æ

1 +MÆ

i

1�e

j

;

where e

i�1

= (e

n(i�2)+1

; e

n(i�2)+2

; : : : ; e

n(i�1)

), e

i

=

(e

n(i�1)+1

; e

n(i�1)+2

; : : : ; e

ni

) and s

j

= e

j�1

+ � � �+ e

j�M

:

As expressed in (5), the sequene MAP detetor an be

implemented using the Viterbi algorithm, where x

i

is the

state at time instant i. The trellis has 2

n

states with 2

n

branhes leaving and entering eah state. For a branh

leaving state x

i�1

and entering state x

i

, the path metri

is log[

~

Q(x

i

� y

i

jx

i�1

� y

i�1

)p(x

i

)℄. From here on, this

sheme will be referred to as SQ-MAP. We note that the

omplexity and delay of SQ-MAP is due mainly to the

MAP detetor.

In some speial instanes, the output of the MAP dete-

tor is idential to its input. In suh ases, we say that the

MAP detetor is useless. As an example, whenM = n = 1,

it is shown in [14℄ that the MAP detetor is useless if

h

1� �+ Æ

�+ Æ

i

�

1� p

p

�

� 1; (6)

where p = PrfX = 0g 2 (1=2; 1℄. If (6) does not hold, then

the sequene MAP detetor will be useful for suÆiently

large N [14℄.

In this paper, we are mainly interested in ases where

M = 1 and n > 1. In these ases, little is known about

the usefulness of the MAP detetor. However, an impor-

tant fator ontributing to the performane of the MAP

detetor is how the binary odewords are assigned to the

SQ quantization levels. This issue will be disussed in the

following setion.

IV. Numerial Results

In the following, we will assume that the soure distri-

bution is given by

f(v) =

��(�; �)

2�(1=�)

expf�[�(�; �)jvj℄

�

g; (7)

where �(�; �) = �

�1

[�(3=�)=�(1=�)℄

�1=2

, � > 0 is the

exponential rate of deay and �

2

is distribution variane.

Note that for � = 2 the above is the Gaussian p.d.f. For

� = 1, it is the Laplaian p.d.f. Any i.i.d. soure with

distribution given by (7) is referred to as a generalized

Gaussian soure.

Numerial results for binary Markov hannels with Æ =

10 andM = 1 and generalized Gaussian soures with shape

parameter � = 0:5, 1 and 2 are presented in Tables 1, 2

and 3, respetively. Signal-to-noise ratio (SNR) perfor-

manes are given in dB for rates R=3 and 4 bits/sample

and hannel BER �=0.005, 0.01, 0.05 and 0.1. Also pro-

vided in Tables 1-3 are the optimal performanes theoret-

ially attainable (OPTA) obtained by evaluating D(RC),

where D(�) is the distortion-rate funtion of the soure for

the squared-error distortion measure.

The COVQ results were obtained from 500,000 training

vetors. A vetor quantization odebook (optimized for the

noiseless hannel) with odewords assigned by a simulated

annealing algorithm (desribed in [15℄) is hosen as the

initial odebook for the COVQ with �=0.005. The �nal

odebook for �=0.005 is hosen as the initial odebook for

�=0.01, and so on.

The SQ-MAP results were obtained via simulations. The

simulations were run 100 times, with N=1000 soure sam-

ples used in eah run. The average distortion, averaged

over the 100 runs, is given in dB. The SQ's used in the sim-

ulations were symmetri Lloyd-Max salar quantizers. As

mentioned earlier, how the quantization levels are mapped

to binary odewords is an important onsideration. We

have examined two odeword assignments: the natural bi-

nary ode (NBC) and the folded binary ode (FBC). An

example of these two odes is illustrated in Figure 3. Note

that the least signi�ant bit (LSB) is the leftmost bit. Also,

the FBC sign bit is the LSB. From our observations, FBC

onsistently outperforms NBC. FBC was used in the SQ-

MAP results in Tables 1, 2 and 3.

NBC
000 100 010 110 001 101 011 111

FBC
011 001 010 000 100 110 101 111

Figure 3. NBC and FBC Codeword Assignments for an

8-Level Lloyd-Max Salar Quantizer; Generalized Gaussian

Soure with Shape Parameter � = 1.

