Soft-Decision COVQ Design for Space-Time
Orthogonal Block Coded Channels*

Firouz Behnamfar, Fady Alajajit* and Tamés Linder'*

T Department of Electrical and Computer Engineering

 Department of Mathematics and Statistics

Queen’s University, Kingston, Ontario K7L 3N6, Canada.
{firouz, fady, linder}@mast.queensu.ca

Abstract — We introduce a soft-decision decod-
ing channel-optimized vector quantizer (COVQ)
to transmit analog sources over space-time or-
thogonal block (STOB) coded channels with bi-
nary phase-shift keying (BPSK) modulation. We
propose a linear combining method to utilize the
signals of all receive antennas. The combiner has
a very simple structure when optimized under the
maximum signal-to-noise ratio criterion. Further-
more, we note that the concatenation of the sys-
tem blocks between the COVQ encoder and de-
coder is equivalent to a discrete memoryless chan-
nel (DMC) with a closed-form transition distribu-
tion expression. For a COVQ of dimension 2 and
rate 1 bps, signal-to-distortion ratio (SDR) gains
up of to 0.4 dB with soft-decoding are observed
over hard-decoding, translating into up to 2 dB
benefits in channel signal-to-noise ratio (CSNR).
Performance comparisons with traditional coding
systems are also provided.

I. INTRODUCTION

Space-time orthogonal block coding [3, 13] was recently
developed to improve the error performance of wireless
communication systems. Like many other error protec-
tion schemes that are designed in the spirit of Shannon’s
separation theorem [12], space-time codes are designed
to operate on uniform independent and identically dis-
tributed (i.i.d.) bit-streams. However, Shannon’s sep-
aration theorem does not take into consideration con-
straints on system complexity and delay. As real-world
communication systems are constrained, systems with in-
dependent source and channel codes, known as tandem
systems, may have inferior performance compared with
those which perform source and channel coding jointly.
Joint source-channel coding may be implemented in var-
ious ways. When the input to the space-time encoder
is a non-uniform binary sequence, maximum a posteriort
(MAP) detection may be applied to enhance detection
and improve system performance. For single transmit
and receive antenna systems, joint source-channel cod-
ing via MAP detection is studied, for example, in [2, 11].
For STOB coded channels, this problem is considered in
[6], where a closed-form expression for the pairwise er-
ror probability (PEP) of symbols which undergo STOB
coding and MAP detection is derived and significant im-
provements are shown over maximum likelihood (ML) de-
tection.
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In this work, we consider the transmission of
continuous-alphabet (analog) sources over STOB coded
channels. We employ COVQ, another joint source chan-
nel coding method, for compressing the source while ren-
dering it robust against channel errors. COVQ design was
originally studied in [6, 8] for arbitrary discrete single-
input single-output (SISO) noisy channels. In [1] and
[9], COVQ with soft-decision decoding was implemented
for SISO channels with Rayleigh flat fading, and white
and colored additive Gaussian noise and ISI; respectively.
One main task in COVQ design is to find the channel
transition probabilities for the quantizer encoder indices.
For channels with multiple receive antennas, another im-
portant task consists of properly processing the received
signals from the different antennas. We address this by
proposing to perform space-time soft-decoding followed
by linear combining at the receiver. In our system, the
combiner output signal is quantized through an appropri-
ately designed uniform scalar quantizer (as in [1, 9]) with
rate ¢ bps. The concatenation of the space-time encoder,
the MIMO channel, the space-time soft-decoder, the com-
biner, and the uniform scalar quantizer is shown to be
equivalent to a DMC used kr times, where k and r are the
quantizer dimension and rate, respectively. We numeri-
cally select the step size of the uniform quantizer, so that
the capacity of the equivalent DMC is maximized for each
value of CSNR.. We show that the transition probabilities
of this “equivalent DMC” can be expressed in terms of
the symbol PEP of the ML-decoded STOB coded chan-
nels. Hence, these probabilities can be determined using
the results of [4]. Finally, we design a soft-decision de-
coding COVQ for the equivalent DMC using the modi-
fied generalized Lloyd algorithm (GLA) and evaluate its
performance.

II. SYSTEM COMPONENTS

This section describes the system elements in detail.
The system block diagram is shown in Figure 1.

