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Abstrat

Channel optimized vetor quantization (COVQ), as a joint soure-hannel oding

sheme, has proven to perform well in ompressing a soure and making the resulting

quantizer robust to hannel noise. Unfortunately like its ounterpart in the noiseless

hannel ase, the vetor quantizer (VQ), the COVQ enoding omplexity is inherently

high. Sample adaptive produt quantization was reently introdued by Kim and Shro�

to redue the omplexity of the VQ while ahieving omparable distortions, even for

moderate quantization dimensions. In this paper, we investigate the SAPQ for the ase of

noisy hannels and employ the joint soure-hannel approah of optimizing the quantizer

design by taking into aount both soure and hannel statistis. It is shown that, like

its ounterpart in the noiseless ase, the hannel optimized SAPQ ahieves omparable

performane results to the COVQ (within 0.2-1.0 dB), while maintaining onsiderably

lower enoding omplexity (half of that of COVQ) and storage requirements.

1 Introdution

Reently, Kim and Shro� introdued in [8, 9℄ a onstrained vetor quantizer struture

alled the sample adaptive produt quantizer (SAPQ) that ahieves a omparable perfor-

mane to the vetor quantizer (VQ) [13℄ while maintaining a lower enoding omplexity

(refer also to [3, 4, 11, 12, 14℄ for previous related work). Yet, as with most data om-

pression shemes that solely remove soure redundany, the ompressed soure tends to

be more sensitive to hannel noise. Traditionally, tandem soure-hannel oding was

used to ahieve reliable transmission of information by separately designing the soure

and hannel odes. It is however known that when there are delay and omplexity on-

straints, it is more advantageous to employ joint soure-hannel oding where the soure

and hannel odes are designed in ohesion (e.g., [1℄, [2℄, [5℄-[7℄,[10℄, [15℄-[17℄).

There are three main approahes to joint soure-hannel oding: the unequal error

protetion approah, the zero-redundany hannel oding approah, and the ombined
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soure-hannel oding approah. In this paper, we fous on the third approah, where

both hannel noise and soure statistis are inluded in the design of the soure oders.

VQ's designed in suh a way are labeled hannel optimized vetor quantizers (COVQ's).

COVQ has reeived a onsiderable amount of attention due to its improvement in per-

formane over VQ in the presene of hannel noise (e.g., [7, 15℄). However, COVQ inurs

high enoding omplexity. In this work, we study the design of SAPQ for noisy memo-

ryless hannels, or hannel optimized SAPQ (CO-SAPQ), in order to �nd a less omplex

alternative to COVQ. Countering [8℄, we will design and implement two types of hannel

optimized SAPQ's, namely the COm-SAPQ and the CO1-SAPQ.

2 Preliminaries

The hannel onsidered in this paper is the binary symmetri hannel (BSC), and the

distortion measure used is the mean squared distortion: d(x; y) = kx � yk

2

. Let N be

any integer to de�ne J

N

= f1; : : : ; Ng, P (lji) as the probability of reeiving index l given

that index i was sent over the BSC, and p(x) as the probability density funtion (p.d.f.)

of the soure vetor x.

A (k,N) COVQ onsists of an enoder ", a deoder g and their orresponding odebook

C = f

l

g

N

l=1

. The k dimensional soure vetor x is enoded by the enoder " into an index

i. The enoding is suh that:

"(x) = i if x 2 S

i

; where i 2 J

N

and S

i

= enoding region of i:

The binary expansion of index i is transmitted through a BSC, one bit at a time, and

is reeived as l at the reeiver, where l 2 J

N

. The reeived index is reprodued at the

deoder using the odebook C = f

l

g

N

l=1

. The deoding funtion g is suh that g(l) = 

l

;

it is a one-to-one mapping from the indies to the reprodution levels 

l

. The end-to-end

distortion is desribed by:

D =

N

X

i=1

N

X

l=1

Z

S

i

P (lji)d(x; 

l

)p(x)dx: (1)

It is shown in [7℄ that the neessary onditions to minimizing (1) are:

S

i

=

(

x :

N

X

l=1

P (lji)d(x; 

l

) �

N

X

l=1

P (lj)d(x; 

l

) 8 2 J

N

)

(2)

given the odebook C = f

l

g

N

l=1

, and:



l

=

P

N

i=1

P (lji)

R

S

i

xp(x)dx

P

N

i=1

P (lji)

R

S

i

p(x)dx

(3)

given the enoding regions fS

i

g

N

i=1

.

