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ABSTRACT

In light of reent results by Verd�u and Han on hannel

apaity, we examine three problems: the strong onverse

ondition to the hannel oding theorem, the apaity of

arbitrary hannels with feedbak and the Neyman-Pearson

hypothesis testing type-II error exponent. It is �rst re-

marked that the strong onverse ondition holds if and only

if the sequene of normalized hannel information densities

onverges in probability to a onstant. Examples illustrat-

ing this ondition are also provided. A general formula

for the apaity of arbitrary hannels with output feed-

bak is then obtained. Finally, a general expression for

the Neyman-Pearson type-II error exponent based on ar-

bitrary observations subjet to a onstant bound on the

type-I error probability is derived.

I. Introdution

In this paper, we investigate three problems inspired by

the reent work of Verd�u and Han on the general apa-

ity formula of arbitrary single-user hannels [6℄. We �rst

address the strong onverse ondition obtained in [6℄ and

provide examples of hannels for whih the strong onverse

holds. We next derive a general apaity formula for arbi-

trary single-user hannels with output feedbak. Finally,

we analyze the Neyman-Pearson hypothesis testing prob-

lem based on arbitrary observations.

In [6℄, Verd�u and Han give a neessary and suÆient on-

dition for the validity of the strong onverse to the hannel

oding theorem. They state that the strong onverse holds

if and only if the hannel apaity is equal to the han-

nel resolvability. We remark that if there exists an input

distribution P

�

X

n
ahieving the hannel apaity, then the

strong onverse ondition is atually equivalent to the on-

vergene in probability to a onstant (or in distribution to

a degenerate random variable) of the sequene of normal-

ized information densities aording to a joint input-output

distribution with P

�

X

n
as its indued marginal. We further-

more note that the expression of the strong apaity, whih

will be de�ned later, is given by the hannel resolvability.

We also obtain examples of disrete hannels satisfying the

strong onverse ondition.

The main tool used in [6℄ to derive a general expression

for the (nonfeedbak) hannel apaity is a new approah

to the (weak) onverse of the oding theorem based on a

simple lower bound on error probability. We utilize this

result to generalize the apaity expression for hannels

with feedbak. Feedbak apaity is shown to equal the

supremum, over all feedbak enoding strategies, of the

input-output inf-information rate whih is de�ned as the

liminf in probability of the normalized information density.

We �nally onsider the Neyman-Pearson hypothesis test-

ing problem based on arbitrary observations. We derive a

general expression for the type-II error exponent subjet

to a �xed bound on the type-I error probability. We ob-

serve that this expression is indeed the dual of the general

"-apaity formula given in [6℄.

II. The strong onverse of the single - user

hannel

A. Strong onverse ondition

Consider an arbitrary single-user hannel with input al-

phabet A and output alphabet B and n-dimensional tran-

sition distribution given by W

(n)

= P

Y

n

jX

n

: A

n

! B

n

;

n = 1; 2; : : :.

De�nition 1 ([6℄) An (n;M; �) ode has bloklength n,

M odewords, and (average) error probability not larger

than �. R � 0 is an �-ahievable rate if for every  > 0

there exists, for all suÆiently large n, (M;n; �) odes with

rate

log

2

M

n

> R� :

The maximum �-ahievable rate is alled the �-apaity, C

�

.

The hannel apaity, C, is de�ned as the maximal rate

that is �-ahievable for all 0 < � < 1. It follows immedi-

ately from the de�nition that C = lim

�!0

C

�

.

De�nition 2 ([6℄) A hannel with apaity C is said to

satisfy the strong onverse if for every Æ > 0 and every

sequene of (n;M; �

n

) odes with rate

log

2

M

n

> C + Æ;

it holds that �

n

! 1 as n!1.
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In [6℄, Verd�u and Han derive a general formula for the

operational apaity of arbitrary single-user hannels (not

neessarily stationary, ergodi, information stable, et.).