A. The MIMQO Channel

The communication system considered here employs
L transmit and L g receive antennas. The baseband con-
stellation points are ¢; = 1 and c2 = —1. The channel is
assumed to be Rayleigh flat fading, so that the path gain
from transmit antenna 4 to receive antenna j, denoted by
Hj;, has a unit-variance i.i.d. Rayleigh distribution. We
assume that the receiver has perfect knowledge of the
path gains. It is also assumed that the channel is quasi-
static, meaning that the path gains remain constant dur-
ing a codeword transmission, but vary in an i.i.d. fashion
among codeword intervals. The additive noise at receive
antenna j and symbol interval ¢, th, is assumed to have
a zero-mean unit-variance Gaussian distribution, denoted



by N(0,1). Based on the above, for a CSNR of vs, the sig-
nal at receive antenna j at symbol interval ¢ can be writ-
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are simultaneously transmitted. In matrix form, we have

T = iHst-l-'n,t, (1)
V Lt

where i = (R}, ..,RE™)T, sy = (st .., stT)T, ny =
(N}, ...,NF=Y H = {Hj;}, and T denotes transposi-
tion.

B. Space-Time Orthogonal Block Codes

In the case of STOB codes with a codeword length of
Tw symbol intervals, (1) can be written as
Vs
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where c indicates the 7 X 1 vector of transmitted symbols
and H’
of some of its entries.
columns, IEI]TIEI] = gH-L-, where I,, is then x n
identity matrlx H; =3, H};, and g is the inverse of the
code rate. Equatlon( ) can be multiplied from the left by

is derived from the j*® row of H via negation

The matrix H’ has orthogonal

H t0 yield the following at the output of the space-time
soft-decoder:
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where 7/ £ H''niand g =g 7= Note that each entry
of # is associated with only one symbol. It is not hard
to show that

N} ~iid. N(0,9H;),

j=1,.,Lr,t=1,..,7. (3)

It follows that symbol ¢ can be detected by only consid-
ering the i*" entry of the vectors #/, 1 < j < Lg. For our
application, this means that the bits corresponding to a
VQ index can be detected independently.

It is shown in [4] that the PEP of ML decoded STOB
coded symbols equals
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BPSK modulation, 15 = s, 2§ =

use, we set
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C. Soft-Decision Decoding and the Equivalent DMC

C.1: Linear Combining at the Receiver

We apply linear combining, which is a suboptimal
method, to use the space-time soft-decoded signal (R!)
of all receive antennas. This problem is a variation of the
classical maximum ratio combining (MRC) set-up [10],
since the space-time soft-decoded signals have different

. For future

noise variances (see (3)). Letting /7 = we can write

&
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the output of the linear combiner as

ZaJ ’H

where ¢; is the ¢! transmitted symbol. From (3), we know
that the dlstrlbutlon of #/ — the noise component of 5, —
is V(0, e T ). Therefore the SNR at the combiner is

Zaj ci+ ) (6)
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In linear combining, the objective is then to choose the
weights {a; }J-Lfl so that SNRco is maximized. In order
to average the received signals while keeping the received
signal power constant, we constrain the weights so that
E]LRI aj = 1. Therefore, the problem would be to mini-
mize the denominator of (7), i.e., finding
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subject to Z ‘B a; = 1. Solving the Lagrangian
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of the combiner can be written from (6) as

we have A = and «; =

pi =ci+ i, (8)

where 7; = Z e 17 It is easy to verify that
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C.2: The Uniform Quantizer

The linear combiner output, p;, is fed into a “uniform”
quantizer. Let us indicate the decision levels of this quan-
tizer by {21}, ', and its codepoints by {w},_, , where
N = 27 is the number of demodulation codewords. As the
support of p; is the real axis, the quantizer should have
two unbounded decision regions. The decision regions of
the uniform quantizer are given by

2={ (k+1-N/2)A, ifk=0,---,N—2
00, ifk=N— 17
and the quantization rule f(-) is simply
f(p) =k ifpe(zp_1,2k), k=0,---,N—1.

