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Abstra
t

Channel optimized ve
tor quantization (COVQ), as a joint sour
e-
hannel 
oding

s
heme, has proven to perform well in 
ompressing a sour
e and making the resulting

quantizer robust to 
hannel noise. Unfortunately like its 
ounterpart in the noiseless


hannel 
ase, the ve
tor quantizer (VQ), the COVQ en
oding 
omplexity is inherently

high. Sample adaptive produ
t quantization was re
ently introdu
ed by Kim and Shro�

to redu
e the 
omplexity of the VQ while a
hieving 
omparable distortions, even for

moderate quantization dimensions. In this paper, we investigate the SAPQ for the 
ase of

noisy 
hannels and employ the joint sour
e-
hannel approa
h of optimizing the quantizer

design by taking into a

ount both sour
e and 
hannel statisti
s. It is shown that, like

its 
ounterpart in the noiseless 
ase, the 
hannel optimized SAPQ a
hieves 
omparable

performan
e results to the COVQ (within 0.2-1.0 dB), while maintaining 
onsiderably

lower en
oding 
omplexity (half of that of COVQ) and storage requirements.

1 Introdu
tion

Re
ently, Kim and Shro� introdu
ed in [8, 9℄ a 
onstrained ve
tor quantizer stru
ture


alled the sample adaptive produ
t quantizer (SAPQ) that a
hieves a 
omparable perfor-

man
e to the ve
tor quantizer (VQ) [13℄ while maintaining a lower en
oding 
omplexity

(refer also to [3, 4, 11, 12, 14℄ for previous related work). Yet, as with most data 
om-

pression s
hemes that solely remove sour
e redundan
y, the 
ompressed sour
e tends to

be more sensitive to 
hannel noise. Traditionally, tandem sour
e-
hannel 
oding was

used to a
hieve reliable transmission of information by separately designing the sour
e

and 
hannel 
odes. It is however known that when there are delay and 
omplexity 
on-

straints, it is more advantageous to employ joint sour
e-
hannel 
oding where the sour
e

and 
hannel 
odes are designed in 
ohesion (e.g., [1℄, [2℄, [5℄-[7℄,[10℄, [15℄-[17℄).

There are three main approa
hes to joint sour
e-
hannel 
oding: the unequal error

prote
tion approa
h, the zero-redundan
y 
hannel 
oding approa
h, and the 
ombined

�
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sour
e-
hannel 
oding approa
h. In this paper, we fo
us on the third approa
h, where

both 
hannel noise and sour
e statisti
s are in
luded in the design of the sour
e 
oders.

VQ's designed in su
h a way are labeled 
hannel optimized ve
tor quantizers (COVQ's).

COVQ has re
eived a 
onsiderable amount of attention due to its improvement in per-

forman
e over VQ in the presen
e of 
hannel noise (e.g., [7, 15℄). However, COVQ in
urs

high en
oding 
omplexity. In this work, we study the design of SAPQ for noisy memo-

ryless 
hannels, or 
hannel optimized SAPQ (CO-SAPQ), in order to �nd a less 
omplex

alternative to COVQ. Countering [8℄, we will design and implement two types of 
hannel

optimized SAPQ's, namely the COm-SAPQ and the CO1-SAPQ.

2 Preliminaries

The 
hannel 
onsidered in this paper is the binary symmetri
 
hannel (BSC), and the

distortion measure used is the mean squared distortion: d(x; y) = kx � yk

2

. Let N be

any integer to de�ne J

N

= f1; : : : ; Ng, P (lji) as the probability of re
eiving index l given

that index i was sent over the BSC, and p(x) as the probability density fun
tion (p.d.f.)

of the sour
e ve
tor x.