The (nonfeedbak) apaity was shown to equal the supre-

mum, over all input proesses, of the input-output inf-

information rate de�ned as the liminf in probability of the

normalized information density:

C = sup

X

n

I (X

n

;Y

n

); (1)

where X

n

= (X

1

; : : : ; X

n

), for n = 1; 2; : : :, is the blok

input vetor and Y

n

= (Y

1

; : : : ; Y

n

) is the orresponding

blok output vetor indued by X

n

via the hannel.

The symbol I (X

n

;Y

n

) appearing in (1) is the inf-

information rate between X

n

and Y

n

and is de�ned as

the liminf in probability of the sequene of normalized in-

formation densities

1

n

i

X

n

Y

n

(X

n

;Y

n

), where

i

X

n

Y

n

(a

n

; b

n

) = log

2

P

Y

n

jX

n

(b

n

ja

n

)

P

Y

n

(b

n

)

: (2)

Likewise, the sup-information rate denoted as

�

I(X

n

;Y

n

)

is de�ned as the limsup in probability of the sequene of

normalized information densities.

The liminf in probability of a sequene [6℄ of random vari-

ables is de�ned as follows: If A

n

is a sequene of random

variables, its liminf in probability is the largest extended

real number � suh that for all � > 0, lim sup

n!1

Pr[A

n

�

� � �℄ = 0. Similarly, its limsup in probability is the

smallest extended real numbers � suh that for all � > 0,

lim sup

n!1

Pr[A

n

� � + �℄ = 0. Note that these two

quantities are always de�ned; if they are equal, then the

sequene of random variables onverges in probability to a

onstant (whih is �).

In Theorem 6 in [6℄, Verd�u and Han establish general

expressions for �-apaity. They also give a neessary and

suÆient ondition for the validity of the strong onverse

(Theorem 7 in [6℄), whih states that the strong onverse

ondition is equivalent to the ondition

sup

X

n

I(X

n

;Y

n

) = sup

X

n

�

I(X

n

;Y

n

); (3)

i.e. C = S, where S

4

=sup

X

n

�

I(X

n

;Y

n

) denotes the han-

nel resolvability, whih is de�ned as the minimum number

of random bits required per hannel use in order to gen-

erate an input that ahieves arbitrarily aurate approxi-

mation of the output statistis for any given input proess

[4℄. Furthermore, if hannel input alphabet is �nite, then

C = S = lim

n!1

sup

X

n

1

n

I(X

n

;Y

n

):

Lemma 1 If (3) holds and there exists

~

X

n

suh that

sup

X

n

I(X

n

;Y

n

) = I(

~

X

n

;Y

n

);

then

I(

~

X

n

;Y

n

) =

�

I(

~

X

n

;Y

n

):

Proof : We know that

I(

~

X

n

;Y

n

) = sup

X

n

I(X

n

;Y

n

) = sup

X

n

�

I(X

n

;Y

n

) �

�

I(

~

X

n

;Y

n

):

But I(X

n

; Y

n

) �

�

I(

~

X

n

;Y

n

), for all

~

X

n

. Hene

I(

~

X

n

;Y

n

) =

�

I(

~

X

n

;Y

n

):

2

Remark: The above lemma states that if (3) holds and

there exists an input distribution that ahieves the han-

nel apaity, then it also ahieves the hannel resolvabil-

ity. However, the onverse is not true in general; i.e.,

if (3) holds and there exists an input distribution that

ahieves the hannel resolvability, then it does not ne-

essarily ahieve the hannel apaity.

Observation 1 If we assume that there exists an input

distribution P

�

X

n
that ahieves the hannel apaity, then

the following two onditions are equivalent:

1. sup

X

n

I(X

n

;Y

n

) = sup

X

n

�

I(X

n

;Y

n

).

2.

1

n

i

X

n

W

n

(X

n

; Y

n

) onverges to a onstant (whih is

the apaity C) in probability aording to the joint

input-output distribution P

X

n

Y

n

, suh that its indued

marginal is P

�

X

n
and the indued onditional distribu-

tion P

Y

n

jX

n

is given by the hannel transition distri-

bution.

