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ABSTRACT

In this work, we extend a variable-length source cod-

ing theorem for discrete memoryless sources to ergodic

time-invariant Markov sources of arbitrary order. To ac-

complish this extension, we establish a formula for the

R�enyi entropy rate lim

n!1

H

�

(n)=n. The main tool used

to obtain the R�enyi entropy rate result is Perron-Frobenius

theory. We also examine the expression of the R�enyi en-

tropy rate for speci�c examples of Markov sources and in-

vestigate its limit as � ! 1 and as � ! 0. Finally, we

conclude with numerical examples.

1. INTRODUCTION

Consider a discrete source fX

n

g; n = 1; 2; : : : with alphabet

X = fx

1

; x

2

; : : : ; x

M

g

and marginal distribution

p = (p

1

; p

2

; : : : ; p

M

):

Suppose that we wish to represent the letters in X by �nite

sequences of symbols from the set f0; 1; : : : ; D � 1g, where

D > 1, and such that the resulting D-ary code is uniquely

decodable. In 1961, R�enyi [16] introduced the entropy of

order � de�ned as

H

�

= (1� �)

�1

log

D

(

X

i

p

�

i

);

where � > 0, � 6= 1. The R�enyi entropy can be regarded

as a generalization of the Shannon entropy:

H

�

! H

4

= �

M

X

i=1

p

i

log

D

p

i

as �! 1:

Hence, many interesting properties and results involving

the Shannon entropy have been extended for the case of

R�enyi's entropy [1],[2],[5]-[8],[11],[14],[15].

Following [5], let the average code length of order t be

de�ned by

L(t) = t

�1

log

D

(

X

i

p

i

D

tl

i

);
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where 0 < t <1, and l

i

is the length of the codeword (or

code sequence) for the i-th source symbol.

L(t) is an interesting measure of code length which im-

plies that the cost of representing a source symbol varies

exponentially with code length, as opposed to Shannon's

expected code length measure

l

4

=

M

X

i=1

p

i

l

i

in which the cost varies linearly with code length [5]. A

simple calculation shows that L(t) reduces to l when t !

0; thus L(t) can be regarded as a more general measure.

Furthermore, in many applications where the processing

cost of decoding is high or the bu�er over
ow due to long

codewords is important, an exponential cost function can

be more appropriate than a linear cost function [4],[5],[11].

Consider a source sequence s of length n that we wish to

encode via a D-ary uniquely decodable code. Let P (s) be

the probability of s, and l(s) be the length of the codeword

for s. Then the average code length of order t for the n-

sequences is

L

n

(t) = t

�1

log

D

(

X

s

P (s)D

tl(s)

);

while the joint R�enyi entropy of (X

1

; X

2

; � � � ; X

n

) is

H

�

(X

1

; X

2

; : : : ; X

n

) = (1� �)

�1

log

D

(

X

s

P (s)

�

);

where � > 0; � 6= 1, and the summation extends over the

M

n

sequences s. For a discrete memoryless source (DMS),

it can be easily veri�ed [5] that

H

�

(X

1

; X

2

; : : : ; X

n

)

4

= H

�

(n) = nH

�

:

In [5], Campbell demonstrated the following variable-length

source coding theorem for a DMS, in which the R�enyi en-

tropy plays a role analogous to the Shannon entropy when

the cost function in the coding problem is exponential as

opposed to linear.

Theorem 1 [5] Let � = (1+t)

�1

. By encoding su�ciently

long sequences of input symbols of a DMS, it is possible to

make the average code length of order t per input symbol

L

n

(t)=n as close to H

�

as desired. Also, it is not possible

to �nd a uniquely decodable code whose average length of

order t is less than H

�

.
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In general, for sources with memory, the quantity H

�

(n)=n

is di�erent from H

�

. The main purpose of this work

is to derive a formula for the R�enyi entropy rate

lim

n!1

H

�

(n)=n of time-invariant ergodic (irreducible and

aperiodic) Markov sources of arbitrary order and to exam-

ine its limit as � ! 1 and as � ! 0. We also establish an

operational characterization for the R�enyi entropy rate by

extending the previous source coding theorem for Markov

sources. In the next section, we review some properties of

Markov sources and results from Perron-Frobenius theory.

