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Abstract

Channel optimized vector quantization (COVQ), as a joint source-channel coding
scheme, has proven to perform well in compressing a source and making the resulting
quantizer robust to channel noise. Unfortunately like its counterpart in the noiseless
channel case, the vector quantizer (VQ), the COVQ encoding complexity is inherently
high. Sample adaptive product quantization was recently introduced by Kim and Shroff
to reduce the complexity of the V(Q while achieving comparable distortions, even for
moderate quantization dimensions. In this paper, we investigate the SAP(Q for the case of
noisy channels and employ the joint source-channel approach of optimizing the quantizer
design by taking into account both source and channel statistics. It is shown that, like
its counterpart in the noiseless case, the channel optimized SAPQ achieves comparable
performance results to the COV(Q (within 0.2-1.0 dB), while maintaining considerably
lower encoding complexity (half of that of COV(Q) and storage requirements.

1 Introduction

Recently, Kim and Shroff introduced in [8, 9] a constrained vector quantizer structure
called the sample adaptive product quantizer (SAPQ) that achieves a comparable perfor-
mance to the vector quantizer (VQ) [13] while maintaining a lower encoding complexity
(refer also to [3, 4, 11, 12, 14] for previous related work). Yet, as with most data com-
pression schemes that solely remove source redundancy, the compressed source tends to
be more sensitive to channel noise. Traditionally, tandem source-channel coding was
used to achieve reliable transmission of information by separately designing the source
and channel codes. It is however known that when there are delay and complexity con-
straints, it is more advantageous to employ joint source-channel coding where the source
and channel codes are designed in cohesion (e.g., [1], [2], [5]-][7],[10], [15]-[17]).

There are three main approaches to joint source-channel coding: the unequal error
protection approach, the zero-redundancy channel coding approach, and the combined
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source-channel coding approach. In this paper, we focus on the third approach, where
both channel noise and source statistics are included in the design of the source coders.
VQ’s designed in such a way are labeled channel optimized vector quantizers (COVQ’s).
COVQ has received a considerable amount of attention due to its improvement in per-
formance over VQ in the presence of channel noise (e.g., [7, 15]). However, COVQ incurs
high encoding complexity. In this work, we study the design of SAPQ for noisy memo-
ryless channels, or channel optimized SAPQ (CO-SAPQ), in order to find a less complex
alternative to COVQ. Countering [8], we will design and implement two types of channel
optimized SAPQ’s, namely the COm-SAPQ and the CO1-SAPQ.

2 Preliminaries

The channel considered in this paper is the binary symmetric channel (BSC), and the
distortion measure used is the mean squared distortion: d(z,y) = ||z — y||>. Let N be
any integer to define Jy = {1,..., N}, P(I|i) as the probability of receiving index [ given
that index i was sent over the BSC, and p(z) as the probability density function (p.d.f.)
of the source vector z.

A (k,N) COVQ consists of an encoder ¢, a decoder g and their corresponding codebook
C = {¢}¥,. The k dimensional source vector z is encoded by the encoder ¢ into an index
. The encoding is such that:

g(z) =i if z€S;, where i€ Jy and S; = encoding region of i.

The binary expansion of index ¢ is transmitted through a BSC, one bit at a time, and
is received as [ at the receiver, where [ € Jy. The received index is reproduced at the
decoder using the codebook C = {¢;}iY,. The decoding function g is such that g(I) = ¢;
it is a one-to-one mapping from the indices to the reproduction levels ¢;. The end-to-end
distortion is described by:
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It is shown in [7] that the necessary conditions to minimizing (1) are:
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given the codebook C' = {¢}¥, and:

XN, P Jy wpla)d
Zi]\il P(l]i) fsi p(z)dz

given the encoding regions {S;} .