In this paper, we also use a (k,m,N) hannel optimized produt quantizer (COPQ),

whih is merely a bank of COVQ's. The COPQ an be viewed as the ounterpart of the

produt quantizer (PQ) for noiseless hannel quantization [8℄. The rate of both shemes

is:

R =

log

2

N

k

bits/soure sample . (4)



3 CO-SAPQ System Model

Figure 1 depits the basi struture of a (k,m,N ,�) COm-SAPQ. The COm-SAPQ on-

sists of 2

�

produt enoders fPE

j

g

2

�

j=1

. Eah PE

j

onsists ofm parallel enoders f"

s;j

g

m

s=1

,

that have m orresponding deoder funtions fg

s;j

g

m

s=1

at the deoder. Adhering the set

of enoders f"

s;j

g and deoder funtions fg

s;j

g is the odebook C

j

. The odebook C

j

is

onstruted by the produt of m odebooks C

j

= C

1;j

� : : :� C

m;j

. Copies of the input

soure vetor x = (x

1

; : : : ; x

m

) are enoded by eah PE

j

to produe an index vetor I

j

as follows:

PE

j

(x) = ("

1;j

(x

1

); : : : ; "

m;j

(x

m

)) = I

j

; where "

s;j

(x

s

) 2 J

N

; x

s

2 R

k

and I

j

2 J

m

N

:

Eah index vetor I

j

has a distortion assoiated to it, and the index vetor (I =

(i

1

; : : : ; i

m

); i

s

2 J

N

) with the minimum distortion is transmitted over the hannel

along with the index (j

�

) of the PE

j

�

that produed the index vetor I. Index vetor

I and index j

�

are transmitted over the hannel, and reeived as L (L 2 J

m

N

) and j

0

(j

0

2 J

2

�

). The deoder deodes L = (l

1

; : : : ; l

m

), where l

s

2 J

N

, using j

0

to indiate

whih set of deoder funtions to use; i.e., set fg

s;j

0

g

m

s=1

as follows:

Deoder(L; j

0

) = (g

1;j

0

(l

1

); : : : ; g

m;j

0

(l

m

)) = (

[1;j

0

℄

l

1

; : : : ; 

[m;j

0

℄

l

m

) = 

[j

0

℄

L

;

where 

[s;j

0

℄

l

2 C

s;j

0

for l 2 J

N

, and 

[j

0

℄

L

2 C

j

0

for L 2 J

m

N

.

The (k,m,N ,�) CO1-SAPQ is similar to the COm-SAPQ exept that the PE's are

replaed by repeated produt enoders RPE. A RPE

j

repeats the same enoder "

j

funtion throughout the m enoding bloks. The enoder "

j

has a deoder funtion g

j

orresponding to it at the reeiver. The pair of enoders "

j

and deoders g

j

are assoiated

by a single odebook C

j

. Now the odebook of RPE

j

is C

j

= C

j

� : : :� C

j

, where the

produt is taken m times. The enoding and deoding for CO1-SAPQ are similar to the

COm-SAPQ's:

RPE

j

(x) = ("

j

(x

1

); : : : ; "

j

(x

m

)) = I

j

; where "

j

(x

s

) 2 J

N

; x

s

2 R

k

and I

j

2 J

m

N

;

and

Deoder(L; j

0

) = (g

j

0

(l

1

); : : : ; g

j

0

(l

m

)) = (

[j

0

℄

l

1

; : : : ; 

[j

0

℄

l

m

) = 

[j

0

℄

L

;

where 

[j

0

℄

l

2 C

j

0

for l 2 J

N

, and 

[j

0

℄

L

2 C

j

0

for L 2 J

m

N

. The rate of both shemes is

R =

log

2

N

k

+

�

km

bits/soure sample: (5)

4 Neessary Conditions for Optimality

To simplify notation de�ne: v

s

(I) = the s

th

index omponent of I ; v

s

: J

m

N

! J

N

,

and: u

s

(x) = x

s

; s = 1; : : : ; m ; u

s

: R

km

! R

k

.