2. MARKOV SOURCES AND

PERRON{FROBENIUS THEORY

Proofs of the theorems of this section may be found in [9,

Chapter 4].

Theorem 2 If a �nite state Markov source is ergodic (ir-

reducible and aperiodic) and has M states, then p

n

ij

> 0 for

all i; j, and all n � M(M � 1) where p

n

ij

denotes the ij-th

element of the n-th power of the transition matrix P .

A real vector x is de�ned to be positive, denoted x > 0,

if x

i

> 0 for each component i. Similarly, a real matrix P

is positive, denoted P > 0, if p

ij

> 0 for each i; j. Analo-

gously, x is non-negative, denoted x � 0, if x

i

� 0 for all i.

The matrix P is non-negative, denoted P � 0, if p

ij

� 0 for

all i; j. A directed graph is associated with P by drawing a

directed edge that goes from i to j if p

ij

> 0. The matrix

P is irreducible if for every pair of nodes i; j in this graph,

there is a walk from i to j.

Theorem 3 (Perron) Let P > 0 be a square matrix.

Then P has a positive eigenvalue � that exceeds the mag-

nitude of each other eigenvalue. There is a positive right

eigenvector, b > 0, corresponding to �, and the following

properties hold for � and b:

1. If �x � Px for x � 0, then �x = Px.

2. If �x = Px, then x = �b for some scalar �.

Corollary 1 Let � be the largest real eigenvalue of an ir-

reducible matrix and let the right and left eigenvectors of

� be b > 0 and a > 0. Then, within a scale factor, b is

the only non-negative right eigenvector of P (i.e., no other

eigenvalues have non-negative eigenvectors). Similarly, a is

the only non-negative left eigenvector of P .

Corollary 2 The largest real eigenvalue � of an irreducible

matrix P � 0 is a strictly increasing function of each com-

ponent of P .

Corollary 3 Let � be the largest eigenvalue of P > 0 and

let a(b) be the positive left (right) eigenvector of � normal-

ized so that ab = 1. Then

lim

n!1

P

n

�

n

= ba:

Theorem 4 Let P be the transition matrix of an ergodic

�nite state Markov chain. Then � = 1 is the largest real

eigenvalue of P , and � > j�

0

j for every other eigenvalue �

0

.

Furthermore, lim

m!1

P

m

= ea, where a > 0 is the unique

probability vector satisfying aP = a, and e = (1; 1; : : : ; 1)

T

is the unique b (within a scale factor) satisfying Pe = e.

3. ERGODIC MARKOV SOURCES

OF ARBITRARY ORDER

3.1. Assumptions

Let fZ

n

g; n = 1; 2 : : : be an ergodic Markov source of or-

der k and alphabet size M . De�ne fW

n

g as the process

obtained by k-step blocking the process fZ

n

g; i.e.,

W

n

4

= (Z

n

; Z

n+1

; : : : ; Z

n+k�1

):

Then

Pr(W

n

= w

n

jW

n�1

= w

n�1

; : : : ;W

1

= w

1

)

= Pr(W

n

= w

n

jW

n�1

= w

n�1

);

and fW

n

g is a �rst order ergodic Markov source with M

k

states. We next write the joint distribution of fZ

n

g in terms

of the conditional probabilities of fW

n

g,

p(w

n

jw

n�1

)

4

= Pr(W

n

= w

n

jW

n�1

= w

n�1

):

Suppose thatW

1

has the distribution q(w

1

) (not necessarily

the stationary distribution). Then, for n � k,

Pr(Z

1

= z

1

; : : : ; Z

n

= z

n

)

= q(w

1

)p(w

2

jw

1

) : : : p(w

n�k+1

jw

n�k

):

Let

V (n; �) =

X

(q(w

1

)p(w

2

jw

1

) : : : p(w

n�k+1

jw

n�k

))