A (k,N) COVQ 
onsists of an en
oder ", a de
oder g and their 
orresponding 
odebook

C = f


l

g

N

l=1

. The k dimensional sour
e ve
tor x is en
oded by the en
oder " into an index

i. The en
oding is su
h that:

"(x) = i if x 2 S

i

; where i 2 J

N

and S

i

= en
oding region of i:

The binary expansion of index i is transmitted through a BSC, one bit at a time, and

is re
eived as l at the re
eiver, where l 2 J

N

. The re
eived index is reprodu
ed at the

de
oder using the 
odebook C = f


l

g

N

l=1

. The de
oding fun
tion g is su
h that g(l) = 


l

;

it is a one-to-one mapping from the indi
es to the reprodu
tion levels 


l

. The end-to-end

distortion is des
ribed by:

D =

N

X

i=1

N

X

l=1

Z

S

i

P (lji)d(x; 


l

)p(x)dx: (1)

It is shown in [7℄ that the ne
essary 
onditions to minimizing (1) are:

S

i

=

(

x :

N

X

l=1

P (lji)d(x; 


l

) �

N

X

l=1

P (lj
)d(x; 


l

) 8
 2 J

N

)

(2)

given the 
odebook C = f


l

g

N

l=1

, and:




l

=

P

N

i=1

P (lji)

R

S

i

xp(x)dx

P

N

i=1

P (lji)

R

S

i

p(x)dx

(3)

given the en
oding regions fS

i

g

N

i=1

.

In this paper, we also use a (k,m,N) 
hannel optimized produ
t quantizer (COPQ),

whi
h is merely a bank of COVQ's. The COPQ 
an be viewed as the 
ounterpart of the

produ
t quantizer (PQ) for noiseless 
hannel quantization [8℄. The rate of both s
hemes

is:

R =

log

2

N

k

bits/sour
e sample . (4)



3 CO-SAPQ System Model

Figure 1 depi
ts the basi
 stru
ture of a (k,m,N ,�) COm-SAPQ. The COm-SAPQ 
on-

sists of 2

�

produ
t en
oders fPE

j

g

2

�

j=1

. Ea
h PE

j


onsists ofm parallel en
oders f"

s;j

g

m

s=1

,

that have m 
orresponding de
oder fun
tions fg

s;j

g

m

s=1

at the de
oder. Adhering the set

of en
oders f"

s;j

g and de
oder fun
tions fg

s;j

g is the 
odebook C

j

. The 
odebook C

j

is


onstru
ted by the produ
t of m 
odebooks C

j

= C

1;j

� : : :� C

m;j

. Copies of the input

sour
e ve
tor x = (x

1

; : : : ; x

m

) are en
oded by ea
h PE

j

to produ
e an index ve
tor I

j

as follows:

PE

j

(x) = ("

1;j

(x

1

); : : : ; "

m;j

(x

m

)) = I

j

; where "

s;j

(x

s

) 2 J

N

; x

s

2 R

k

and I

j

2 J

m

N

:

Ea
h index ve
tor I

j

has a distortion asso
iated to it, and the index ve
tor (I =

(i

1

; : : : ; i

m

); i

s

2 J

N

) with the minimum distortion is transmitted over the 
hannel

along with the index (j

�

) of the PE

j

�

that produ
ed the index ve
tor I. Index ve
tor

I and index j

�

are transmitted over the 
hannel, and re
eived as L (L 2 J

m

N

) and j

0

(j

0

2 J

2

�

). The de
oder de
odes L = (l

1

; : : : ; l

m

), where l

s

2 J

N

, using j

0

to indi
ate

whi
h set of de
oder fun
tions to use; i.e., set fg

s;j

0

g

m

s=1

as follows:

De
oder(L; j

0

) = (g

1;j

0

(l

1

); : : : ; g

m;j

0

(l

m

)) = (


[1;j

0

℄

l

1

; : : : ; 


[m;j

0

℄

l

m

) = 


[j

0

℄

L

;

where 


[s;j

0

℄

l

2 C

s;j

0

for l 2 J

N

, and 


[j

0

℄

L

2 C

j

0

for L 2 J

m

N

.