In this paper, we also use a (k,m,N) channel optimized product quantizer (COPQ),
which is merely a bank of COVQ’s. The COPQ can be viewed as the counterpart of the
product quantizer (PQ) for noiseless channel quantization [8]. The rate of both schemes
is:

(3)
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3 CO-SAPQ System Model

Figure 1 depicts the basic structure of a (k,m,N,n) COm-SAPQ. The COm-SAPQ con-
sists of 27 product encoders {PE;}*.,. Each PE; consists of m parallel encoders {e, ;}7,
that have m corresponding decoder functions {g,;}7, at the decoder. Adhering the set
of encoders {¢; ;} and decoder functions {g;;} is the codebook C;. The codebook C; is
constructed by the product of m codebooks C; = C; x ... x C, ;. Copies of the input
source vector X = (zy,...,1,,) are encoded by each PE; to produce an index vector /;
as follows:

PE;(x) = (e15(21), - - mj(z,,)) = L, where ¢, 5(x,) € Jy,z, € R¥ and I e Jy.

Each index vector L has a distortion associated to it, and the index vector (I =
(i1y...,0m); is € Jy ) with the minimum distortion is transmitted over the channel
along with the index (j*) of the PE;- that produced the index vector /. Index vector
I and index j* are transmitted over the channel, and received as L (L € JF) and j'
(' € Jou). The decoder decodes L = (Iy,...,1,), where [, € Jy, using j' to indicate
which set of decoder functions to use; i.e., set {gs;}7-, as follows:

Decoder(L, ') = (g151(1); - - Gmojr (bm)) = (7, .., ™) = T,

Y.,

where /1 € C, ;i for I € Jy, and ¢/ € C; for L € J72.

The (k,m,N,n) CO1-SAPQ is similar to the COm-SAPQ except that the PE’s are
replaced by repeated product encoders RPE. A RPE; repeats the same encoder ¢;
function throughout the m encoding blocks. The encoder €; has a decoder function g;
corresponding to it at the receiver. The pair of encoders ¢; and decoders g; are associated
by a single codebook C;. Now the codebook of RPE; is C; = C; x ... x (), where the
product is taken m times. The encoding and decoding for CO1-SAPQ are similar to the
COm-SAPQ’s:

RPE;(x) = (gj(z), ...,ej(z,,)) = L, where ¢;(z,) € Jy,z, € R* and I; € J},

and
Decoder(L, j') = (g7 (), - -, 95 (L)) = (&, ) = ¢,

lm

where qu € Cy for l € Jy, and gz’] € Cj for L € J¢. The rate of both schemes is

_logy, N

R
k

+ % bits/source sample. (5)

4 Necessary Conditions for Optimality

To simplify notation define: v,(I) = the s index component of [ ; vy : JW — Jy,
and: uy(x) =z, ;8=1,...,m; u,: R — RF.

Distortion: Let S[Ij*} be the encoding region for index vector / and index j*: S[Ij*] =
{x : COm-SAPQ Encoder(x) = (Z,5*)}. When a source sample x is encoded into the

index vector I and index j*, at the receiver we can potentially receive any L € J3' and



j" € Jon, and then the end reproduction of x becomes c% ], The mean squared end-to-end

distortion of such a system is:

Deonsare = Z Z / Z Z (7P (LIL) Z [Jus (x Qi{ﬁ)HZP(X)dX- (6)

Jr=11eJy J'=1LeJy

Optimal Encoding: Given codebooks {C; }?":1, we optimally encode a source sample
x into an index vector I and index j* using a (k,m,N,n) COm-SAPQ. This optimization
is done to minimize the distortion (6). Note that there are two optimizations: one to
minimize the distortion over all index vectors Z € Jy', and the other over indices all
j € Jon. The structure of the COm-SAPQ allows the former to be done first, followed by
the latter. So first the distortion is optimized over all Z € Jg, this is done by the PE’s:
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When the source x is encoded by PEj; the distortion is:
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The optimum index j* chooses the PE; with the minimum distortion and the index
vector I: j* = argminjey,, D;(x) so I = PEj-(x). This gives us our optimal encoding
regions:

SE*] = {x j* =arg min Dj(x) and [ = I,. PE]-*(X)}-

Jj€dom
Optimal Decoding: Assume we are given the 2"N™ encoding regions {SE]} We

can obtain the centroids by taking the partial derivatives of (6) with respect to ggs’j 1 and

setting it to zero. Note that with a BSC, at the receiver the output of the s block ggs’ﬂ
depends only on the s input to the channel; i.e. v,(I). Thus, the centroids are given

by:
e i P15V P ) o us(x)p(x)dx
Z]*_IZz IP(] |] P l| fSSJ ]p )dX

U sg . (9)

Note that we have 2" N™ encoding regions {SU } but only 2"Nm partition cells {S}S’j*]}.