We will hereafter use the ondition stated in the above

observation to verify the validity of the strong onverse.

But �rst, we note the following result.

De�ne the strong onverse apaity (or strong apaity)

C

SC

as the in�mum of the rates R suh that for all blok

odes with rate R and bloklength n,

lim inf

n!1

P

(n)

e

= 1;

where P

(n)

e

is probability of deoding error. It follows from

the de�nition that

C

SC

= lim

"!1

C

"

:

Lemma 2

C

SC

= sup

X

n

�

I(X

n

;Y

n

):

Proof :

1. C

SC

� sup

X

n

�

I(X

n

;Y

n

): From the de�nition of the

strong onverse apaity, we only need to show that if the

probability of deoding error of a (sequene of) blok ode

satis�es lim inf

n!1

P

(n)

e

= 1, its rate must be greater than

sup

X

n

�

I(X

n

;Y

n

).

Let

e

X

n

be the input distribution satisfying

�

I(

e

X

n

;Y

n

) >

sup

X

n

�

I(X

n

;Y

n

) � ", and let M = e

nR

. Also let P

(n)

e

satisfy lim inf

n!1

P

(n)

e

= 1.

2



From Theorem 1 in [6℄ (also from Feinsteins's lemma),

there exists an (n;M; P

(n)

e

) ode that satis�es

P

(n)

e

� P

h

1

n

i

eX

n

W

n

(

e

X

n

;Y

n

) �

1

n

logM + 

i

+exp f�ng ;

for any  > 0

1

, whih implies

(8  > 0) lim inf

n!1

P

h

1

n

i

eX

n

W

n

(

e

X

n

;Y

n

) � R+ 

i

= 1:

The above result is idential to

(8  > 0) lim sup

n!1

P

h

1

n

i

eX

n

W

n

(

e

X

n

;Y

n

) > R+ 

i

= 0:

Finally, by the de�nition of sup-information rate, R must

be greater than

�

I(

e

X

n

;Y

n

) > sup

X

n

�

I(X

n

;Y

n

) � ". Sine

" an be made arbitrarily small, we have the desired result.

2. C

SC

= sup

X

n

�

I(X

n

; Y

n

): If C

SC

>

sup

X

n

�

I(X

n

;Y

n

), then there exists a ode with rate C

SC

>

R =

1

n

logM > sup

X

n

�

I(X

n

;Y

n

) + " suh that

lim inf

n!1

P

(n)

e

< 1; (4)

for some " > 0. From [6,Theorem 4℄, every (n;M) ode

satis�es,

P

(n)

e

�P

h

1

n

i

X

n

W

n

(X

n

;Y

n

) �

1

n

logM �

"

2

i

�exp

n

�"n

2

o

;

where X

n

plaes probability mass 1=M on eah odeword.

Hene,

lim inf

n!1

P

h

1

n

i

X

n

W

n

(X

n

;Y

n

)�

1

n

logM �

"

2

i

�exp

n

�"n

2

o

= lim inf

n!1

P

h

1

n

i

X

n

W

n

(X

n

;Y

n

) � R�

"

2

i

� exp

n

�"n

2

o

� lim inf

n!1

P

h

1

n

i

X

n

W

n

(X

n

;Y

n

)�

�

I(X

n

;Y

n

) +

"

2

i

� e

�

"n

2

= 1;

whih implies lim inf

n!1

P

(n)

e

= 1, and ontradits (4).2

It an be easily shown that for any input distribution

X

n

,

I(X

n

;Y

n

) � supfR : F

X

(R) � "g �

�

I(X

n

;Y

n

);

where

F

X

(R)

4

= lim sup

n!1

P

h

1

n

i

X

n

W

n

(X

n

; Y

n

) � R

i

:

1

To make it lear, we re-phrase Theorem 1 in [6℄ as follows.

