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Abstra
t | We introdu
e a soft-de
ision de
od-

ing 
hannel-optimized ve
tor quantizer (COVQ)

to transmit analog sour
es over spa
e-time or-

thogonal blo
k (STOB) 
oded 
hannels with bi-

nary phase-shift keying (BPSK) modulation. We

propose a linear 
ombining method to utilize the

signals of all re
eive antennas. The 
ombiner has

a very simple stru
ture when optimized under the

maximum signal-to-noise ratio 
riterion. Further-

more, we note that the 
on
atenation of the sys-

tem blo
ks between the COVQ en
oder and de-


oder is equivalent to a dis
rete memoryless 
han-

nel (DMC) with a 
losed-form transition distribu-

tion expression. For a COVQ of dimension 2 and

rate 1 bps, signal-to-distortion ratio (SDR) gains

up of to 0.4 dB with soft-de
oding are observed

over hard-de
oding, translating into up to 2 dB

bene�ts in 
hannel signal-to-noise ratio (CSNR).

Performan
e 
omparisons with traditional 
oding

systems are also provided.

I. Introdu
tion

Spa
e-time orthogonal blo
k 
oding [3, 13℄ was re
ently

developed to improve the error performan
e of wireless


ommuni
ation systems. Like many other error prote
-

tion s
hemes that are designed in the spirit of Shannon's

separation theorem [12℄, spa
e-time 
odes are designed

to operate on uniform independent and identi
ally dis-

tributed (i.i.d.) bit-streams. However, Shannon's sep-

aration theorem does not take into 
onsideration 
on-

straints on system 
omplexity and delay. As real-world


ommuni
ation systems are 
onstrained, systems with in-

dependent sour
e and 
hannel 
odes, known as tandem

systems, may have inferior performan
e 
ompared with

those whi
h perform sour
e and 
hannel 
oding jointly.

Joint sour
e-
hannel 
oding may be implemented in var-

ious ways. When the input to the spa
e-time en
oder

is a non-uniform binary sequen
e, maximum a posteriori

(MAP) dete
tion may be applied to enhan
e dete
tion

and improve system performan
e. For single transmit

and re
eive antenna systems, joint sour
e-
hannel 
od-

ing via MAP dete
tion is studied, for example, in [2, 11℄.

For STOB 
oded 
hannels, this problem is 
onsidered in

[5℄, where a 
losed-form expression for the pairwise er-

ror probability (PEP) of symbols whi
h undergo STOB


oding and MAP dete
tion is derived and signi�
ant im-

provements are shown over maximum likelihood (ML) de-

te
tion.

�
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In this work, we 
onsider the transmission of


ontinuous-alphabet (analog) sour
es over STOB 
oded


hannels. We employ COVQ, another joint sour
e 
han-

nel 
oding method, for 
ompressing the sour
e while ren-

dering it robust against 
hannel errors. COVQ design was

originally studied in [6, 8℄ for arbitrary dis
rete single-

input single-output (SISO) noisy 
hannels. In [1℄ and

[9℄, COVQ with soft-de
ision de
oding was implemented

for SISO 
hannels with Rayleigh 
at fading, and white

and 
olored additive Gaussian noise and ISI, respe
tively.

One main task in COVQ design is to �nd the 
hannel

transition probabilities for the quantizer en
oder indi
es.

For 
hannels with multiple re
eive antennas, another im-

portant task 
onsists of properly pro
essing the re
eived

signals from the di�erent antennas. We address this by

proposing to perform spa
e-time soft-de
oding followed

by linear 
ombining at the re
eiver. In our system, the


ombiner output signal is quantized through an appropri-

ately designed uniform s
alar quantizer (as in [1, 9℄) with

rate q bps. The 
on
atenation of the spa
e-time en
oder,

the MIMO 
hannel, the spa
e-time soft-de
oder, the 
om-

biner, and the uniform s
alar quantizer is shown to be

equivalent to a DMC used kr times, where k and r are the

quantizer dimension and rate, respe
tively. We numeri-


ally sele
t the step size of the uniform quantizer, so that

the 
apa
ity of the equivalent DMC is maximized for ea
h

value of CSNR. We show that the transition probabilities

of this \equivalent DMC" 
an be expressed in terms of

the symbol PEP of the ML-de
oded STOB 
oded 
han-

nels. Hen
e, these probabilities 
an be determined using

the results of [4℄. Finally, we design a soft-de
ision de-


oding COVQ for the equivalent DMC using the modi-

�ed generalized Lloyd algorithm (GLA) and evaluate its

performan
e.