[5,5']
G

: (8)

where

Because of the structural constraint we have only 27Nm codewords {Cz }, but when
encoding a source sample x we have a choice of 27N™ codewords {cL }

The encoding regions and centroids of the CO1-SAPQ can be derived in a fashion
similar to the above.



5 Encoding Simplifications

Simplifications to the encoding can be made using similar procedures as in Section IV of
[7]. This preprocessing is made to simplify the calculation of D;(x). For the COm-SAPQ,
the simplifications are facilitated by introducing the following:

S =SS PGP and ol =33 PGLPURIETE (10

§'=1 1=1 j'=11=1

This simplifies the product encoder operation (7) to be:

m
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where (z,y) is the inner product over R¥. Note also that by cancelling the sum of the
||us(x)||* over s in the expansion of D;(x) we get:

S . ) _ . [ ] [5}
J* = argmin Dj(x) = arg min { o D — 2(us(x), 4,7 ) ;) } : (12)
Ss=

In other Words to encode x by a (k,m,N,n) COm-SAPQ), there are 27" Nm k-dimensional
vectors y e I and 2"Nm scalars a[ ] to be calculated prior to encoding. For the CO1-SAPQ
the simplifications are similar :

Y. ZZPH] l|’)’ and  ay; = ZZPJU (1) ||Cl ||2 (13)
j'=11=1 j'=1 I=1

A (k,m,Nn) CO1-SAPQ requires 2"N k-dimensional vector Y ~and 2"N scalars ., ; to
be calculated prior to encoding.

6 Design Algorithm for CO-SAPQ

The design algorithm for the COm-SAPQ is next described. The specialization to CO1-
SAPQ can be easily deduced.

1. Set parameters k, m, N, n, the design BSC error crossover probability €;, the
stopping threshold §, the splitting constant k-dimensional vector € = (e, ..., ¢€),
the maximum number of iterations Maxiter, and M the total number of training
vectors {X; = (xlf, e mf)}?/le. Initialize 7 = 1, p = 0, and the initial set of
codebooks C C’{l) X o X 07(7?31

2. If 7 > 2" stop; otherwise split the codebooks using C’gf}) = C’£ ]) € and C’s it =

C’( +efors=1,....,mand j=1,. TthenincrementT—T*Qandsetp—O.

At th1s point we have 7 sets of codebooks {C =1

[s1,(¢)

7.4’
{Cg-p) }7_1- For each x;, encode x; with each {PEj )}]T-:1 as in (11). This will give
us the set of index vectors {I;}7_,. The PEg-i’) that produces the index vector [
with minimum distortion is chosen using (12).

3. Calculate the 7/Nm vectors g[v} () and values « as in (10), using the codebooks



4. Once [ of x; is found, x; can be put into the appropriate partition cells Sz[s’j*}’(p)
in (9). Each vector x; should belong to m partition cells. The resulting distortion

is:
Ox,, 7] = ZZ (715 P(LII) ansf s

j'=1LeJm

5. Repeat Steps 3 and 4 for f = 1,..., M. Then calculate the centroids, using the
discrete (8), and update the set of codebooks to {C; (o) Vi usmg the new centroids.

Finally calculate the overall distortion: D[r] = —— Zf DV x, 7.

6. Check % < 0 or p > Maxiter, if so then go to Step 2; otherwise set

p=p+1and go to Step 3.

This algorithm assumes an initial set of codebooks C§°’ for the (k,m,N,n) COm-SAPQ
which is obtained from a (k,m,N) COPQ designed for the same ¢;. For the (k,m,N,n)
CO1-SAPQ the algorithm starts off with only one codebook which can be obtained from
a (k,N) COVQ, again designed with the same ¢,.