Fix n and 0 < P

(n)

e

< 1, and also �x the input distribution

P

eX

n

on A

n

. Then for every  > 0, there exists an (n;M; P

(n)

e

)

ode for the given transition probability W

n

that satis�es

P

(n)

e

� P

h

1

n

i

eX

n

W

n

(

e

X

n

;Y

n

) �

1

n

logM + 

i

+ exp f�ng :

Hene, from Theorem 6 in [6℄, if we assume that

sup

X

n

supfR : F

X

(R) � "g is ontinuous in ", we obtain

that

C � C

"

� C

SC

:

The above equation leads to the following result.

Corollary 1 C = S = C

SC

i� C

"

= C for all " 2 (0; 1).

B. Examples of hannels satisfying the strong

onverse

(i). Additive noise hannel

Consider the hannel with ommon input, noise, and out-

put alphabet, A = f0; 1; : : : ; q � 1g, desribed by

Y

n

= X

n

� Z

n

;

where � denotes addition modulo q and X

n

, Z

n

and Y

n

are respetively the input, noise, and output symbols of

the hannel at time n, n = 1; 2; : : :. We assume that the

input and noise sequenes are independent of eah other.

We also assume that the noise proess is stationary and

ergodi.

Sine the hannel is symmetri, the input proess

that ahieves (3) is uniform i.i.d. , whih yields a uni-

form i.i.d. output proess. It follows from the Shannon-

MMillian theorem that the information spetrum on-

verges to C where C = log q � H(Z

1

). Here, H(Z

1

)

denotes the noise entropy rate. Therefore, the strong on-

verse holds, and C

"

= C

SC

= C for all " 2 (0; 1).

Observation 2 If the noise proess is only stationary,

then the strong onverse does not hold in general. Indeed,

by the ergodi deomposition theorem [2℄, we an show that

the additive noise hannel is an averaged hannel whose

omponents are q-ary hannels with stationary ergodi ad-

ditive noise. In this ase, we obtain using Theorem 6 in

[6℄, a general �-apaity formula for this hannel:

C

"

= log q � F

�1

U

(1� ");

where U is a random variable with umulative distribution

funtion F

U

(�)

2

suh that the sequene �

1

n

log P (Z

n

) on-

verges to U in probability. Furthermore, it is known that

U = H

�

(Z

1

) where H

�

(Z

1

) is the entropy rate of the

ergodi omponents � de�ned on the spae (�; �(�);G)

3

.

The distribution of U an hene be derived using the mixing

distribution G of the average hannel. Finally, we remark

that

lim

�!0

C

"

= log q � F

�1

U

(1) = log q � ess

�

supH

�

(Z

1

) = C;

2

We assume the CDF F

U

(�) admits an inverse. Otherwise,

we an replae F

�1

U

(�) by

F

�1

U

(x)

4

=supfy : F

U

(y) < xg:

3

We assume that the probability spae (�; �(�); G) satis�es

ertain regularity onditions [2℄.

3



as expeted.

(ii). Additive noise hannel with input ost

onstraints

In general, the use of the hannel is not free; we assoiate

with eah input letter x a nonnegative number b(x), that

we all the \ost" of x. The funtion b(�) is alled the ost

funtion. If we use the hannel n onseutive times, i.e.,

we send an input vetor x

n

= (x

1

; x

2

; : : : ; x

n

), the ost

assoiated with this input vetor is \additive"; i.e.,

b(x

n

) =

n

X

i=1

b(x

i

):

For an input proess fX

i

g

1

i=1

with blok input distribution

P

(n)

(X

n

= x

n

) the average ost for sending X

n

is de�ned

by

E [b(X

n

)℄ =

X

x

n

P

(n)

(x

n

) b(x

n

) =

n

X

i=1

E [b(X

i

)℄ :

We assume that the ost funtion is \bounded"; i.e., there

exists a �nite b

max

suh that b(x) � b

max

for all x in the

set f0; : : : ; q � 1g.