The (k,m,N ,�) CO1-SAPQ is similar to the COm-SAPQ ex
ept that the PE's are

repla
ed by repeated produ
t en
oders RPE. A RPE

j

repeats the same en
oder "

j

fun
tion throughout the m en
oding blo
ks. The en
oder "

j

has a de
oder fun
tion g

j


orresponding to it at the re
eiver. The pair of en
oders "

j

and de
oders g

j

are asso
iated

by a single 
odebook C

j

. Now the 
odebook of RPE

j

is C

j

= C

j

� : : :� C

j

, where the

produ
t is taken m times. The en
oding and de
oding for CO1-SAPQ are similar to the

COm-SAPQ's:

RPE

j

(x) = ("

j

(x

1

); : : : ; "

j

(x

m

)) = I

j

; where "

j

(x

s

) 2 J

N

; x

s

2 R

k

and I

j

2 J

m

N

;

and

De
oder(L; j

0

) = (g

j

0

(l

1

); : : : ; g

j

0

(l

m

)) = (


[j

0

℄

l

1

; : : : ; 


[j

0

℄

l

m

) = 


[j

0

℄

L

;

where 


[j

0

℄

l

2 C

j

0

for l 2 J

N

, and 


[j

0

℄

L

2 C

j

0

for L 2 J

m

N

. The rate of both s
hemes is

R =

log

2

N

k

+

�

km

bits/sour
e sample: (5)

4 Ne
essary Conditions for Optimality

To simplify notation de�ne: v

s

(I) = the s

th

index 
omponent of I ; v

s

: J

m

N

! J

N

,

and: u

s

(x) = x

s

; s = 1; : : : ; m ; u

s

: R

km

! R

k

.

Distortion: Let S

[j

�

℄

I

be the en
oding region for index ve
tor I and index j

�

: S

[j

�

℄

I

=

fx : COm-SAPQ En
oder(x) = (I; j

�

)g. When a sour
e sample x is en
oded into the

index ve
tor I and index j

�

, at the re
eiver we 
an potentially re
eive any L 2 J

m

N

and



j

0

2 J

2

�

, and then the end reprodu
tion of x be
omes 


[j

0

℄

L

. The mean squared end-to-end

distortion of su
h a system is:

D

COm-SAPQ

=

2

�

X

j

�

=1

X

I2J

m

N

Z

S

[j

�

℄

I

2

�

X

j

0

=1

X

L2J

m

N

P (j

0

jj

�

)P (LjI)

m

X

s=1

ku

s

(x)� 


[s;j

0

℄

v

s

(L)

k

2

p(x)dx: (6)

Optimal En
oding: Given 
odebooks fC

j

g

2

�

j=1

, we optimally en
ode a sour
e sample

x into an index ve
tor I and index j

�

using a (k,m,N ,�) COm-SAPQ. This optimization

is done to minimize the distortion (6). Note that there are two optimizations: one to

minimize the distortion over all index ve
tors Z 2 J

m

N

, and the other over indi
es all

j 2 J

2

�

. The stru
ture of the COm-SAPQ allows the former to be done �rst, followed by

the latter. So �rst the distortion is optimized over all Z 2 J

m

N

, this is done by the PE's:

I

j

= PE

j

(x) = arg min

Z2J

m

N

2

�

X

j

0

=1

X

L2J

m

N

P (j

0

jj)P (LjZ)

m

X

s=1

ku

s

(x)� 


[s;j

0

℄

v

s

(L)

k

2

: (7)

When the sour
e x is en
oded by PE

j

the distortion is:

D

j

(x) = min

Z2J

m

N

2

�

X

j

0

=1

X

L2J

m

N

P (j

0

jj)P (LjZ)

m

X

s=1

ku

s

(x)� 


[s;j

0

℄

v

s

(L)

k

2

:

The optimum index j

�


hooses the PE

j

with the minimum distortion and the index

ve
tor I: j

�

= argmin

j2J

2

�

D

j

(x) so I = PE

j

�

(x). This gives us our optimal en
oding

regions:

S

[j

�

℄

I

=

�

x : j

�

= arg min

j2J

2

�

D

j

(x) and I = I

j

�

= PE

j

�

(x)

�

:

Optimal De
oding: Assume we are given the 2

�

N

m

en
oding regions fS

[j

�

℄

I

g. We


an obtain the 
entroids by taking the partial derivatives of (6) with respe
t to 


[s;j

0

℄

l

and

setting it to zero. Note that with a BSC, at the re
eiver the output of the s

th

blo
k 


[s;j

0

℄

l

depends only on the s

th

input to the 
hannel; i.e. v

s

(I). Thus, the 
entroids are given

by:




[s;j

0

℄

l

=

P

2

�

j

�

=1

P

N

i=1

P (j

0

jj

�

)P (lji)

R

S

[s;j

�

℄

i

u

s

(x)p(x)dx

P

2

�

j

�

=1

P

N

i=1

P (j

0

jj

�

)P (lji)

R

S

[s;j

�

℄

i

p(x)dx

; (8)

where

S

[s;j

�

℄

i

=

[

I:v

s

(I)=i

S

[j

�

℄

I

: (9)

Note that we have 2

�

N

m

en
oding regions fS

[j

�

℄

I

g but only 2

�

Nm partition 
ells fS

[s;j

�

℄

i

g.

Be
ause of the stru
tural 
onstraint we have only 2

�

Nm 
odewords f


[s;j

0

℄

l

g, but when

en
oding a sour
e sample x we have a 
hoi
e of 2

�

N

m


odewords f


[j

�

℄

L

g.

The en
oding regions and 
entroids of the CO1-SAPQ 
an be derived in a fashion

similar to the above.



5 En
oding Simpli�
ations

Simpli�
ations to the en
oding 
an be made using similar pro
edures as in Se
tion IV of

[7℄. This prepro
essing is made to simplify the 
al
ulation ofD

j

(x). For the COm-SAPQ,

the simpli�
ations are fa
ilitated by introdu
ing the following:

y

[s℄


;j

=

2

�

X

j

0

=1

N

X

l=1

P (j

0

jj)P (lj
)


[s;j

0

℄

l

and �

[s℄


;j

=

2

�

X

j

0

=1

N

X

l=1

P (j

0

jj)P (lj
)k


[s;j

0

℄

l

k

2

: (10)

This simpli�es the produ
t en
oder operation (7) to be:

PE

j

(x) = I

j

= arg min

I2J

m

N

m

X

s=1

�

[s℄

v

s

(I);j

� 2hu

s

(x); y

[s℄

v

s

(I);j

i: (11)

where hx; yi is the inner produ
t over R

k

. Note also that by 
an
elling the sum of the

ku

s

(x)k

2

over s in the expansion of D

j

(x) we get:

j

�

= argmin

j

D

j

(x) = argmin

j

(

min

I2J

m

N

m

X

s=1

�

[s℄

v

s

(I);j

� 2hu

s

(x); y

[s℄

v

s

(I);j

i

)

: (12)

In other words, to en
ode x by a (k,m,N ,�) COm-SAPQ, there are 2

�

Nm k-dimensional

ve
tors y

[s℄


;j

and 2

�

Nm s
alars �

[s℄


;j

to be 
al
ulated prior to en
oding. For the CO1-SAPQ

the simpli�
ations are similar :

y


;j

=

2

�

X

j

0

=1

N

X

l=1

P (j

0

jj)P (lj
)


[j

0

℄

l

and �


;j

=

2

�

X

j

0

=1

N

X

l=1

P (j

0

jj)P (lj
)k


[j

0

℄

l

k

2

: (13)

A (k,m,N ,�) CO1-SAPQ requires 2

�

N k-dimensional ve
tor y


;j

and 2

�

N s
alars �


;j

to

be 
al
ulated prior to en
oding.