II. System Components

This se
tion des
ribes the system elements in detail.

The system blo
k diagram is shown in Figure 1.

A. The MIMO Channel

The 
ommuni
ation system 
onsidered here employs

L

T

transmit and L

R

re
eive antennas. The baseband 
on-

stellation points are 


1

= 1 and 


2

= �1. The 
hannel is

assumed to be Rayleigh 
at fading, so that the path gain

from transmit antenna i to re
eive antenna j, denoted by

H

ji

, has a unit-varian
e i:i:d:Rayleigh distribution. We

assume that the re
eiver has perfe
t knowledge of the

path gains. It is also assumed that the 
hannel is quasi-

stati
, meaning that the path gains remain 
onstant dur-

ing a 
odeword transmission, but vary in an i:i:d: fashion

among 
odeword intervals. The additive noise at re
eive

antenna j and symbol interval t, N

j

t

, is assumed to have

a zero-mean unit-varian
e Gaussian distribution, denoted



byN (0; 1). Based on the above, for a CSNR of 


s

, the sig-

nal at re
eive antenna j at symbol interval t 
an be writ-

ten as R

j

t

=

q




s

L

T

P

L

T

i=1

H

ji

s

i

t

+N

j

t

; where

q




s

L

T

fs

i

t

g

L

T

i=1

are simultaneously transmitted. In matrix form, we have

r

t

=

r




s

L

T

Hs

t

+ n

t

; (1)

where r

t

= (R

1

t

; :::; R

L

R

t

)

T

, s

t

= (s

1

t

; :::; s

L

T

t

)

T

, n

t

=

(N

1

t

; :::; N

L

R

t

)

T

, H = fH

ji

g, and

T

denotes transposi-

tion.

B. Spa
e-Time Orthogonal Blo
k Codes

In the 
ase of STOB 
odes with a 
odeword length of

T

W

symbol intervals, (1) 
an be written as

r

j

=

r




s

L

T

~

H

j


+ n

j

j = 1; � � � ; L

R

; (2)

where 
 indi
ates the � �1 ve
tor of transmitted symbols

and

~

H

j

is derived from the j

th

row of H via negation

of some of its entries. The matrix

~

H

j

has orthogonal


olumns, i.e.,

~

H

jT

~

H

j

= g

�

H

j

I

�

, where I

n

is then � n

identity matrix,

�

H

j

=

P

i

H

2

ji

, and g is the inverse of the


ode rate. Equation(2) 
an be multiplied from the left by

~

H

jT

to yield the following at the output of the spa
e-time

soft-de
oder:

~
r

j

4

=

~

H

jT

r

j

= g

0

�

H

j


+
~
n

j

;

where
~
n

j

4

=

~

H

jy

n

j

and g

0

= g

q




s

L

T

. Note that ea
h entry

of
~
r

j

is asso
iated with only one symbol. It is not hard

to show that

~

N

j

t

� i.i.d. N (0; g

�

H

j

); j = 1; :::; L

R

; t = 1; :::; �: (3)

It follows that symbol i 
an be dete
ted by only 
onsid-

ering the i

th

entry of the ve
tors
~
r

j

, 1 � j � L

R

. For our

appli
ation, this means that the bits 
orresponding to a

VQ index 
an be dete
ted independently.

It is shown in [4℄ that the PEP of ML de
oded STOB


oded symbols equals

P (


i

! 


j

) = E

�

H

n

Q

�

Æ

ij

p

�

H

�o

1

2

0

�

1�

Æ

ij

q

2 + Æ

2

ij

L

T

L

R

�1

X

k=0

 

2k

k

!