Distortion: Let S

[j

�

℄

I

be the enoding region for index vetor I and index j

�

: S

[j

�

℄

I

=

fx : COm-SAPQ Enoder(x) = (I; j

�

)g. When a soure sample x is enoded into the

index vetor I and index j

�

, at the reeiver we an potentially reeive any L 2 J

m

N

and



j

0

2 J

2

�

, and then the end reprodution of x beomes 

[j

0

℄

L

. The mean squared end-to-end

distortion of suh a system is:

D

COm-SAPQ

=

2

�

X

j

�

=1

X

I2J

m

N

Z

S

[j

�

℄

I

2

�

X

j

0

=1

X

L2J

m

N

P (j

0

jj

�

)P (LjI)

m

X

s=1

ku

s

(x)� 

[s;j

0

℄

v

s

(L)

k

2

p(x)dx: (6)

Optimal Enoding: Given odebooks fC

j

g

2

�

j=1

, we optimally enode a soure sample

x into an index vetor I and index j

�

using a (k,m,N ,�) COm-SAPQ. This optimization

is done to minimize the distortion (6). Note that there are two optimizations: one to

minimize the distortion over all index vetors Z 2 J

m

N

, and the other over indies all

j 2 J

2

�

. The struture of the COm-SAPQ allows the former to be done �rst, followed by

the latter. So �rst the distortion is optimized over all Z 2 J

m

N

, this is done by the PE's:

I

j

= PE

j

(x) = arg min

Z2J

m

N

2

�

X

j

0

=1

X

L2J

m

N

P (j

0

jj)P (LjZ)

m

X

s=1

ku

s

(x)� 

[s;j

0

℄

v

s

(L)

k

2

: (7)

When the soure x is enoded by PE

j

the distortion is:

D

j

(x) = min

Z2J

m

N

2

�

X

j

0

=1

X

L2J

m

N

P (j

0

jj)P (LjZ)

m

X

s=1

ku

s

(x)� 

[s;j

0

℄

v

s

(L)

k

2

:

The optimum index j

�

hooses the PE

j

with the minimum distortion and the index

vetor I: j

�

= argmin

j2J

2

�

D

j

(x) so I = PE

j

�

(x). This gives us our optimal enoding

regions:

S

[j

�

℄

I

=

�

x : j

�

= arg min

j2J

2

�

D

j

(x) and I = I

j

�

= PE

j

�

(x)

�

:

Optimal Deoding: Assume we are given the 2

�

N

m

enoding regions fS

[j

�

℄

I

g. We

an obtain the entroids by taking the partial derivatives of (6) with respet to 

[s;j

0

℄

l

and

setting it to zero. Note that with a BSC, at the reeiver the output of the s

th

blok 

[s;j

0

℄

l

depends only on the s

th

input to the hannel; i.e. v

s

(I). Thus, the entroids are given

by:



[s;j

0

℄

l

=

P

2

�

j

�

=1

P

N

i=1

P (j

0

jj

�

)P (lji)

R

S

[s;j

�

℄

i

u

s

(x)p(x)dx

P

2

�

j

�

=1

P

N

i=1

P (j

0

jj

�

)P (lji)

R

S

[s;j

�

℄

i

p(x)dx

; (8)

where

S

[s;j

�

℄

i

=

[

I:v

s

(I)=i

S

[j

�

℄

I

: (9)

Note that we have 2

�

N

m

enoding regions fS

[j

�

℄

I

g but only 2

�

Nm partition ells fS

[s;j

�

℄

i

g.

Beause of the strutural onstraint we have only 2

�

Nm odewords f

[s;j

0

℄

l

g, but when

enoding a soure sample x we have a hoie of 2

�

N

m

odewords f

[j

�

℄

L

g.

The enoding regions and entroids of the CO1-SAPQ an be derived in a fashion

similar to the above.