6 Design Algorithm for CO-SAPQ

The design algorithm for the COm-SAPQ is next des
ribed. The spe
ialization to CO1-

SAPQ 
an be easily dedu
ed.

1. Set parameters k, m, N , �, the design BSC error 
rossover probability �

d

, the

stopping threshold Æ, the splitting 
onstant k-dimensional ve
tor � = (�; : : : ; �),

the maximum number of iterations Maxiter, and M the total number of training

ve
tors fx

f

= (x

1;f

; : : : ; x

m;f

)g

M

f=1

. Initialize � = 1, � = 0, and the initial set of


odebooks C

(0)

1

= C

(0)

1;1

� � � � � C

(0)

m;1

.

2. If � � 2

�

stop; otherwise split the 
odebooks using C

(�)

s;j

= C

(�)

s;j

� � and C

(�)

s;j+�

=

C

(�)

s;j

+ � for s = 1; : : : ; m and j = 1; : : : ; � , then in
rement � = � � 2 and set � = 0.

At this point we have � sets of 
odebooks fC

(�)

j

g

�

j=1

.

3. Cal
ulate the �Nm ve
tors y

[s℄;(�)


;j

0

and values �

[s℄;(�)


;j

0

as in (10), using the 
odebooks

fC

(�)

j

g

�

j=1

. For ea
h x

f

, en
ode x

f

with ea
h fPE

(�)

j

g

�

j=1

as in (11). This will give

us the set of index ve
tors fI

j

g

�

j=1

. The PE

(�)

j

�

that produ
es the index ve
tor I

with minimum distortion is 
hosen using (12).



4. On
e I of x

f

is found, x

f


an be put into the appropriate partition 
ells S

[s;j

�

℄;(�)

i

in (9). Ea
h ve
tor x

f

should belong to m partition 
ells. The resulting distortion

is:

D

(�)

[x

f

; � ℄ =

�

X

j

0

=1

X

L2J

m

N

P (j

0

jj

�

)P (LjI)

m

X

s=1

kx

s;f

� 


[s;j

0

℄;(�)

vs(L)

k

2

:

5. Repeat Steps 3 and 4 for f = 1; : : : ;M . Then 
al
ulate the 
entroids, using the

dis
rete (8), and update the set of 
odebooks to fC

(�+1)

j

g

�

j=1

using the new 
entroids.

Finally 
al
ulate the overall distortion: D

(�)

[� ℄ =

1

kmM

P

M

f=1

D

(�)

[x

f

; � ℄:

6. Che
k

D

(��1)

[� ℄�D

(�)

[� ℄

D

(�)

[� ℄

� Æ or � � Maxiter, if so then go to Step 2; otherwise set

� = � + 1 and go to Step 3.

This algorithm assumes an initial set of 
odebooksC

(0)

1

for the (k,m,N ,�) COm-SAPQ

whi
h is obtained from a (k,m,N) COPQ designed for the same �

d

. For the (k,m,N ,�)

CO1-SAPQ the algorithm starts o� with only one 
odebook whi
h 
an be obtained from

a (k,N) COVQ, again designed with the same �

d

.

7 Numeri
al Results

In this se
tion, we present numeri
al results on the performan
e, en
oding 
omplexity and

storage requirements of the COVQ, COPQ, COm-SAPQ and CO1-SAPQ. The COVQ

was produ
ed in a

ordan
e to the algorithms provided in [7℄.

In Tables 1 and 2, the signal-to-distortion ratio (SDR) performan
e of ea
h system

is provided at various rates and 
rossover probabilities �

d

for the 
ase of a memoryless

Gaussian sour
e and a Gauss-Markov sour
e with 
orrelation 
oeÆ
ient � = 0:9 , respe
-

tively. 200,000 training sour
e samples were used. The 
riteria used for 
omparing the


omplexity are the en
oding and storage (for both en
oding and de
oding) requirements.

