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ABSTRACT

In this work, we extend a variable-length source cod-
ing theorem for discrete memoryless sources to ergodic
time-invariant Markov sources of arbitrary order. To ac-
complish this extension, we establish a formula for the
Rényi entropy rate limy, oo Hq(n)/n. The main tool used
to obtain the Rényi entropy rate result is Perron-Frobenius
theory. We also examine the expression of the Rényi en-
tropy rate for specific examples of Markov sources and in-
vestigate its limit as @« — 1 and as @ — 0. Finally, we
conclude with numerical examples.

1. INTRODUCTION
Consider a discrete source {X,},n =1,2,... with alphabet

X ={x1,22,...,2m}
and marginal distribution

p = (p1,p2,...,pm)-

Suppose that we wish to represent the letters in X by finite
sequences of symbols from the set {0,1,...,D — 1}, where
D > 1, and such that the resulting D-ary code is uniquely
decodable. In 1961, Rényi [16] introduced the entropy of
order « defined as

H,=(1-a)"" logD(Zp?),

where @ > 0, a # 1. The Rényi entropy can be regarded
as a generalization of the Shannon entropy:

M
Ha%Hé—ZpilogDpi as a — 1.
i=1

Hence, many interesting properties and results involving
the Shannon entropy have been extended for the case of
Rényi’s entropy [1],[2],[5]-[8],[11],[14],[15].

Following [5], let the average code length of order t be
defined by

L(t) =t 'log, (> piD™"),

i
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where 0 < t < 00, and [; is the length of the codeword (or
code sequence) for the i-th source symbol.

L(t) is an interesting measure of code length which im-
plies that the cost of representing a source symbol varies
exponentially with code length, as opposed to Shannon’s
expected code length measure

M
Zpili
i=1

in which the cost varies linearly with code length [5]. A
simple calculation shows that L(t) reduces to [ when ¢t —
0; thus L(t) can be regarded as a more general measure.
Furthermore, in many applications where the processing
cost of decoding is high or the buffer overflow due to long
codewords is important, an exponential cost function can
be more appropriate than a linear cost function [4],[5],[11].

Cousider a source sequence s of length n that we wish to
encode via a D-ary uniquely decodable code. Let P(s) be
the probability of s, and I(s) be the length of the codeword
for s. Then the average code length of order ¢ for the n-
sequences is

Lo(t)y=t"" IOgD(Z P(s)D!"®)y,

E

1>

1

while the joint Rényi entropy of (X1, Xo, -, Xy) is
Ho (X1, Xa, .., Xp) = (1= ) ' log, (3 P(s)%),
S

where a > 0, a # 1, and the summation extends over the
M™ sequences s. For a discrete memoryless source (DMS),
it can be easily verified [5] that

Ho(X1, X, ..., X,) 2 Ho(n) = nH,.

In [5], Campbell demonstrated the following variable-length
source coding theorem for a DMS, in which the Rényi en-
tropy plays a role analogous to the Shannon entropy when
the cost function in the coding problem is exponential as
opposed to linear.

Theorem 1 [5] Let o = (14+t)'. By encoding sufficiently
long sequences of input symbols of a DMS, it is possible to
make the average code length of order ¢ per input symbol
L, (t)/n as close to Hy as desired. Also, it is not possible
to find a uniquely decodable code whose average length of
order t is less than H,.
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In general, for sources with memory, the quantity Hq(n)/n
is different from H,. The main purpose of this work
is to derive a formula for the Rényi entropy rate
lim,, o0 Ha(n)/n of time-invariant ergodic (irreducible and
aperiodic) Markov sources of arbitrary order and to exam-
ine its limit as @ — 1 and as @ — 0. We also establish an
operational characterization for the Rényi entropy rate by
extending the previous source coding theorem for Markov
sources. In the next section, we review some properties of
Markov sources and results from Perron-Frobenius theory.

2. MARKOV SOURCES AND
PERRON-FROBENIUS THEORY

Proofs of the theorems of this section may be found in [9,
Chapter 4].

Theorem 2 If a finite state Markov source is ergodic (ir-
reducible and aperiodic) and has M states, then p; > 0 for
all 4,7, and all n > M(M — 1) where p;; denotes the ij-th
element of the n-th power of the transition matrix P.