5 Enoding Simpli�ations

Simpli�ations to the enoding an be made using similar proedures as in Setion IV of

[7℄. This preproessing is made to simplify the alulation ofD

j

(x). For the COm-SAPQ,

the simpli�ations are failitated by introduing the following:

y

[s℄

;j

=

2

�

X

j

0

=1

N

X

l=1

P (j

0

jj)P (lj)

[s;j

0

℄

l

and �

[s℄

;j

=

2

�

X

j

0

=1

N

X

l=1

P (j

0

jj)P (lj)k

[s;j

0

℄

l

k

2

: (10)

This simpli�es the produt enoder operation (7) to be:

PE

j

(x) = I

j

= arg min

I2J

m

N

m

X

s=1

�

[s℄

v

s

(I);j

� 2hu

s

(x); y

[s℄

v

s

(I);j

i: (11)

where hx; yi is the inner produt over R

k

. Note also that by anelling the sum of the

ku

s

(x)k

2

over s in the expansion of D

j

(x) we get:

j

�

= argmin

j

D

j

(x) = argmin

j

(

min

I2J

m

N

m

X

s=1

�

[s℄

v

s

(I);j

� 2hu

s

(x); y

[s℄

v

s

(I);j

i

)

: (12)

In other words, to enode x by a (k,m,N ,�) COm-SAPQ, there are 2

�

Nm k-dimensional

vetors y

[s℄

;j

and 2

�

Nm salars �

[s℄

;j

to be alulated prior to enoding. For the CO1-SAPQ

the simpli�ations are similar :

y

;j

=

2

�

X

j

0

=1

N

X

l=1

P (j

0

jj)P (lj)

[j

0

℄

l

and �

;j

=

2

�

X

j

0

=1

N

X

l=1

P (j

0

jj)P (lj)k

[j

0

℄

l

k

2

: (13)

A (k,m,N ,�) CO1-SAPQ requires 2

�

N k-dimensional vetor y

;j

and 2

�

N salars �

;j

to

be alulated prior to enoding.

6 Design Algorithm for CO-SAPQ

The design algorithm for the COm-SAPQ is next desribed. The speialization to CO1-

SAPQ an be easily dedued.

1. Set parameters k, m, N , �, the design BSC error rossover probability �

d

, the

stopping threshold Æ, the splitting onstant k-dimensional vetor � = (�; : : : ; �),

the maximum number of iterations Maxiter, and M the total number of training

vetors fx

f

= (x

1;f

; : : : ; x

m;f

)g

M

f=1

. Initialize � = 1, � = 0, and the initial set of

odebooks C

(0)

1

= C

(0)

1;1

� � � � � C

(0)

m;1

.

2. If � � 2

�

stop; otherwise split the odebooks using C

(�)

s;j

= C

(�)

s;j

� � and C

(�)

s;j+�

=

C

(�)

s;j

+ � for s = 1; : : : ; m and j = 1; : : : ; � , then inrement � = � � 2 and set � = 0.

At this point we have � sets of odebooks fC

(�)

j

g

�

j=1

.

3. Calulate the �Nm vetors y

[s℄;(�)

;j

0

and values �

[s℄;(�)

;j

0

as in (10), using the odebooks

fC

(�)

j

g

�

j=1

. For eah x

f

, enode x

f

with eah fPE

(�)

j

g

�

j=1

as in (11). This will give

us the set of index vetors fI

j

g

�

j=1

. The PE

(�)

j

�

that produes the index vetor I

with minimum distortion is hosen using (12).



4. One I of x

f

is found, x

f

an be put into the appropriate partition ells S

[s;j

�

℄;(�)

i

in (9). Eah vetor x

f

should belong to m partition ells. The resulting distortion

is:

D

(�)

[x

f

; � ℄ =

�

X

j

0

=1

X

L2J

m

N

P (j

0

jj

�

)P (LjI)

m

X

s=1

kx

s;f

� 

[s;j

0

℄;(�)

vs(L)

k

2

:

5. Repeat Steps 3 and 4 for f = 1; : : : ;M . Then alulate the entroids, using the

disrete (8), and update the set of odebooks to fC

(�+1)

j

g

�

j=1

using the new entroids.

Finally alulate the overall distortion: D

(�)

[� ℄ =

1

kmM

P

M

f=1

D

(�)

[x

f

; � ℄:

6. Chek

D

(��1)

[� ℄�D

(�)

[� ℄

D

(�)

[� ℄

� Æ or � � Maxiter, if so then go to Step 2; otherwise set

� = � + 1 and go to Step 3.