The goal is to �nd a 
hannel optimized quantizer that a
hieves a

eptable performan
es

while maintaining low levels of en
oding 
omplexity and storage requirements, at the

same rate. The en
oding 
omplexity is measured as the number of multipli
ations re-

quired to en
ode a sour
e per s
alar sour
e input, and the storage requirement is measured

as the total number of s
alar values required to implement the quantizer [8℄. The storage

requirements in
lude the storage of the ve
tors y

[s℄


;j

and values �

[s℄


;j

of (10) for the COm-

SAPQ, and the storage of y

i

and �

i

of (9) and (10) in [7℄ for the COVQ. These values

are imperative for the o�-line implementation of the quantizers.

Table 1, whi
h provides results for Gaussian memoryless sour
es, shows the perfor-

man
e of the COm-SAPQ to be 
omparable to that of the COVQ, within 0.2 dB, while

maintaining lower en
oding 
omplexities (half that of the COVQ) and storage require-

ments. In Table 2, where Gauss-Markov sour
es are 
onsidered, we remark that the

COm-SAPQ and the CO1-SAPQ of lower en
oding 
omplexities, storage requirements

and dimension km , perform 0.3-1.0 dB worse than the COVQ, but still outperforms

the COPQ. However, when the dimension km of the CO1-SAPQ is in
reased, we get

an improvement in performan
e. For example, for R= 3:0 
omparing CO1-SAPQ for

km = 4 with COVQ with k = 2, we note that the CO1-SAPQ performs at least 0.3

dB better at low 
hannel noise levels and more than 0.06 dB better at high noise levels.



However, in
reasing the dimension km of the CO1-SAPQ 
auses the en
oding 
omplexity

to in
rease to that of the COVQ; but it still requires less storage requirements than for

the COVQ.

The quantizers designed above were also tested using a validating sequen
e of 200,000

memoryless Gaussian and Gauss-Markov samples, and a simulated BSC with 
rossover

probability �. Perfe
tly mat
hed 
hannel 
onditions were assumed (� = �

d

) in the testing

and the results were found to be within 0.01-0.02 dB of those tabulated in Tables 1 and

2.

8 Con
lusion

In this paper, we designed and implemented 
hannel optimized sample adaptive prod-

u
t quantizers (COm-SAPQ and CO1-SAPQ) for the eÆ
ient 
ompression and reliable

transmission of Gaussian sour
es over BSC's. We also 
ompared the performan
es of the

COm-SAPQ/CO1-SAPQ s
hemes against those of the COVQ and the COPQ. The per-

forman
e of the COm-SAPQ was found to be 
omparable to that of the COVQ (within

0.2 dB) when the sour
e is memoryless Gaussian, with a redu
tion fa
tor of 1/2 in en-


oding 
omplexity. For Gauss-Markov sour
es, an improvement over the COVQ 
an

be made by the CO1-SAPQ for the same en
oding 
omplexity, but with the advantage

of lower storage requirements. Improvements in the 
hoi
e of an initial 
odebook for

the COm-SAPQ still needs to be made in order to improve its SDR for Gauss-Markov

sour
es.
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Figure 1: Channel optimized m-SAPQ model.