7 Numerical Results

In this section, we present numerical results on the performance, encoding complexity and
storage requirements of the COV(Q, COPQ, COm-SAPQ and CO1-SAPQ. The COVQ
was produced in accordance to the algorithms provided in [7].

In Tables 1 and 2, the signal-to-distortion ratio (SDR) performance of each system
is provided at various rates and crossover probabilities ¢, for the case of a memoryless
Gaussian source and a Gauss-Markov source with correlation coefficient p = 0.9 , respec-
tively. 200,000 training source samples were used. The criteria used for comparing the
complexity are the encoding and storage (for both encoding and decoding) requirements.
The goal is to find a channel optimized quantizer that achieves acceptable performances
while maintaining low levels of encoding complexity and storage requirements, at the
same rate. The encoding complexity is measured as the number of multiplications re-
quired to encode a source per scalar source input, and the storage requirement is measured
as the total number of scalar values required to implement the quantizer [8]. The storage
requirements include the storage of the vectors y[ and values a[ } of (10) for the COm-

SAPQ, and the storage of y; and «; of (9) and (10) in [7] for the COVQ. These values
are imperative for the off-line implementation of the quantizers.

Table 1, which provides results for Gaussian memoryless sources, shows the perfor-
mance of the COm-SAPQ to be comparable to that of the COV(, within 0.2 dB, while
maintaining lower encoding complexities (half that of the COVQ) and storage require-
ments. In Table 2, where Gauss-Markov sources are considered, we remark that the
COm-SAPQ and the CO1-SAPQ of lower encoding complexities, storage requirements
and dimension km , perform 0.3-1.0 dB worse than the COVQ, but still outperforms
the COPQ. However, when the dimension km of the CO1-SAPQ is increased, we get
an improvement in performance. For example, for R= 3.0 comparing CO1-SAPQ for
km = 4 with COVQ with £ = 2, we note that the CO1-SAPQ performs at least 0.3
dB better at low channel noise levels and more than 0.06 dB better at high noise levels.



However, increasing the dimension km of the CO1-SAPQ causes the encoding complexity
to increase to that of the COV(Q; but it still requires less storage requirements than for
the COVQ.

The quantizers designed above were also tested using a validating sequence of 200,000
memoryless Gaussian and Gauss-Markov samples, and a simulated BSC with crossover
probability €. Perfectly matched channel conditions were assumed (e = €4) in the testing
and the results were found to be within 0.01-0.02 dB of those tabulated in Tables 1 and
2.