This algorithm assumes an initial set of odebooksC

(0)

1

for the (k,m,N ,�) COm-SAPQ

whih is obtained from a (k,m,N) COPQ designed for the same �

d

. For the (k,m,N ,�)

CO1-SAPQ the algorithm starts o� with only one odebook whih an be obtained from

a (k,N) COVQ, again designed with the same �

d

.

7 Numerial Results

In this setion, we present numerial results on the performane, enoding omplexity and

storage requirements of the COVQ, COPQ, COm-SAPQ and CO1-SAPQ. The COVQ

was produed in aordane to the algorithms provided in [7℄.

In Tables 1 and 2, the signal-to-distortion ratio (SDR) performane of eah system

is provided at various rates and rossover probabilities �

d

for the ase of a memoryless

Gaussian soure and a Gauss-Markov soure with orrelation oeÆient � = 0:9 , respe-

tively. 200,000 training soure samples were used. The riteria used for omparing the

omplexity are the enoding and storage (for both enoding and deoding) requirements.

The goal is to �nd a hannel optimized quantizer that ahieves aeptable performanes

while maintaining low levels of enoding omplexity and storage requirements, at the

same rate. The enoding omplexity is measured as the number of multipliations re-

quired to enode a soure per salar soure input, and the storage requirement is measured

as the total number of salar values required to implement the quantizer [8℄. The storage

requirements inlude the storage of the vetors y

[s℄

;j

and values �

[s℄

;j

of (10) for the COm-

SAPQ, and the storage of y

i

and �

i

of (9) and (10) in [7℄ for the COVQ. These values

are imperative for the o�-line implementation of the quantizers.

Table 1, whih provides results for Gaussian memoryless soures, shows the perfor-

mane of the COm-SAPQ to be omparable to that of the COVQ, within 0.2 dB, while

maintaining lower enoding omplexities (half that of the COVQ) and storage require-

ments. In Table 2, where Gauss-Markov soures are onsidered, we remark that the

COm-SAPQ and the CO1-SAPQ of lower enoding omplexities, storage requirements

and dimension km , perform 0.3-1.0 dB worse than the COVQ, but still outperforms

the COPQ. However, when the dimension km of the CO1-SAPQ is inreased, we get

an improvement in performane. For example, for R= 3:0 omparing CO1-SAPQ for

km = 4 with COVQ with k = 2, we note that the CO1-SAPQ performs at least 0.3

dB better at low hannel noise levels and more than 0.06 dB better at high noise levels.



However, inreasing the dimension km of the CO1-SAPQ auses the enoding omplexity

to inrease to that of the COVQ; but it still requires less storage requirements than for

the COVQ.

The quantizers designed above were also tested using a validating sequene of 200,000

memoryless Gaussian and Gauss-Markov samples, and a simulated BSC with rossover

probability �. Perfetly mathed hannel onditions were assumed (� = �

d

) in the testing

and the results were found to be within 0.01-0.02 dB of those tabulated in Tables 1 and

2.

8 Conlusion

In this paper, we designed and implemented hannel optimized sample adaptive prod-

ut quantizers (COm-SAPQ and CO1-SAPQ) for the eÆient ompression and reliable

transmission of Gaussian soures over BSC's. We also ompared the performanes of the

COm-SAPQ/CO1-SAPQ shemes against those of the COVQ and the COPQ. The per-

formane of the COm-SAPQ was found to be omparable to that of the COVQ (within

0.2 dB) when the soure is memoryless Gaussian, with a redution fator of 1/2 in en-

oding omplexity. For Gauss-Markov soures, an improvement over the COVQ an

be made by the CO1-SAPQ for the same enoding omplexity, but with the advantage

of lower storage requirements. Improvements in the hoie of an initial odebook for

the COm-SAPQ still needs to be made in order to improve its SDR for Gauss-Markov

soures.
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Figure 1: Channel optimized m-SAPQ model.