A real vector x is defined to be positive, denoted x > 0,
if ; > 0 for each component . Similarly, a real matrix P
is positive, denoted P > 0, if p;; > 0 for each ¢,j. Analo-
gously, « is non-negative, denoted = > 0, if ; > 0 for all <.
The matrix P is non-negative, denoted P > 0, if p;; > 0 for
all ¢, 5. A directed graph is associated with P by drawing a
directed edge that goes from ¢ to j if p;; > 0. The matrix
P is irreducible if for every pair of nodes ¢, j in this graph,
there is a walk from 7 to j.

Theorem 3 (Perron) Let P > 0 be a square matrix.
Then P has a positive eigenvalue A that exceeds the mag-
nitude of each other eigenvalue. There is a positive right
eigenvector, b > 0, corresponding to A, and the following
properties hold for A and b:

1. If Ax < Pz for x > 0, then Az = Px.

2. If Az = Pz, then x = ab for some scalar «.

Corollary 1 Let A be the largest real eigenvalue of an ir-
reducible matrix and let the right and left eigenvectors of
Abeb >0 and a > 0. Then, within a scale factor, b is
the only non-negative right eigenvector of P (i.e., no other
eigenvalues have non-negative eigenvectors). Similarly, a is
the only non-negative left eigenvector of P.

Corollary 2 The largest real eigenvalue X of an irreducible
matrix P > 0 is a strictly increasing function of each com-
ponent of P.

Corollary 3 Let A be the largest eigenvalue of P > 0 and
let a(b) be the positive left (right) eigenvector of A normal-
ized so that ab = 1. Then

Theorem 4 Let P be the transition matrix of an ergodic
finite state Markov chain. Then A = 1 is the largest real
eigenvalue of P, and A > |\'| for every other eigenvalue X'.
Furthermore, lim,,— - P™ = ea, where a > 0 is the unique
probability vector satisfying aP = a, and e = (1,1,...,1)7
is the unique b (within a scale factor) satisfying Pe = e.

3. ERGODIC MARKOV SOURCES
OF ARBITRARY ORDER

3.1. Assumptions

Let {Z,},n = 1,2... be an ergodic Markov source of or-
der k and alphabet size M. Define {W,} as the process
obtained by k-step blocking the process {Z,}; i.e.,

A
Wi 2 (Zn, Zngts oy Znsko1).

Then
PT(Wn = wn|Wn—l =Wp—1,...,W1 = wl)
= Pr(Wp=wn|Wp-1=wn1),

and {W,} is a first order ergodic Markov source with M*
states. We next write the joint distribution of {Z, } in terms
of the conditional probabilities of {Wy},
A
p(wn|wnfl) = PT(Wn = wn|anl = wnfl)-

Suppose that W7 has the distribution g(w; ) (not necessarily
the stationary distribution). Then, for n > k,

Pr(Zi=zi,..., %0 = zn)
= q(wi)p(wz|wy) ... p(Wn—pt1|wn—t).
Let
V(n,@) =Y (q(wi)p(wz|ws) .. p(wn—psiwa—r)),

where the sum is over wi, wa,..
tropy of (Z1,...,2Zx) is

.y Wp—g+1. The Rényi en-

1

—

Hy(n) = 1 log, V(n, ).

For simplicity of notation, denote by p;; the transition
probability that W, goes from state ¢ to state j; 4,5 =
0,1,...,M* — 1. Define a new matrix R = (r;;) by
JME— 1.

rij = ()", 4,5=0,1,...

Also, define new vectors s = (so, $1,...,8yk_1) and 1 by

si=(q)% 17 =(,...,1),

where T denotes the transpose of the vector 1 which con-
tains M* components.
Then clearly V(n,a) can be written as

V(n,a) =sR"*1.

Also, because of grouping, some entries of P = (p;;) are
zeros. Therefore {W,} is an ergodic Markov source of first
order with probability transition matrix P > 0.



3.2. Rényi’s entropy rate

For coding purposes, we are interested in establishing an
expression for the Rényi entropy rate. First, we need the
following lemma.

Lemma 1 If P > 0 then there exists some positive number
m such that R™ > 0.