1

(2Æ

2

ij

+ 4)

k

1

A

;(4)

where Q(�) is the Gaussian error fun
tion,

�

H =

P

L

R

j=1

�

H

j

=

P

L

T

i=1

P

L

R

j=1

H

2

ji

and Æ

ij

=

q

g


s

2L

T

j


i

�


j

j. For

BPSK modulation, Æ

12

= Æ

21

4

= Æ =

q

2g


s

L

T

. For future

use, we set

�(Æ)

4

= E

�

H

n

Q

�

Æ

p

�

H

�o

: (5)

C. Soft-De
ision De
oding and the Equivalent DMC

C.1: Linear Combining at the Re
eiver

We apply linear 
ombining, whi
h is a suboptimal

method, to use the spa
e-time soft-de
oded signal (

~

R

j

i

)

of all re
eive antennas. This problem is a variation of the


lassi
al maximum ratio 
ombining (MRC) set-up [10℄,

sin
e the spa
e-time soft-de
oded signals have di�erent

noise varian
es (see (3)). Letting ~�

j

i

4

=

~

R

j

i

g

0
�

H

j

, we 
an write

the output of the linear 
ombiner as

~�

i

=

L

R

X

j=1

�

j

~

R

j

i

g

0

�

H

j

=

L

R

X

j=1

�

j

(


i

+ ~�

j

i

): (6)

where 


i

is the i

th

transmitted symbol. From (3), we know

that the distribution of ~�

j

i

{ the noise 
omponent of ~�

j

i

{

is N (0;

g

g

02
�

H

j

). Therefore, the SNR at the 
ombiner is

SNR

CO

=

�

P

L

R

j=1

�

j

�

2

P

L

R

j=1

g

g

02
�

H

j

�

2

j

� (7)

In linear 
ombining, the obje
tive is then to 
hoose the

weights f�

j

g

L

R

j=1

so that SNR

CO

is maximized. In order

to average the re
eived signals while keeping the re
eived

signal power 
onstant, we 
onstrain the weights so that

P

L

R

j=1

�

j

= 1. Therefore, the problem would be to mini-

mize the denominator of (7), i.e., �nding

min

L

R

X

j=1

g

g

02

�

H

j

�

2

j

;

subje
t to

P

L

R

j=1

�

j

= 1: Solving the Lagrangian

D =

X

j

g

g

02

�

H

j

�

2

j

+ �

X

j

�

j

;

we have � =

�2g

g

02
�

H

, and �

j

=

�

H

j

�

H

� Therefore, the output

of the 
ombiner 
an be written from (6) as

~�

i

= 


i

+ ~�

i

; (8)

where ~�

i

=

P

L

R

j=1

~�

j

i

. It is easy to verify that

~�

i

� N

�

0;

L

T

g


s

�

H

�

: (9)

C.2: The Uniform Quantizer

The linear 
ombiner output, ~�

i

, is fed into a \uniform"

quantizer. Let us indi
ate the de
ision levels of this quan-

tizer by fz

k

g

N�1

k=�1

and its 
odepoints by fw

k

g

N�1

k=0

, where

N = 2

q

is the number of demodulation 
odewords. As the

support of ~�

i

is the real axis, the quantizer should have

two unbounded de
ision regions. The de
ision regions of

the uniform quantizer are given by

z

k

=

8

<

:

�1; if k = �1

(k + 1�N=2)�; if k = 0; � � � ; N � 2

+1; if k = N � 1;

and the quantization rule f(�) is simply

f(~�) = k; if ~� 2 (z

k�1

; z

k

); k = 0; � � � ; N � 1:

C.3: The Equivalent DMC

For COVQ design, we need to derive the transition

probabilities of the 2

kr

-input 2

qkr

-output dis
rete 
han-

nel, whi
h is equivalent to the spa
e-time en
oder, the

MIMO 
hannel, the spa
e-time soft-de
oder, the 
om-

biner, and the uniform quantizer. As dete
tion of bits

whi
h 
orrespond to ea
h quantizer index is de
oupled

via the use of the spa
e-time soft-de
oder, 
ombiner, and



uniform quantizer, transmission and de
oding of VQ in-

di
es are independent of one another, and the dis
rete


hannel is equivalent to a binary-input 2

q

-output DMC

used kr times. We shall refer to this dis
rete 
hannel as

the \equivalent DMC".

The required set of the transition probabilities are

P (w

k

j


1

) and P (w

k

j


2

) for all w

k

, where 


1

and 


2

are the

BPSK 
onstellation points whi
h, without loss of gener-

ality, are assumed to 
orrespond to 1 and 0, respe
tively.