�

;

where the sum is over w

1

; w

2

; : : : ; w

n�k+1

. The R�enyi en-

tropy of (Z

1

; : : : ; Z

n

) is

H

�

(n) =

1

1� �

log

D

V (n; �):

For simplicity of notation, denote by p

ij

the transition

probability that W

n

goes from state i to state j; i; j =

0; 1; : : : ;M

k

� 1. De�ne a new matrix R = (r

ij

) by

r

ij

= (p

ij

)

�

; i; j = 0; 1; : : : ;M

k

� 1:

Also, de�ne new vectors s = (s

0

; s

1

; : : : ; s

M

k

�1

) and 1 by

s

i

= (q

i

)

�

; 1

T

= (1; : : : ; 1);

where T denotes the transpose of the vector 1 which con-

tains M

k

components.

Then clearly V (n; �) can be written as

V (n; �) = sR

n�k

1:

Also, because of grouping, some entries of P = (p

ij

) are

zeros. Therefore fW

n

g is an ergodic Markov source of �rst

order with probability transition matrix P � 0.

2



3.2. R�enyi's entropy rate

For coding purposes, we are interested in establishing an

expression for the R�enyi entropy rate. First, we need the

following lemma.

Lemma 1 If P � 0 then there exists some positive number

m such that R

m

> 0.

Proof: By Theorem 2, there exists a positive integer m

such that P

m

> 0. An arbitrary entry of P

m

is a linear

combination of products of lengthm of elements of P which

can be written as

X

p

i

1

j

1

p

i

2

j

2

� � � p

i

m

j

m

;

where the sum is over some i

k

; j

k

2 f0; 1; : : : ;M

k

�1g where

k = 1; 2; : : : ;m.

Since P

m

> 0, then each entry is strictly positive; therefore

X

p

i

1

j

1

p

i

2

j

2

� � � p

i

m

j

m

> 0:

But clearly this will imply that

X

p

�

i

1

j

1

p

�

i

2

j

2

� � � p

�

i

m

j

m

> 0;

where the sum, as before, is over some i

k

; j

k

2

f0; 1; : : : ;M

k

� 1g where k = 1; 2; : : : ;m: But this sum is

in fact an arbitrary entry of R

m

; therefore R

m

> 0.

We will hereafter omit the base D of the logarithm. We

herein prove our main result which is an extension of [14,

Theorem 2].

Theorem 5 For an ergodic Markov source of order k,

lim

n!1

H

�

(n)

n

=

log �(�; P )

1� �

;

where P = (p

ij

) is the probability transition matrix of

the associated �rst order Markov source obtained by k-step

blocking the original source, and �(�; P ) is the largest pos-

itive eigenvalue of the matrix R = (p

�

ij

).

Proof: By Lemma 1, there exists m such that R

m

> 0.

By Theorem 3, R

m

has a positive eigenvalue �

�

with the

property that �

�

> j�

0

j for any other eigenvalue �

0

of R

m

.

Furthermore, R

m

has positive left and right eigenvectors

a and b, say, corresponding to the eigenvalue �

�

. Here, a

and s are row vectors while b and 1 are column vectors.

By Corollary 3,

lim

n!1

�

R

m

�

�

�

n�k

= ba:

Therefore

lim

n!1

log V (n; �)

n

= lim

n!1

n

�1

log

"

s

�

R

m

�

�

�

n�k

m

1:�

�(

n�k

m

)

#

Using the additivity of the logarithm, the above limit is

a sum of two limits. Then, a straightforward calculation

yields

lim

n!1

log V (n; �)

n

=

log �

�

m

:

But clearly the largest eigenvalue of R

m

is equal to the

largest eigenvalue of R raised to the power m. Therefore

�

�

= �

m

, where � is the largest eigenvalue of R. Hence

log �

�

m

=

log �

m

m

= log �:

Thus

lim

n!1

H

�

(n)

n

=

log �(�; P )

1� �

: (1)

3.3. A variable-length source coding theorem

We next establish a variable-length coding characterization

for the R�enyi entropy rate of ergodic Markov sources.