De�nition 3 An n-dimensional input random vetor

X

n

= (X

1

; X

2

; : : : ; X

n

) that satis�es

1

n

E [b(X

n

)℄ � �;

is alled a �-admissible input vetor. We denote the set of

n-dimensional �-admissible input distributions by �

n

(�):

�

n

(�) =

n

P

(n)

(X

n

) :

1

n

E [b(X

n

)℄ � �

o

:

Reall that a hannel is said to be stationary if for every

stationary input, the joint input-output proess is station-

ary. Furthermore, a hannel is said to be ergodi if for

every ergodi input proess, the joint input-output pro-

ess is ergodi. It is known that a hannel with stationary

mixing additive noise is ergodi [2,5℄.

Lemma 3 If the noise proess is stationary and mixing,

then the strong onverse holds:

C

"

(�) = C(�) = lim

n!1

C

n

(�);

where C

n

(�) is the n'th apaity-ost funtion given by

C

n

(�)

4

= max

P

(n)

(X

n

)2�

n

(�)

1

n

I(X

n

;Y

n

):

Proof : Sine the hannel is a ausal, historyless

4

and

stationary ergodi hannel, and the ost funtion is addi-

tive and bounded, then there exists a stationary ergodi

4

Reall that a hannel is said to be ausal (with no antiipa-

tion) if for a given input and a given input-output history, its

urrent output is independent of future inputs. Furthermore, a

hannel is said to be historyless (with no input memory) if its

urrent output is independent of previous inputs. Refer to [2℄

for more rigorous de�nitions of ausal and historyless hannels.

input proess that ahieves C(�). This follows from the

dual result on the distortion rate funtion D(R) of sta-

tionary ergodi soures, whih states that for a stationary

ergodi soure with additive and bounded distortion mea-

sure, there exists a stationary ergodi input-output proess

P

X

n

Y

n

that ahieves D(R) suh that the indued marginal

P

X

n

is the soure distribution [2,3℄.

Therefore, if we form the joint input-output proess

f(X

n

; Y

n

)g

1

n=1

using the stationary ergodi input proess

that ahieves C(�), we obtain that f(X

n

; Y

n

)g

1

n=1

is sta-

tionary ergodi. Hene,

1

n

i

X

n

Y

n

(X

n

;Y

n

) onverges to

C(�) in probability. 2

III. General apaity formula with

feedbak

Consider a disrete hannel (with input alphabet A and

output alphabet B) with output feedbak. By this we mean

that there exists a \return hannel" from the reeiver to

the transmitter; we assume this return hannel is noiseless,

delayless, and has large apaity. The reeiver uses the re-

turn hannel to inform the transmitter what letters were

atually reeived; these letters are reeived at the trans-

mitter before the next letter is transmitted, and therefore

an be used in hoosing the next transmitted letter.

A feedbak ode with bloklength n and rate R onsists

of sequene of enoders

f

i

: f1; 2; : : : ; 2

nR

g � B

i�1

! A

for i = 1; 2; : : : ; n, along with a deoding funtion

g : B

n

! f1; 2; : : : ; 2

nR

g:

The interpretation is simple: If the user wishes to on-

vey message V 2 f1; 2; : : : ; 2

nR

g then the �rst ode sym-

bol transmitted is X

1

= f

1

(V ); the seond ode symbol

transmitted is X

2

= f

2

(V; Y

1

), where Y

1

is the hannel's

output due to X

1

. The third ode symbol transmitted

is X

3

= f

3

(V; Y

1

; Y

2

), where Y

2

is the hannel's output

due to X

2

. This proess is ontinued until the enoder

transmits X

n

= f

n

(V; Y

1

; Y

2

; : : : ; Y

n�1

). At this point

the deoder estimates the message to be g(Y

n

), where

Y

n

= [Y

1

; Y

2

; : : : ; Y

n

℄.