C.3: The Equivalent DMC

For COV(Q design, we need to derive the transition
probabilities of the 2¥"-input 29*"-output discrete chan-
nel, which is equivalent to the space-time encoder, the
MIMO channel, the space-time soft-decoder, the com-
biner, and the uniform quantizer. As detection of bits
which correspond to each quantizer index is decoupled
via the use of the space-time soft-decoder, combiner, and



uniform quantizer, transmission and decoding of VQ in-
dices are independent of one another, and the discrete
channel is equivalent to a binary-input 2?-output DMC
used kr times. We shall refer to this discrete channel as
the “equivalent DMC”.

The required set of the transition probabilities are
P(wg|c1) and P(wy|cz2) for all wy, where ¢1 and ¢ are the
BPSK constellation points which, without loss of gener-
ality, are assumed to correspond to 1 and 0, respectively.
Decision is made in favor of the k™ codepoint if the out-
put of the linear combiner falls into the (zi, zr+1) interval
of size A. Using (8) and (9) we have

P(wk|cl,H) :P(zk <l+4+p < Zk+1)

= @ ((5(1 — Zk+1)\/ﬁ) -Q (5(1 - Zk)\/ﬁ) .

The expectation over H of each of the above ) functions
can be determined using (4):

P(wgler) = A6(1 = zp41)) = A(S(L - 2)),  (10)

where A(+) is defined in (5). Similarly, we have

P(wglea) = A1+ 2z1)) — A1+ z41)). (1)

Note that the DMC transition probability matrix is sym-
metric in the sense of [7].

Consider a k dimensional quantizer with rate r as
shown in Figure 1. Let us denote the natural binary rep-
resentation of the index of decision region S; by {b;}F";
and that of codevector w; by {m;}f7,, where m; is a bi-
nary g-tuple. As the DMC is memoryless, the COVQ
index transition probabilities can easily be computed by

kr

P(jli) = H P (sz |C(2—bz)) :

=1

(12)

D. The Step-Size A

Table I lists the capacity of the DMC derived after
quantizing the space-time soft-decoded chanmnel output
with g bits. For a given ¢ and CSNR ~,, we determine the
step-size A which maximizes the capacity of the DMC via
maximizing the mutual information between the DMC in-
put and output. Because the channel transition probabil-
ity matrix is symmetric, a uniform input distribution can
achieve channel capacity [7]. As shown in Figure 2, when
the step-size is very small or very large, soft-decoding
does not increase channel capacity. It also shows that if
CSNR is high, soft-decoding is not very beneficial. With
the optimal choice of A, though, soft-decoding signifi-
cantly increases the channel capacity, specially when the
receiver noise is strong. For example, at CSNR = -2 dB,
there is a 15% benefit in using soft-decoding with ¢ = 5
bits. Also note that channel capacity increases less than
1% from ¢ = 3 to ¢ = 5 even for the worst channel con-
ditions. This shows that typically ¢ = 3 would achieve
almost the whole gain in soft-decoding.

II1. SorT-DECODING COVQ FOR THE
EqQuivALENT DMC

The transition probability given in (12) can be used
in the modified GLA algorithm to design a soft-decoding

COVQ for space-time coded MIMO channels as explained
below. Every input k-tuple is encoded at a rate of r bits
per sample. Therefore, the input space is partitioned into
N. = 2" subsets. As we use BPSK modulation, a vector
of kr real-valued signals is received for every transmitted
index. This vector is softly demodulated at a rate of
q bps. Therefore, each k-dimensional source vector is
decoded to one of the Ny = 29%" codevectors. The input
space partitioning and the codebook are optimized in an
iterative fashion using a number of training vectors as
follows.

The nearest neighbor condition: for a fixed codebook
and i =0,---, N. —1, the optimal partition P* = {S} } is

S = {m Z P(jli)d(z,y;) < Z P(ju)d(w,yj),\ﬂ}

where @ is a training vector and d(x,y) is the Euclidean
distance between x and y.

The centroid condition: given a partition P, the opti-
mal codebook C* = {y;} is

No—1
> Pl Y @
. i—0 11T, €S; .
yj: Ne—1 ! ) ]:07"')Nd_1'

> P(j1)]Si]
i=0
where |S;| is the number of the training vectors in S;.