Theorem 6 Let � = (1 + t)

�1

. There exists a uniquely

decodable code for an ergodic Markov source of order k

with an asymptotic average code length of order t per input

symbol satisfying

lim

n!1

L

n

(t)

n

=

log �(�; P )

1� �

;

where �(�; P ) denotes the largest positive eigenvalue of the

matrix R = (p

�

ij

). Conversely, any uniquely decodable code

for the source has an asymptotic average code length of

order t per input symbol satisfying

lim

n!1

L

n

(t)

n

�

log �(�; P )

1� �

:

Proof: Let s be a sequence of input symbols of length

n from the source. We can consider such sequence as an

element from the alphabet X

M

. Proceeding exactly as in

the proof of [5, Theorem 1], we can similarly establish the

existence of a uniquely decodable code satisfying

H

�

(n)

n

�

L

n

(t)

n

<

H

�

(n)

n

+

1

n

:

By the previous theorem, we have

lim

n!1

H

�

(n)

n

=

log �(�; P )

1� �

:

Therefore

lim

n!1

L

n

(t)

n

=

log �(�; P )

1� �

:

This completes the proof of the forward part. The proof of

the converse part follows directly from [5, Lemma 1] and

(1).

4. SPECIAL CASES

4.1. Memoryless sources

If the source is memoryless, p

ij

= p

j

and R consists of M

identical rows, each being (p

�

1

; : : : ; p

�

M

). For this R, 1 is a

right eigenvector with eigenvalue

M

X

i=1

(p

i

)

�

:

3



Since the right eigenvector is positive, this is the largest

eigenvalue by Corollary 1. Thus

lim

n!1

H

�

(n)

n

=

log

�

P

M

i=1

(p

i

)

�

�

1� �

= H

�

:

4.2. First order Markov sources with symmetry

properties

We can generalize the last result to any matrix P for which

every row is some permutation of the �rst row. Let every

row of P consist of the numbers p

1

; : : : ; p

M

in some order,

where p

i

� 0 and

P

p

i

= 1. Then 1 is a right eigenvector

of R, with eigenvalue

M

X

i=1

(p

i

)

�

:

As before,

lim

n!1

H

�

(n)

n

=

log

�

P

M

i=1

(p

i

)

�

�

1� �

= H

�

:

4.3. First order binary Markov sources

For a binary Markov source we can calculate the eigenvalues

and eigenvectors explicitly and examine the result. Let the

transition matrix be

P =

�

x 1� x

1� y y

�

;

where 0 < x < 1 and 0 < y < 1. The stationary distribu-

tion for this P is the left eigenvector

v =

�

1� y

2� x� y

;

1� x

2� x� y

�

: (2)

The largest eigenvalue of R is found to be

�(�; P ) =

1

2

(x

�

+ y

�

+ [(x

�

� y

�

)

2

+ 4(1 � x)

�

(1� y)

�

]

1=2

):

A straightforward calculation yields

lim

�!1

�(�; P ) = 1:

Then, by l'Hôpital's rule (natural logarithm is used for con-

venience), we �nd that

lim

�!1

ln�(�; P )

1� �

= ��

0

(1; P ): (3)

From (1) and (3),

lim

�!1

lim

n!1

H

�

(n)

n

=

�

1� y

2� x� y

[x lnx+ (1� x) ln(1� x)]

�

1� x

2� x� y

[y ln y + (1� y) ln(1� y)]:

In view of (2), this is the Shannon conditional entropy (and

thus the Shannon entropy rate) associated with this Markov

chain. Thus, as expected, the R�enyi entropy rate reduces

to the Shannon entropy rate as �! 1.

4.4. Limiting cases for M-ary �rst order Markov

sources

The goal of this section is to �nd the limits of the R�enyi

entropy rate as � ! 1 and � ! 0. First we examine the

case when �! 1.

Limit for �! 1: For binary �rst order Markov sources,

as seen in the previous section, the limiting value is easy

to compute since the eigenvalues and eigenvectors can be

explicitly determined. However, this calculation for M -ary

�rst order Markov sources is more complicated, because in

general there is no closed form for the eigenvalues and the

eigenvectors. Each eigenvalue of P is a continuous function

of elements of P [12]. Note that as �! 1, R! P and that

the largest eigenvalue of the matrix P is 1 by Theorem 4.