Note that, when M=1,

~

Q(e

i

je

i�1

) depends only on e

i

and e

n(i�1)

(most signi�ant bit (MSB) of e

i�1

). Thus,

for �xed y

N

, the path metri from state x

i�1

to state x

i

depends only on x

i

and x

n(i�1)

(MSB of x

i�1

). Therefore,

the MSB of the binary odeword plays an important role in

the Viterbi searh. Now note that, beause of symmetry,

the MSB of NBC is 0 or 1 with equal probability. Hene,

the MSB of NBC has zero redundany. FBC, on the other

hand, has the property that the MSB is muhmore likely to

be 0 than 1. Hene, the MSB of FBC has high redundany.

Therefore, it is easier to determine whether e

n(i�1)

=0 or

1 with FBC than with NBC. We believe that this is the

reason for the superiority of FBC over NBC in the SQ-

MAP sheme. We next ompare COVQ and SQ-MAP.

The COVQ system is a (loally) optimal system that

eÆiently exploits the intra-blok memory. Both enoder

and deoder of this system are optimal in the sense of

minimizing the mean squared error. However, this system

does not make any use of the inter-blok memory. On

the other hand, the SQ-MAP system, whih exploits both

memories, onsists of a sub-optimal enoder and a MAP

deoder that minimizes the error probability but not the

mean squared error. For �xed M , the e�et of the intra-

4



blok memory of the hannel beomes more dominant as

kR inreases. Therefore, for large bloks of kR bits, the

COVQ system outperforms the SQ-MAP system (e.g. for

k = 1, R = 4 in Tables 1-3).

V. Comparisons with Interleaving

The traditional tehnique for handling a hannel with

memory is to use interleaving. In the following, we on-

sider two interleaving shemes and ompare their perfor-

manes against COVQ and SQ-MAP. The �rst sheme,

COVQ-IL, onsists of a COVQ optimized for a BSC and

an interleaver. It is assumed that the interleaving length

is suÆiently large so that the ombination of interleaver,

Markov hannel and de-interleaver is equivalent to a BSC.

The SNR performanes of this sheme are given in Ta-

bles 1-3. COVQ-IL is ompared against COVQ (optimized

for the Markov hannel). Observe that in all ases | ex-

ept for �=0.5, R=3, k=1 and � =0.005 | COVQ outper-

forms COVQ-IL. The gain of COVQ over COVQ-IL is due

to the fat that COVQ exploits the noise memory whereas

COVQ-IL does not.

The seond interleaving sheme, SQ-IL, onsists of an

SQ designed by the Lloyd-Max formulation and an inter-

leaver. The SQ binary odewords are assigned by FBC.

The argument here is that FBC is a good odeword assign-

ment for BSC [16℄ and the purpose of the interleaver/de-

interleaver is to onvert the Markov hannel into a BSC.

The SNR results of SQ-IL are provided in Tables 1-3. This

sheme is ompared against SQ-MAP. Note that SQ-MAP

beats SQ-IL in all ases. The gain of SQ-MAP over SQ-IL

is due to the residual redundany, �

D

, of the SQ and the

noise memory. In Table 4, we provide the numerial val-

ues of �

D

for �=0.5, 1 and 2 and R=3 and 4. Note that

�

D

tends to be larger for small � (broad-tailed distribu-

tions). Also, observe that the improvement of SQ-MAP

over SQ-IL is larger for larger �

D

.

Finally, we note that the two interleaving shemes have

large enoding and deoding delays (due to the interleaver

and de-interleaver). The COVQ sheme only have a blok

delay of k�1 samples. The SQ-MAP sheme has the MAP

detetor delay.

VI. Conlusions

We onsidered joint soure-hannel oding for real-

valued i.i.d. soures and binary Markov hannel. Two

shemes were onsidered, COVQ and SQ-MAP. COVQ

outperforms SQ-MAP when kR is large. These shemes

were ompared against two interleaving shemes. In most

ases, the proposed shemes beat the interleaving shemes.