Proof: By Theorem 2, there exists a positive integer m
such that P™ > 0. An arbitrary entry of P™ is a linear
combination of products of length m of elements of P which
can be written as

5 PiyjiPizjz " Pimim >

where the sum is over some iy, ji € {0,1,..., Mk—l} where
k=1,2,...,m.
Since P™ > 0, then each entry is strictly positive; therefore
Zpiljlpi2j2 © Digmgm > 0
But clearly this will imply that
Zp?ljlp?;j2 o .p?mjm >0,

where the sum, as before, is over some ix,jr €
{0,1,...,M* — 1} where k = 1,2,...,m. But this sum is
in fact an arbitrary entry of R™; therefore R" > 0. O

We will hereafter omit the base D of the logarithm. We
herein prove our main result which is an extension of [14,
Theorem 2].

Theorem 5 For an ergodic Markov source of order k,

H,(n) _ log Aa, P)

lim ,
n—00 n l1-«
where P = (p;;) is the probability transition matrix of

the associated first order Markov source obtained by k-step
blocking the original source, and A(a, P) is the largest pos-
itive eigenvalue of the matrix R = (pf}).

Proof: By Lemma 1, there exists m such that R™ > 0.
By Theorem 3, R™ has a positive eigenvalue A* with the
property that A* > || for any other eigenvalue A" of R™.
Furthermore, R™ has positive left and right eigenvectors
a and b, say, corresponding to the eigenvalue A*. Here, a
and s are row vectors while b and 1 are column vectors.
By Corollary 3,

Therefore

n—k
lim M = lim n~'log ls (}i—*) " l.A*(n;k)]

n— 00 n n— 00

Using the additivity of the logarithm, the above limit is
a sum of two limits. Then, a straightforward calculation
yields

lim log V(n, ) _ logA .

n—00 n m

But clearly the largest eigenvalue of R™ is equal to the
largest eigenvalue of R raised to the power m. Therefore
A" =A™, where A is the largest eigenvalue of R. Hence

log\* _ log A™ — log A

m

Thus H loz Al P
lim a(n) — Og (a7 )

n—00 n l1—«a

(1)
O

3.3. A variable-length source coding theorem

We next establish a variable-length coding characterization
for the Rényi entropy rate of ergodic Markov sources.

Theorem 6 Let o = (1 +¢)™*. There exists a uniquely
decodable code for an ergodic Markov source of order k
with an asymptotic average code length of order ¢ per input
symbol satisfying

lim L,(t) _ log Aea, P)

n—00 n 11—«

)

where A\(«, P) denotes the largest positive eigenvalue of the
matrix R = (pf;). Conversely, any uniquely decodable code
for the source has an asymptotic average code length of
order ¢t per input symbol satisfying

lim L,(t) S log )\(a,P).

n—00 n - 11—«

Proof: Let s be a sequence of input symbols of length
n from the source. We can consider such sequence as an
element from the alphabet X*. Proceeding exactly as in
the proof of [5, Theorem 1], we can similarly establish the
existence of a uniquely decodable code satisfying

Ha(n) _ Lo(t) _ Ha(n) 1

By the previous theorem, we have

H,(n) _ log A e, P)

li .
nLn;o n l1—«

Therefore I loz A(a. P
n— 00 n 11—«

This completes the proof of the forward part. The proof of
the converse part follows directly from [5, Lemma 1] and

(1). O

4. SPECIAL CASES

4.1. Memoryless sources

If the source is memoryless, p;; = p; and R consists of M
identical rows, each being (pf,...,p%). For this R, 1 is a
right eigenvector with eigenvalue

M

> i)

i=1



Since the right eigenvector is positive, this is the largest
eigenvalue by Corollary 1. Thus

i Ha(n) _ 108 (2 e)*)

n—00 n 11—«

= H,.

4.2. First order Markov sources with symmetry
properties

We can generalize the last result to any matrix P for which

every row is some permutation of the first row. Let every

row of P consist of the numbers pi1,...,pn in some order,

where p; > 0 and Zpi = 1. Then 1 is a right eigenvector

of R, with eigenvalue

As before,

p Ha() _ log (012, ()°)

n— 00 n 11—«

= H,.