We assume that V is uniformly distributed over

f1; 2; : : : ; 2

nR

g. The probability of deoding error is thus

given by:

P

(n)

e

=

1

2

nR

2

nR

X

k=1

Prfg(Y

n

) 6= V jV = kg=Prfg(Y

n

) 6= V g:

We say that a rate R is ahievable (admissible) if there

exists a sequene of odes with bloklength n and rate R

suh that

lim

n!1

P

(n)

e

= 0:

We will denote the apaity of the hannel with feedbak

by C

FB

. As before, C

FB

is the supremum of all admissible

feedbak ode rates.

4



Lemma 4 The general apaity formula of an arbitrary

hannel with feedbak is

C

FB

= sup

X

n

I(V ;Y

n

);

where the supremum is taken over all possible feedbak en-

oding shemes.

5

Proof :

1. C

FB

� sup

(f

1

;:::;f

n

)

I(V ; Y

n

).

We �rst state the following result.

Proposition 1 For a feedbak ode of bloklength n and

size M , the probability of error satis�es

P

(n)

e

� P

h

1

n

i

WY

n

(W ;Y

n

) �

1

n

logM � 

i

�exp f�ng

for every  > 0, where P

W

(W = w) = 1=M for all w.

The proof of the proposition is as follows. Let � =

exp f�ng. De�ne

L

4

=

�

(w; b

n

) 2 f1; 2; : : : ;Mg � Y

n

: P

W jY

n

(wjb

n

) � �

	

=f(w; b

n

) 2 f1; 2; : : : ;Mg � Y

n

:

1

n

i

WY

n

(w; b

n

) �

1

n

logM � 

o

= [

M

w=1

fwg � B

w

;

where B

w

4

= fb

n

2 Y

n

: P

W jY

n

(wjb

n

) � �g. By de�n-

ing D

w

2 Y

n

be the deoding set orresponding to w, we

obtain

P

WY

n

(L) =

M

X

w=1

P

WY

n

(fwg � B

w

)

=

M

X

w=1

P

WY

n

(fwg � (B

w

\ D



w

))

+

M

X

w=1

P

WY

n

(fwg � (B

w

\ D

w

))

=

M

X

w=1

1

M

P

Y

n

jW

(B

w

\ D



w

jw)

+

M

X

w=1

P

WY

n

(fwg � (B

w

\ D

w

))

�

M

X

w=1

1

M

P

Y

n

jW

(D



w

jw) + �P

Y

n

([

M

w=1

D

w

);

5

sup

X

n

I(V ;Y

n

) = sup

X

n

=(f

1

(V );f

2

(V;Y

1

);:::;f

n

(V;Y

n�1

))

I(V ;Y

n

)

= sup

(f

1

;f

2

;:::;f

n

)

I(V ;Y

n

):

beause D

w

are pair�wise disjoint:

� P

(n)

e

+ �:

Based on this proposition, we an show that

C

FB

� sup

(f

1

;:::;f

n

)

I(V ;Y

n

)

using proof-by-ontradition [6℄.

2. C

FB

� sup

(f

1

;:::;f

n

)

I(V ; Y

n

).

This follows diretly using Feinstein's lemma as in [6℄.

2

IV. General formula for the Neyman-

Pearson hypothesis testing error

exponent

In this setion, we onsider a Neyman-Pearson hypoth-

esis testing problem for testing a null hypothesis H

0

: P

X

n

against an alternative hypothesis H

1

: Q

X

n

based on a se-

quene of random observations X

n

= (X

1

; : : : ; X

n

), whih

is supposed to exhibit a probability distribution of either

P

X

n

or Q

X

n

. Upon reeipt of the n observations, a �nal

deision about the nature of the random observations is

made so that the type-II error probability �

n

, subjet to a

�xed upper bound " on the type-I error probability �

n

, is

minimized. The type-I error probability is de�ned as the

probability of aepting hypothesis H

1

when atually H

0

is true; while the type-II error probability is de�ned as the

probability of aepting hypothesis H

0

when atually H

1

is true [1℄.

For arbitrary observations (not neessarily stationary,

ergodi), we derive a general formula for the type-II error

exponent subjet to a onstant upper bound " on the type-I

error probability. This is given in the following lemma.