IV. NUMERICAL RESULTS

We consider a dual-transmit single-receive antenna
system using Alamouti’s space-time code [3]. Tables II
and III demonstrate the results of soft-decoding for zero-
mean unit-variance i.i.d. Gaussian and Gauss-Markov
sources, respectively. For the sake of comparison, the
performance of other traditional coding systems is also
provided. The quantizer rate is 1 bps and its dimen-
sion is 2. As expected, using more soft-decoding bits in-
creases the SDR. Also, a large gain is observed in using
COVQ instead of VQ (which does not exploit the chan-
nel statistics). For example, for the Gauss-Markov source
and at CSNR = —2 dB, the SDR of the soft-decoding
COVQ with ¢ = 3 bits is 0.4 dB higher than that of
the hard-decoding COVQ and 2 dB higher than the VQ-
based system. We also consider a tandem coding scheme
consisting of a rate 0.5 bps VQ and a 64-state rate 1/2
convolutional code (denoted by VQ+CC). Interestingly,
we note that this system is outperformed by the COVQ
for all shown values of CSNR.. Except for a limited range
of CSNR (1 dB < 7, < 3 dB) and only for the Gauss-
Markov source, using only a VQ turns out to be better
than using a VQ and convolutional code; this indicates
that the performance loss due to the reduced bit rate in
source coding is more important than the error protection
gain through channel coding. We also observe that the
soft-decoding gain is minimal for ¢ > 3. This agrees with
our capacity results in Table I and Figure 2.
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CSNR covQ Other Systems
(dB) g=1]¢g=2]q=3 VQ | VQ+CC
10 4.155 | 4.159 | 4.161 || 4.155 1.664
8 3.919 | 3.982 | 4.003 || 3.913 1.664
4 2.933 | 3.198 | 3.245 || 2.845 1.642
0 1.615 | 1.918 | 1.969 1.228 0.540
-2 1.078 | 1.323 | 1.368 || 0.457 -0.486

TABLE 1I- Simulated SDR in dB for an i.i.d. A(0,1) source
vector quantized at rate 1 bps and soft-decoded with ¢ bits.
Quantization dimension is 2; Ly = 2 and Lg = 1 (CC: convo-
lutional code).
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Figure 2: Capacity vs. the step-size of the uniform quantizer.

CSNR Capacity (bits/channel use)

(dB) q=11]q9g=21]q¢q=3]q=41] q=5
16.0 0.9945 | 0.9969 | 0.9973 | 0.9974 | 0.9974
14.0 0.9881 | 0.9929 | 0.9937 | 0.9939 | 0.9940
12.0 0.9752 | 0.9842 | 0.9858 | 0.9862 | 0.9864
10.0 0.9506 | 0.9660 | 0.9695 | 0.9702 | 0.9705
8.0 0.9070 | 0.9333 | 0.9381 | 0.9392 | 0.9397
6.0 0.8374 | 0.8760 | 0.8833 | 0.8849 | 0.8855
4.0 0.7386 | 0.7891 | 0.7987 | 0.8009 | 0.8015
2.0 0.6164 | 0.6741 | 0.6852 | 0.6877 | 0.6884
0.0 0.4849 | 0.5427 | 0.5540 | 0.5565 | 0.5572
-2.0 0.3608 | 0.4142 | 0.4223 | 0.4246 | 0.4252
-4.0 0.2560 | 0.2974 | 0.3057 | 0.3076 | 0.3081

TaBLE I- Capacity (in bits/channel use) of the DMC derived
from g¢-bit soft-decoding of BPSK-modulated space-time coded
MIMO channel with Ly =2 and Lg = 1.

CSNR covQ Other Systems
(dB) g=1]qg=2]q=3 VQ | VQ+CC
10 7.301 | 7.311 | 7.314 || 7.273 4.027
8 6.744 | 6.869 | 6.938 || 6.627 4.027
4 4.937 | 5.316 | 5.400 || 4.395 3.966
0 3.014 | 3.382 | 3.451 1.758 1.127
-2 2.242 | 2.563 | 2.629 || 0.627 -0.874

TABLE I1I- Simulated SDR in dB for a zero-mean unit-variance
Gauss-Markov source (p = 0.9) vector quantized at rate 1 bps
and soft-decoded with ¢ bits. Quantization dimension is 2;
Ly =2 and Li =1 (CC: convolutional code).