4.3. First order binary Markov sources

For a binary Markov source we can calculate the eigenvalues
and eigenvectors explicitly and examine the result. Let the
transition matrix be

p— x 11—z 7
l—y y
where 0 < z < 1 and 0 < y < 1. The stationary distribu-
tion for this P is the left eigenvector

1-— 1-—x
”:<2 = > @
—r—-y 2—-z—y

The largest eigenvalue of R is found to be

1 (29 (a7 «@ (a7
Ma,P) = (@ +y" +[=" —y*)’

+4(1—2)*(1 - 9)°]"?).
A straightforward calculation yields

lim A(a, P) =1.

a—1

Then, by 'Hépital’s rule (natural logarithm is used for con-
venience), we find that

lim In A(a, P)
a=1l 1l—a

From (1) and (3),

=—X(1,P). (3)

lim lim Ha(n) =
a—1ln—o0 n

—Zi%_y[wlnw+(1 —z)In(1 — z)]

Ty + (- g1 - )

In view of (2), this is the Shannon conditional entropy (and
thus the Shannon entropy rate) associated with this Markov
chain. Thus, as expected, the Rényi entropy rate reduces
to the Shannon entropy rate as a — 1.

4.4. Limiting cases for M-ary first order Markov
sources

The goal of this section is to find the limits of the Rényi
entropy rate as « — 1 and o — 0. First we examine the
case when a — 1.

Limit for a — 1: For binary first order Markov sources,
as seen in the previous section, the limiting value is easy
to compute since the eigenvalues and eigenvectors can be
explicitly determined. However, this calculation for M-ary
first order Markov sources is more complicated, because in
general there is no closed form for the eigenvalues and the
eigenvectors. Each eigenvalue of P is a continuous function
of elements of P [12]. Note that as @ — 1, R — P and that
the largest eigenvalue of the matrix P is 1 by Theorem 4.
Hence

lim A(a, P) = 1.
a—1

From this we see that (3) holds for any M. The equation
defining the largest positive eigenvalue A(a, P) of R is

ph— A Pia T Pim
P51 P — A - Pom
. . . . =0. (4)
P Pir2 Piv — A

By differentiating this equation with respect to «, we get
[12],[15]
Di+Dy+---+ Dy =0, (5)

where D; is the determinant obtained from (4) by replacing
the i-th row by
(P Inpir, pis Inpiz, .., i lnpi — Ny . piy lnping).

and leaving the other M —1 rows unchanged. In this equa-
tion, A\’ denotes the derivative of A with respect to a.. Note
that if we add in D; all the other columns to the i-th
column, the value of the determinant remains unchanged.
Therefore, for &« = 1 and hence A = 1, D; is the determinant

P11 — 1 e 0 e Pim
p21 e 0 N pZM
: 0 :
Pi—1,1 0 Pi—1,M
piilnpii ... —H(X[i)—X pi,v Inpi p
Pi+1,1 0 Di+1,M
: : 0 :
pPM1 0 pvm —1
where
M
H(X]i) =~ pijlnpi.
j=1



A zero occurs in all the entries of the i-th column except
for the entry 4, since Z]Nil pi; = 1. We conclude that

Di = (—H(X]i) = X' (1))es, (6)

where ¢; is the M — 1 x M — 1 cofactor of p;; — 1 in the
determinant of (4) for the case a = 1, given by

pin—1 P1,i—1 e pPiM
P21 . P2,i—1 . p2M
Ci = | pi-1,1 pi—1,i—1 — 1 Pi—1,M
Pi+1,1 Pit1,i—1 Dit1,M
pPMm1 PM,i—1 pMM—l

After substituting (6) in (5) and solving for A'(1), we obtain
that

lim In A(a, P)

a=1 1—«

=-N(1,P) =) pH(X), (7)

where

Ci
pi = —Z o
i
But it is known [17, p. 21] that (p1,...,pm) as defined
above is the stationary probability vector of P. Hence the

value given in (7) is just the Shannon conditional entropy
H(X>|X,) associated with the Markov source {X, }.