Hence

lim

�!1

�(�; P ) = 1:

From this we see that (3) holds for any M . The equation

de�ning the largest positive eigenvalue �(�; P ) of R is

�

�

�

�

�

�

�

�

p

�

11

� � p

�

12

� � � p

�

1M

p

�

21

p

�

22

� � � � � p

�

2M

.

.

.

.

.

.

.

.

.

.

.

.

p

�

M1

p

�

M2

� � � p

�

MM

� �

�

�

�

�

�

�

�

�

= 0: (4)

By di�erentiating this equation with respect to �, we get

[12],[15]

D

1

+D

2

+ � � � +D

M

= 0; (5)

where D

i

is the determinant obtained from (4) by replacing

the i-th row by

(p

�

i1

ln p

i1

; p

�

i2

ln p

i2

; : : : ; p

�

ii

ln p

ii

� �

0

; : : : ; p

�

iM

ln p

iM

):

and leaving the other M � 1 rows unchanged. In this equa-

tion, �

0

denotes the derivative of � with respect to �. Note

that if we add in D

i

all the other columns to the i-th

column, the value of the determinant remains unchanged.

Therefore, for � = 1 and hence � = 1, D

i

is the determinant

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

p

11

� 1 : : : 0 : : : p

1M

p

21

: : : 0 : : : p

2M

.

.

.

.

.

. 0 : : :

.

.

.

p

i�1;1

: : : 0 : : : p

i�1;M

p

i;1

ln p

i;1

: : : �H(Xji)� �

0

: : : p

i;M

ln p

i;M

p

i+1;1

: : : 0 : : : p

i+1;M

.

.

.

.

.

. 0 : : :

.

.

.

p

M1

: : : 0 : : : p

MM

� 1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

;

where

H(Xji) = �

M

X

j=1

p

ij

ln p

ij

:

4



A zero occurs in all the entries of the i-th column except

for the entry i, since

P

M

j=1

p

lj

= 1. We conclude that

D

i

= (�H(Xji)� �

0

(1))c

i

; (6)

where c

i

is the M � 1 �M � 1 cofactor of p

ii

� 1 in the

determinant of (4) for the case � = 1, given by

c

i

=

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

p

11

� 1 : : : p

1;i�1

: : : p

1M

p

21

: : : p

2;i�1

: : : p

2M

.

.

. : : : : : : : : :

.

.

.

p

i�1;1

: : : p

i�1;i�1

� 1 : : : p

i�1;M

p

i+1;1

: : : p

i+1;i�1

: : : p

i+1;M

.

.

. : : : : : : : : :

.

.

.

p

M1

: : : p

M;i�1

: : : p

MM

� 1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

:

After substituting (6) in (5) and solving for �

0

(1), we obtain

that

lim

�!1

ln�(�; P )

1� �

= ��

0

(1; P ) =

M

X

i=1

p

i

H(Xji); (7)

where

p

i

=

c

i

P

j

c

j

:

But it is known [17, p. 21] that (p

1

; : : : ; p

M

) as de�ned

above is the stationary probability vector of P . Hence the

value given in (7) is just the Shannon conditional entropy

H(X

2

jX

1

) associated with the Markov source fX

n

g.

Limit for �! 0: Now we would like to get the limit of

the R�enyi entropy rate as �! 0.

lim

�!0

lim

n!1

H

�

(n)

n

= lim

�!0

log �(�; P )

1� �

= log �(0; P );

where �(0; P ) is the largest eigenvalue of R (with � = 0).

We assume 0

0

= 0 for vanishing probabilities because

lim

�!0

+

0

�

= 0. In this case R is the state transition ma-

trix of the Markov source. If we interchange the order of

limits we get

lim

n!1

lim

�!0

H

�

(n)

n

= lim

n!1

H

0

(n)

n

= lim

n!1

log T

n

;

where T is the number of possible paths of length n. From

[18],[3],[13], we know that

lim

n!1

log T

n

= log �;

where � is the largest eigenvalue of the state transition ma-

trix. Hence, we have two di�erent ways to compute the

desired limit.