�

d

R km Quantizer 0:000 0:005 0:010 0:050 0:100 0:150 
omplexity storage

3.0 2

COVQ

k = 2; N = 64

15.23 12.19 11.07 7.35 5.11 3.78 64 320

COPQ

k = 1; N = 8

14.57 12.00 10.47 5.62 4.65 3.48 8 48

COm-SAPQ

k = 1; N = 2; � = 4

15.07 12.38 11.04 7.20 5.14 3.75 32 192

CO1-SAPQ

k = 1; N = 2; � = 4

13.59 11.54 10.29 6.48 4.35 3.13 32 96

4

CO1-SAPQ

k = 1; N = 4; � = 4

15.19 12.41 10.92 6.61 4.47 3.18 64 192

2.0 2

COVQ

k = 2; N = 16

9.64 8.71 8.02 5.52 3.82 2.71 16 80

COPQ

k = 1; N = 4

9.27 8.50 7.86 4.85 3.04 1.99 4 24

COm-SAPQ

k = 1; N = 2; � = 2

9.51 8.71 8.10 5.48 3.86 2.79 8 48

CO1-SAPQ

k = 1; N = 2; � = 2

8.72 8.04 7.50 5.16 3.61 2.50 8 24

3

CO1-SAPQ

k = 1; N = 2; � = 3

8.92 8.16 7.58 5.06 3.45 2.45 16 48

1.0 4

COVQ

k = 4; N = 16

4.66 4.44 4.24 3.14 2.26 1.61 16 144

COPQ

k = 2; N = 4

4.38 4.16 3.96 2.72 1.75 1.14 4 40

COm-SAPQ

k = 2; N = 2; � = 2

4.47 4.28 4.09 3.13 2.26 1.61 8 80

CO1-SAPQ

k = 2; N = 2; � = 2

4.41 4.15 3.95 2.81 1.96 1.44 8 40

6

CO1-SAPQ

k = 2; N = 2; � = 3

4.53 4.25 4.01 2.73 1.95 1.39 16 80

Table 1: SDR (in dB); 200,000 memoryless Gaussian training samples; Rate R in

bits/sour
e sample; �

d

is the design BSC 
rossover probability.



�

d

R km Quantizer 0:000 0:005 0:010 0:050 0:100 0:150 
omplexity storage

3.0 2

COVQ

k = 2; N = 64

19.03 14.50 13.58 9.36 6.80 5.13 64 320

COPQ

k = 1; N = 8

14.57 12.00 10.47 5.60 4.63 3.46 8 48

COm-SAPQ

k = 1; N = 2; � = 4

16.62 14.22 12.75 8.43 6.07 4.62 32 192

CO1-SAPQ

k = 1; N = 2; � = 4

17.24 14.02 12.65 8.68 6.25 4.58 32 96

4

CO1-SAPQ

k = 1; N = 4; � = 4

19.72 15.31 13.85 9.51 6.88 5.19 64 192

2.0 2

COVQ

k = 2; N = 16

13.54 11.39 10.04 7.27 5.27 3.82 16 80

COPQ

k = 1; N = 4

9.28 8.50 7.85 4.83 3.02 1.96 4 24

COm-SAPQ

k = 1; N = 2; � = 2

12.50 10.76 9.71 6.26 4.53 3.37 8 48

CO1-SAPQ

k = 1; N = 2; � = 2

12.50 10.76 9.71 6.26 4.53 3.37 8 24

3

CO1-SAPQ

k = 1; N = 2; � = 3

13.95 11.81 10.68 7.08 5.21 3.93 16 48

1.0 4

COVQ

k = 4; N = 16

10.20 9.15 8.36 6.24 4.64 3.42 16 144

COPQ

k = 2; N = 4

7.89 4.10 3.93 2.94 2.11 1.50 4 40

COm-SAPQ

k = 2; N = 2; � = 2

9.66 8.78 8.17 5.63 4.08 3.10 8 80

CO1-SAPQ

k = 2; N = 2; � = 2

9.52 8.63 8.01 5.55 4.11 3.09 8 40

6

CO1-SAPQ

k = 2; N = 2; � = 3

9.99 9.11 8.51 6.09 4.58 3.50 16 48

Table 2: SDR (in dB); 200,000 Gauss Markov training samples with 
orrelation 
oeÆ
ient

� = 0:9; Rate R in bits/sour
e sample; �

d

is the design BSC 
rossover probability.