Limit for ¢ — 0: Now we would like to get the limit of
the Rényi entropy rate as a — 0.

lim lim Ha(n) = lim log (e, P) =log A(0, P),

a—0n—oo n a—0 l1—«a
where A\(0, P) is the largest eigenvalue of R (with a = 0).
We assume 0° = 0 for vanishing probabilities because
lim,_,o+ 0% = 0. In this case R is the state transition ma-
trix of the Markov source. If we interchange the order of
limits we get

logT

lim lim Ha—(n) = = lim ,

n—o00 a—0 n n— 00 n n—00 n

where T is the number of possible paths of length n. From
[18],[3],[13], we know that

where A is the largest eigenvalue of the state transition ma-
trix. Hence, we have two different ways to compute the
desired limit.

5. NUMERICAL EXAMPLES

In this section, we illustrate numerically using a generalized
Huffman code for the Markov source that H,(n)/n is close
to the Rényi entropy rate and that H.(n)/n is close to
L, (t)/n for several values of n. Following [4], the Rényi
redundancy of a code for a source sequence of length n is
defined as 1 1

Pn = nLn(t) nHa(n).
In [10, Theorem 1'], a simple generalization of Huffman’s
algorithm which minimizes p, is given. In Huffman’s algo-
rithm, each new node is assigned the weight p; + p;, where
pi and p; are the lowest weights on available nodes. In the
generalized algorithm, the new node is assigned the weight
2 (pi + p;).
The base of the logarithm is 2 for this section, so the en-
tropies are measured in bits.

Example 1: Let {X,},n = 1,2,... be a binary Markov
source with initial distribution @ = (0.8, 0.2) and probabil-
ity transition matrix

04 0.6
P= ( 0.7 0.3 > ’
Let « = 0.5, then t = 1. The largest eigenvalue of R =

(p§;) is found to be A(a, P) = 1.396. Using the generalized
Huffman’s algorithm we get the following.

n | Ha(n)/n | L,(t)/n
1 | 0.848 1.000
2 | 0.909 0.940
3 | 0.927 1.062

The sets of codewords are (0,1), (0,10,110,111) and
(00,11,010,011,101,1001,10000,10001) for n = 1,2 and 3 re-
spectively. The Rényi entropy rate in this case is equal to
0.963. Clearly, as n gets large Hu(n)/n is closer to the
Rényi entropy rate. Also, L, (t)/n is close to Hy(n)/n.

Example 2: The next example is for a binary Markov
source with initial distribution @ = (0.3,0.7) and proba-
bility transition matrix

0.8 0.2
P= ( 0.6 04 > ’
Let a = 0.25, then ¢ = 3. The largest eigenvalue of R =

(pf;) is found to be A(a, P) = 1.641. Using the generalized
Huffman’s algorithm we obtain the following.

n | Ha(n)/n | L,(t)/n
1 | 0.969 1.000
2 | 0.965 1.242
3 | 0.961 1.246

The sets of codewords are (0,1), (1,01,000,001) and
(00,10,010,011,111,1101,11000,11001) for n = 1,2 and 3 re-
spectively. The Rényi entropy rate in this case is equal
to 0.953. As n gets large Ho(n)/n is closer to the Rényi
entropy rate. Furthermore, L,(t)/n is close to Hq(n)/n.
From these two examples we might suspect that H,(n)/n



is a monotone function of n. However, the following exam-
ple illustrates that this is not the case.

Example 3: Let {X1, X>,...} be a binary Markov source
with initial distribution @ = (0.9, 0.1) and probability tran-

sition matrix
0.2 0.8
P = < 0.1 09 > ’

Let @ = 0.5, then ¢ = 1. The largest eigenvalue of R = (pf;)
is found to be A(a, P) = 1.286. We get the following.

1] 0.678
2 | 0.742
3 | 0.739
4 1 0.736

The Rényi entropy rate in this case is equal to 0.726

6. SUMMARY

In this work, we derive a formula for the Rényi entropy
rate for ergodic time-invariant Markov sources of arbitrary
order. We establish an operational characterization for the
Rényi entropy rate by extending a source coding theorem
for memoryless sources to the case of Markov sources. We
also investigate the expression of the Rényi entropy rate
for specific cases of Markov sources and examine its limit
when @ —+ 1 and @ — 0. Finally, we conclude with some
numerical examples.
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