8 Conclusion

In this paper, we designed and implemented channel optimized sample adaptive prod-
uct quantizers (COm-SAPQ and CO1-SAPQ) for the efficient compression and reliable
transmission of Gaussian sources over BSC’s. We also compared the performances of the
COm-SAPQ/CO1-SAPQ schemes against those of the COVQ and the COPQ. The per-
formance of the COm-SAPQ was found to be comparable to that of the COVQ (within
0.2 dB) when the source is memoryless Gaussian, with a reduction factor of 1/2 in en-
coding complexity. For Gauss-Markov sources, an improvement over the COV(Q can
be made by the CO1-SAPQ for the same encoding complexity, but with the advantage
of lower storage requirements. Improvements in the choice of an initial codebook for
the COm-SAPQ still needs to be made in order to improve its SDR for Gauss-Markov
sources.
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€d
R | km|Quantizer 0.000]0.0050.010|0.050 {0.100 [ 0.150 | complexity | storage
CcovQ
3.0 2 15.23112.19(11.07| 7.35 | 5.11 | 3.78 64 320
k=2,N =64
COPQ
14.57112.00(10.47| 5.62 | 4.65 | 3.48 8 48
k=1,N=28
COm-SAPQ
15.07112.38(11.04| 7.20 | 5.14 | 3.75 32 192
E=1,N=2,n=4
CO1-SAPQ
13.59|11.54(10.29| 6.48 | 4.35 | 3.13 32 96
E=1,N=2,n=4
CO1-SAPQ
4 15.19112.41(10.92| 6.61 | 4.47 | 3.18 64 192
E=1,N=4,n=4
CcovQ
20| 2 9.64 | 8.71 | 8.02 | 5.52 | 3.82 | 2.71 16 80
k=2,N=16
COPQ
9.27 | 850 | 7.86 | 4.85 | 3.04 | 1.99 4 24
k=1,N=4
COm-SAPQ
9.51 | 8.71 | 8.10 | 5.48 | 3.86 | 2.79 8 48
E=1,N=2n=2
CO1-SAPQ
8.72 | 8.04 | 7.50 | 5.16 | 3.61 | 2.50 8 24
k=1,N=2,n=2
CO1-SAPQ
3 8.92 | 8.16 | 7.58 | 5.06 | 3.45 | 2.45 16 48
k=1,N=2,n1n=3
CcovQ
1.0| 4 4.66 | 4.44 | 4.24 | 3.14 | 2.26 | 1.61 16 144
k=4,N =16
COPQ
4.38 |1 4.16 | 3.96 | 2.72 | 1.75 | 1.14 4 40
k=2,N=4
COm-SAPQ
4471 4.28 | 4.09 | 3.13 | 2.26 | 1.61 8 80
k=2 N=2,n=2
CO1-SAPQ
441 |1 4.15|3.95 | 2.81 | 1.96 | 1.44 8 40
k=2 N=2n=2
CO1-SAPQ
6 453 14.25|4.01 | 273|195 | 1.39 16 80
k=2N=2,n=3

Table 1: SDR (in dB); 200,000 memoryless Gaussian training samples; Rate R in

bits/source sample; €, is the design BSC crossover probability.



€d
R |km|Quantizer 0.000]0.0050.010|0.050 {0.100 [ 0.150 | complexity | storage
covQ
3.0| 2 19.03|14.50|13.58| 9.36 | 6.80 | 5.13 64 320
k=2,N =064
CcoPQ
14.57112.00/10.47| 5.60 | 4.63 | 3.46 8 48
k=1,N =38
COm-SAPQ
16.62(14.22|12.75| 8.43 | 6.07 | 4.62 32 192
E=1,N=2,n=4
CO1-SAPQ
17.24114.02|12.65| 8.68 | 6.25 | 4.58 32 96
E=1,N=2,n=4
CO1-SAPQ
4 19.72115.31|13.85| 9.51 | 6.88 | 5.19 64 192
E=1,N=4,n=4
covQ
20| 2 13.54|11.39/10.04| 7.27 | 5.27 | 3.82 16 80
k=2 N =16
CcoPQ
9.28 | 8.50 | 7.85 | 4.83 | 3.02 | 1.96 4 24
E=1,N=4
COm-SAPQ
12.5010.76| 9.71 | 6.26 | 4.53 | 3.37 8 48
E=1,N=2n=2
CO1-SAPQ
12.5010.76| 9.71 | 6.26 | 4.53 | 3.37 8 24
k=1,N=2,n=2
CO1-SAPQ
3 13.95/11.81|10.68| 7.08 | 5.21 | 3.93 16 48
k=1,N=2,n1n=3
covQ
1.0] 4 10.20] 9.15 | 8.36 | 6.24 | 4.64 | 3.42 16 144
k=4,N =16
COPQ
7.89 | 4.10 | 3.93 | 2.94 | 2.11 | 1.50 4 40
k=2,N=4
COm-SAPQ
9.66 | 8.78 | 8.17 | 5.63 | 4.08 | 3.10 8 80
k=2 N=2,n=2
CO1-SAPQ
9.52 | 8.63 | 8.01 | 5.55 | 4.11 | 3.09 8 40
k=2 N=2n=2
CO1-SAPQ
6 9.99 | 9.11 | 8.51 | 6.09 | 4.58 | 3.50 16 48
k=2N=2,n=3

Table 2: SDR (in dB); 200,000 Gauss Markov training samples with correlation coefficient
p = 0.9; Rate R in bits/source sample; €4 is the design BSC crossover probability.