In some instanes, the performane gain is as muh as 5

dB. These results, however, are still far from the theoretial

limit (OPTA).
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R k System �=0.005 �=0.01 �=0.05 �=0.1

3 1 COSQ 7.80 7.75 6.52 5.23

COSQ-IL 8.35 7.23 4.05 2.32

SQ-MAP 9.27 8.37 5.67 4.03

SQ-IL 7.94 6.35 0.78 -2.24

2 COVQ 11.58 10.97 9.17 7.64

COVQ-IL 10.99 9.65 5.73 3.75

3 COVQ 13.59 12.72 10.35 9.11

COVQ-IL 11.63 10.50 6.78 4.43

1 OPTA 21.59 21.46 20.63 19.76

4 1 COSQ 11.26 10.39 8.73 7.22

COSQ-IL 10.79 9.09 5.39 3.38

SQ-MAP 11.15 9.46 4.72 2.73

SQ-IL 8.98 6.42 -0.46 -3.81

2 COVQ 15.21 14.43 11.58 9.88

COVQ-IL 13.75 12.11 7.48 4.94

1 OPTA 27.59 27.42 26.31 25.18

Table 1. SNR (in dB) Performanes of Several Systems Op-

erating Over a Markov Channel with Æ = 10 and M = 1;

Generalized Gaussian Soure with Shape Parameter � = 0:5;

R = Rate (Bits/Sample); k = Vetor Dimension; � = Chan-

nel Bit Error Rate; In the Interleaved Systems, COSQ and

COVQ are Designed for Memoryless Channels; OPTA = Op-

timal Performane Theoretially Attainable.

R k System �=0.005 �=0.01 �=0.05 �=0.1

3 1 COSQ 10.50 9.45 8.27 7.17

COSQ-IL 10.49 9.17 5.21 3.62

SQ-MAP 10.78 9.75 6.01 3.98

SQ-IL 10.36 8.87 3.61 0.82

2 COVQ 11.88 10.97 10.00 8.64

COVQ-IL 11.67 10.28 6.60 4.47

3 COVQ 13.01 12.43 10.68 9.48

COVQ-IL 11.52 10.67 7.08 4.84

1 OPTA 18.54 18.42 17.59 16.74

4 1 COSQ 13.57 13.19 10.54 8.61

COSQ-IL 12.76 11.03 6.82 4.79

SQ-MAP 12.90 10.86 5.73 3.43

SQ-IL 12.13 9.69 3.13 0.07

2 COVQ 15.38 15.09 12.27 10.68

COVQ-IL 14.41 12.92 8.33 5.71

1 OPTA 24.51 24.35 23.24 22.10

Table 2. SNR (in dB) Performanes of Several Systems Op-

erating Over a Markov Channel with Æ = 10 and M = 1;

Generalized Gaussian Soure with Shape Parameter � = 1;

R = Rate (Bits/Sample); k = Vetor Dimension; � = Chan-

nel Bit Error Rate; In the Interleaved Systems, COSQ and

COVQ are Designed for Memoryless Channels; OPTA = Op-

timal Performane Theoretially Attainable.

R k System �=0.005 �=0.01 �=0.05 �=0.1

3 1 COSQ 12.39 11.17 9.29 7.47

COSQ-IL 12.04 10.50 6.47 4.67

SQ-MAP 12.20 10.91 5.77 3.35

SQ-IL 11.99 10.36 4.93 2.18

2 COVQ 12.81 11.89 10.59 9.42

COVQ-IL 12.46 11.15 7.36 5.15

3 COVQ 13.55 12.90 11.35 10.05

COVQ-IL 12.01 11.40 7.67 5.37

1 OPTA 17.92 17.80 16.96 16.11

4 1 COSQ 15.67 14.93 11.24 9.13

COSQ-IL 14.15 12.30 7.81 5.60

SQ-MAP 13.90 11.89 5.58 2.93

SQ-IL 13.84 11.36 4.84 1.89

2 COVQ 16.70 16.11 13.28 11.52

COVQ-IL 15.28 13.70 9.06 6.40

1 OPTA 23.89 23.73 22.61 21.48

Table 3. SNR (in dB) Performanes of Several Systems Op-

erating Over a Markov Channel with Æ = 10 and M = 1;

Generalized Gaussian Soure with Shape Parameter � = 2;

R = Rate (Bits/Sample); k = Vetor Dimension; � = Chan-

nel Bit Error Rate; In the Interleaved Systems, COSQ and

COVQ are Designed for Memoryless Channels; OPTA = Op-

timal Performane Theoretially Attainable.

� R �

D

= R�H(X)

0.5 3 0.88

4 1.05

1 3 0.42

4 0.50

2 3 0.18

4 0.23

Table 4. Redundany (in Bits/Sample) of Symmetri Lloyd-

Max Salar Quantizer Output; Generalized Gaussian Soure

with Shape Parameter �; R = Rate of Salar Quantizer in

Bits/Sample.
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