Lemma 5 Given a sequene of random observations

X

n

= (X

1

; : : : ; X

n

) whih is assumed to have a probability

distribution either P

X

n

or Q

X

n

, the type-II error exponent

satis�es

supfD : F (D) < "g � lim sup

n!1

�

1

n

log �

�

n

(")

� supfD : F (D) � "g;

supfD :

�

F (D) < "g � lim inf

n!1

�

1

n

log �

�

n

(")

� supfD :

�

F (D) � "g;

where

F (D)

4

= lim inf

n!1

P

�

1

n

log

P (X

n

)

Q(X

n

)

� D

�

;

�

F (D)

4

= lim sup

n!1

P

�

1

n

log

P (X

n

)

Q(X

n

)

� D

�

;

and �

�

n

(") represents the minimum type-II error probability

subjet to a �xed type-I error bound " 2 (0; 1).

5



Proof : We �rst prove the lower bound of the limsup

of �(1=n) log �

�

n

("). For any D satisfying F (D) < ", there

exists Æ > 0 suh that F (D) < " � 2Æ; and hene, by the

de�nition of F (D), (9 a subsequene fn

j

g and N) suh

that for j > N ,

P

�

1

n

j

log

P (X

n

j

)

Q(X

n

j

)

� D

�

� "� Æ < ":

:

:

: �

�

n

j

(") � Q

�

1

n

j

log

P (X

n

j

)

Q(X

n

j

)

> D

�

� P

�

1

n

j

log

P (X

n

j

)

Q(X

n

j

)

> D

�

� exp f�n

j

Dg

� exp f�n

j

Dg :

Therefore,

lim sup

n!1

�

1

n

log �

�

n

(") � lim sup

j!1

�

1

n

j

log �

�

n

j

(") � D;

for any D with F (D) < ".

For the proof of the upper bound of the limsup of

�(1=n) log �

�

n

("), let U

n

be the optimal aeptane region

for alternative hypothesis under likelihood ratio partition,

whih is de�ned as follows.

U

n

4

=

�

1

n

log

P (X

n

)

Q(X

n

)

< �

n

�

+ �

n

�

1

n

log

P (X

n

)

Q(X

n

)

= �

n

�

;

for some �

n

and possible randomization fator �

n

2 [0; 1).

Then P (U

n

) = ".

Let D = supfD : F (D) � "g. Then F (D + Æ) > " for

any Æ > 0. Hene, (9  = (Æ) > 0), F (D + Æ) > "+ :

By the de�nition of F (D + Æ), (9 N)(8 n > N)

P

�

1

n

log

P (X

n

)

Q(X

n

)

� D + Æ

�

> "+



2

:

Therefore,

�

�

n

(") = Q

�

1

n

log

P (X

n

)

Q(X

n

)

> �

n

�

+(1� �

n

) �Q

�

1

n

log

P (X

n

)

Q(X

n

)

= �

n

�

� Q

�

D + Æ �

1

n

log

P (X

n

)

Q(X

n

)

> �

n

�

+(1� �

n

) �Q

�

1

n

log

P (X

n

)

Q(X

n

)

= �

n

�

�

�

P

�

D + Æ �

1

n

log

P (X

n

)

Q(X

n

)

> �

n

�

+ (1� �

n

)

�P

�

1

n

log

P (X

n

)

Q(X

n

)

= �

n

��

� exp f�n(D + Æ)g

=

�

P

�

1

n

log

P (X

n

)

Q(X

n

)

� D + Æ

�

�P

�

1

n

log

P (X

n

)

Q(X

n

)

< �

n

�

��

n

P

�

1

n

log

P (X

n

)

Q(X

n

)

= �

n

��

� exp f�n(D + Æ)g

�

�

"+



2

� "

�

exp f�n(D + Æ)g ; for n > N

=



2

exp f�n(D + Æ)g ; for n > N:

:

:

: lim sup

n!1

�

1

n

log �

�

n

(") � D + Æ:

Sine Æ an be made arbitrarily small,

lim sup

n!1

�

1

n

log �

�

n

(") � D:

Similarly, to prove the lower bound of the mininf of

�(1=n) log �

�

n

("), we �rst note that for any D satisfying

�

F (D) < ", (9 Æ > 0) suh that

�

F (D) < "� 2Æ; and hene,

by the de�nition of

�

F (D), (9 N)(8 n > N),

P

�

1

n

log

P (X

n

)

Q(X

n

)

� D

�

� "� Æ < ":

By following the same proedure of (5), we have for n > N ,

�

�

n

(") � exp f�nDg ;

Therefore,

lim inf

n!1

�

1

n

log �

�

n

(") � D;

for any D with

�

F (D) < ".

Then for the proof of the upper bound of the liminf

of �(1=n) log �

�

n

("), let

�

D = supfD :

�

F (D) � "g. Then

�

F (

�

D + Æ) > " for any Æ > 0. Hene, (9  = (Æ) > 0),

�

F (

�

D + Æ) > "+ :

By the de�nition of

�

F (

�

D + Æ), (9 a subsequene fn

j

g

and N) suh that for j > N ,

P

�

1

n

j

log

P (X

n

j

)

Q(X

n

j

)

�

�

D + Æ

�

> "+



2

:

Therefore, by following the same proedure as (5), we have

for j > N ,

�

�

n

j

(") �



2

exp

�

�n

j

(

�

D + Æ)

	

:

:

: lim inf

n!1

�

1

n

log �

�

n

(") � lim inf

j!1

�

1

n

j

log �

�

n

j

(") �

�

D+Æ:

Sine Æ an be made arbitrarily small,

lim inf

n!1

�

1

n

log �

�

n

(") �

�

D:

2

Remarks:

� Both

�

F (D) and F (D) are non-dereasing; hene, the

number of disontinuous points for both funtions is

ountable.
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� When the normalized log-likelihood ratio onverges in

probability to a onstant D



under null distribution

whih is the ase for most detetion problems of in-

terest, the type-II error exponent is that onstant D



,

and is independent of the type-I error bound ". For

example, in a speial ase of i.i.d. data soure with

jE

P

[log P (X)=Q(X)℄j <1, both funtions degener-

ate to the form

�

F (D) = F (D) = 1 if D > D



�

F (D) = F (D) = 0 if D < D



;

where D



4

= E

P

[log P (X)=Q(X)℄. As a result, for " 2

(0; 1),

lim sup

n!1

�

1

n

log �

�

n

(") = lim inf

n!1

�

1

n

log �

�

n

(") = D



:

� The signi�ane of the general type-II error exponent

formula of �xed level beomes transparent when the

spetrum (the umulative distribution funtion) of the

normalized log-likelihood ratio onverges in probabil-

ity under P (whih is weaker than onvergene in

mean) to a random variable Z with invertible umula-

tive distribution funtion F (�). In this ase, the type-

II error exponent an be expliitly written as

lim

n!1

�

1

n

log �

�

n

(") = F

�1

(");

for " 2 (0; 1). A more extreme ase is that Z is almost

surely a onstant whih is

lim

n!1

1

n

D (P

X

n

kQ

X

n

) ;

if the limit exists, where D(�k�) is the Kullbak-Leibler

divergene of two probability measures. This result

oinides with that obtained from Stein's Lemma.

This is also the ounterpart result of the strong on-

verse ondition (i.e., the "-apaity is independent of

") for disrete memoryless hannels (DMC) [6℄.

V. Summary

In this paper, we onsidered three di�erent problems re-

lated to the work of Verd�u and Han on hannel apaity

[6℄. Pertinent observations onerning the validity of the

strong onverse to the hannel oding theorem, as well as

examples of hannels for whih the strong onverse holds,

were provided. General expressions for the feedbak apa-

ity of arbitrary hannels and the Neyman-Pearson type-II

error exponent of onstant test level were also derived.
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