�

d

R km Quantizer 0:000 0:005 0:010 0:050 0:100 0:150 omplexity storage

3.0 2

COVQ

k = 2; N = 64

15.23 12.19 11.07 7.35 5.11 3.78 64 320

COPQ

k = 1; N = 8

14.57 12.00 10.47 5.62 4.65 3.48 8 48

COm-SAPQ

k = 1; N = 2; � = 4

15.07 12.38 11.04 7.20 5.14 3.75 32 192

CO1-SAPQ

k = 1; N = 2; � = 4

13.59 11.54 10.29 6.48 4.35 3.13 32 96

4

CO1-SAPQ

k = 1; N = 4; � = 4

15.19 12.41 10.92 6.61 4.47 3.18 64 192

2.0 2

COVQ

k = 2; N = 16

9.64 8.71 8.02 5.52 3.82 2.71 16 80

COPQ

k = 1; N = 4

9.27 8.50 7.86 4.85 3.04 1.99 4 24

COm-SAPQ

k = 1; N = 2; � = 2

9.51 8.71 8.10 5.48 3.86 2.79 8 48

CO1-SAPQ

k = 1; N = 2; � = 2

8.72 8.04 7.50 5.16 3.61 2.50 8 24

3

CO1-SAPQ

k = 1; N = 2; � = 3

8.92 8.16 7.58 5.06 3.45 2.45 16 48

1.0 4

COVQ

k = 4; N = 16

4.66 4.44 4.24 3.14 2.26 1.61 16 144

COPQ

k = 2; N = 4

4.38 4.16 3.96 2.72 1.75 1.14 4 40

COm-SAPQ

k = 2; N = 2; � = 2

4.47 4.28 4.09 3.13 2.26 1.61 8 80

CO1-SAPQ

k = 2; N = 2; � = 2

4.41 4.15 3.95 2.81 1.96 1.44 8 40

6

CO1-SAPQ

k = 2; N = 2; � = 3

4.53 4.25 4.01 2.73 1.95 1.39 16 80

Table 1: SDR (in dB); 200,000 memoryless Gaussian training samples; Rate R in

bits/soure sample; �

d

is the design BSC rossover probability.



�

d

R km Quantizer 0:000 0:005 0:010 0:050 0:100 0:150 omplexity storage

3.0 2

COVQ

k = 2; N = 64

19.03 14.50 13.58 9.36 6.80 5.13 64 320

COPQ

k = 1; N = 8

14.57 12.00 10.47 5.60 4.63 3.46 8 48

COm-SAPQ

k = 1; N = 2; � = 4

16.62 14.22 12.75 8.43 6.07 4.62 32 192

CO1-SAPQ

k = 1; N = 2; � = 4

17.24 14.02 12.65 8.68 6.25 4.58 32 96

4

CO1-SAPQ

k = 1; N = 4; � = 4

19.72 15.31 13.85 9.51 6.88 5.19 64 192

2.0 2

COVQ

k = 2; N = 16

13.54 11.39 10.04 7.27 5.27 3.82 16 80

COPQ

k = 1; N = 4

9.28 8.50 7.85 4.83 3.02 1.96 4 24

COm-SAPQ

k = 1; N = 2; � = 2

12.50 10.76 9.71 6.26 4.53 3.37 8 48

CO1-SAPQ

k = 1; N = 2; � = 2

12.50 10.76 9.71 6.26 4.53 3.37 8 24

3

CO1-SAPQ

k = 1; N = 2; � = 3

13.95 11.81 10.68 7.08 5.21 3.93 16 48

1.0 4

COVQ

k = 4; N = 16

10.20 9.15 8.36 6.24 4.64 3.42 16 144

COPQ

k = 2; N = 4

7.89 4.10 3.93 2.94 2.11 1.50 4 40

COm-SAPQ

k = 2; N = 2; � = 2

9.66 8.78 8.17 5.63 4.08 3.10 8 80

CO1-SAPQ

k = 2; N = 2; � = 2

9.52 8.63 8.01 5.55 4.11 3.09 8 40

6

CO1-SAPQ

k = 2; N = 2; � = 3

9.99 9.11 8.51 6.09 4.58 3.50 16 48

Table 2: SDR (in dB); 200,000 Gauss Markov training samples with orrelation oeÆient

� = 0:9; Rate R in bits/soure sample; �

d

is the design BSC rossover probability.