5. NUMERICAL EXAMPLES

In this section, we illustrate numerically using a generalized

Hu�man code for the Markov source that H

�

(n)=n is close

to the R�enyi entropy rate and that H

�

(n)=n is close to

L

n

(t)=n for several values of n. Following [4], the R�enyi

redundancy of a code for a source sequence of length n is

de�ned as

�

n

=

1

n

L

n

(t)�

1

n

H

�

(n):

In [10, Theorem 1

0

], a simple generalization of Hu�man's

algorithm which minimizes �

n

is given. In Hu�man's algo-

rithm, each new node is assigned the weight p

i

+ p

j

, where

p

i

and p

j

are the lowest weights on available nodes. In the

generalized algorithm, the new node is assigned the weight

2

t

(p

i

+ p

j

).

The base of the logarithm is 2 for this section, so the en-

tropies are measured in bits.

Example 1: Let fX

n

g; n = 1; 2; : : : be a binary Markov

source with initial distribution Q = (0:8; 0:2) and probabil-

ity transition matrix

P =

�

0:4 0:6

0:7 0:3

�

:

Let � = 0:5, then t = 1. The largest eigenvalue of R =

(p

�

ij

) is found to be �(�; P ) = 1:396. Using the generalized

Hu�man's algorithm we get the following.

n H

�

(n)=n L

n

(t)=n

1 0.848 1.000

2 0.909 0.940

3 0.927 1.062

The sets of codewords are (0,1), (0,10,110,111) and

(00,11,010,011,101,1001,10000,10001) for n = 1; 2 and 3 re-

spectively. The R�enyi entropy rate in this case is equal to

0.963. Clearly, as n gets large H

�

(n)=n is closer to the

R�enyi entropy rate. Also, L

n

(t)=n is close to H

�

(n)=n.

Example 2: The next example is for a binary Markov

source with initial distribution Q = (0:3; 0:7) and proba-

bility transition matrix

P =

�

0:8 0:2

0:6 0:4

�

:

Let � = 0:25, then t = 3. The largest eigenvalue of R =

(p

�

ij

) is found to be �(�; P ) = 1:641. Using the generalized

Hu�man's algorithm we obtain the following.

n H

�

(n)=n L

n

(t)=n

1 0.969 1.000

2 0.965 1.242

3 0.961 1.246

The sets of codewords are (0,1), (1,01,000,001) and

(00,10,010,011,111,1101,11000,11001) for n = 1; 2 and 3 re-

spectively. The R�enyi entropy rate in this case is equal

to 0.953. As n gets large H

�

(n)=n is closer to the R�enyi

entropy rate. Furthermore, L

n

(t)=n is close to H

�

(n)=n.

From these two examples we might suspect that H

�

(n)=n

5



is a monotone function of n. However, the following exam-

ple illustrates that this is not the case.

Example 3: Let fX

1

; X

2

; : : :g be a binary Markov source

with initial distribution Q = (0:9; 0:1) and probability tran-

sition matrix

P =

�

0:2 0:8

0:1 0:9

�

:

Let � = 0:5, then t = 1. The largest eigenvalue of R = (p

�

ij

)

is found to be �(�; P ) = 1:286. We get the following.

n

H

�

(n)

n

1 0.678

2 0.742

3 0.739

4 0.736

The R�enyi entropy rate in this case is equal to 0.726

6. SUMMARY

In this work, we derive a formula for the R�enyi entropy

rate for ergodic time-invariant Markov sources of arbitrary

order. We establish an operational characterization for the

R�enyi entropy rate by extending a source coding theorem

for memoryless sources to the case of Markov sources. We

also investigate the expression of the R�enyi entropy rate

for speci�c cases of Markov sources and examine its limit

when � ! 1 and � ! 0. Finally, we conclude with some

numerical examples.
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