De
ision is made in favor of the k

th


odepoint if the out-

put of the linear 
ombiner falls into the (z

k

; z

k+1

) interval

of size �. Using (8) and (9) we have

P (w

k

j


1

;H) = P (z

k

� 1 + ~�

i

< z

k+1

)

= Q

�

Æ(1� z

k+1

)

p

�

H

�

�Q

�

Æ(1� z

k

)

p

�

H

�

:

The expe
tation overH of ea
h of the above Q fun
tions


an be determined using (4):

P (w

k

j


1

) = �(Æ(1� z

k+1

))� �(Æ(1� z

k

)); (10)

where �(�) is de�ned in (5). Similarly, we have

P (w

k

j


2

) = �(Æ(1 + z

k

))� �(Æ(1 + z

k+1

)): (11)

Note that the DMC transition probability matrix is sym-

metri
 in the sense of [7℄.

Consider a k dimensional quantizer with rate r as

shown in Figure 1. Let us denote the natural binary rep-

resentation of the index of de
ision region S

i

by fb

l

g

kr

l=1

and that of 
odeve
tor w

j

by fm

l

g

kr

l=1

, where m

l

is a bi-

nary q-tuple. As the DMC is memoryless, the COVQ

index transition probabilities 
an easily be 
omputed by

P (jji) =

kr

Y

l=1

P

�

w

m

l

j


(2�b

l

)

�

: (12)

D. The Step-Size �

Table I lists the 
apa
ity of the DMC derived after

quantizing the spa
e-time soft-de
oded 
hannel output

with q bits. For a given q and CSNR 


s

, we determine the

step-size � whi
h maximizes the 
apa
ity of the DMC via

maximizing the mutual information between the DMC in-

put and output. Be
ause the 
hannel transition probabil-

ity matrix is symmetri
, a uniform input distribution 
an

a
hieve 
hannel 
apa
ity [7℄. As shown in Figure 2, when

the step-size is very small or very large, soft-de
oding

does not in
rease 
hannel 
apa
ity. It also shows that if

CSNR is high, soft-de
oding is not very bene�
ial. With

the optimal 
hoi
e of �, though, soft-de
oding signi�-


antly in
reases the 
hannel 
apa
ity, spe
ially when the

re
eiver noise is strong. For example, at CSNR = -2 dB,

there is a 15% bene�t in using soft-de
oding with q = 5

bits. Also note that 
hannel 
apa
ity in
reases less than

1% from q = 3 to q = 5 even for the worst 
hannel 
on-

ditions. This shows that typi
ally q = 3 would a
hieve

almost the whole gain in soft-de
oding.

III. Soft-De
oding COVQ for the

Equivalent DMC

The transition probability given in (12) 
an be used

in the modi�ed GLA algorithm to design a soft-de
oding

COVQ for spa
e-time 
oded MIMO 
hannels as explained

below. Every input k-tuple is en
oded at a rate of r bits

per sample. Therefore, the input spa
e is partitioned into

N

e

= 2

kr

subsets. As we use BPSK modulation, a ve
tor

of kr real-valued signals is re
eived for every transmitted

index. This ve
tor is softly demodulated at a rate of

q bps. Therefore, ea
h k-dimensional sour
e ve
tor is

de
oded to one of the N

d

= 2

qkr


odeve
tors. The input

spa
e partitioning and the 
odebook are optimized in an

iterative fashion using a number of training ve
tors as

follows.

The nearest neighbor 
ondition: for a �xed 
odebook

and i = 0; � � � ; N

e

�1, the optimal partition P

�

= fS

�

i

g is

S

�

i

=

(

x :

N

d

�1

X

j=0

P (jji)d(x;y

j

) �

N

d

�1

X

j=0

P (jjl)d(x;y

j

); 8l

)

where x is a training ve
tor and d(x;y) is the Eu
lidean

distan
e between x and y.

The 
entroid 
ondition: given a partition P, the opti-

mal 
odebook C

�

= fy

�

j

g is

y

�

j

=

N

e

�1

X

i=0

P (jji)

X

l:x

l

2S

i

x

l

N

e

�1

X

i=0

P (jji)jS

i

j

; j = 0; � � � ; N

d

� 1:

where jS

i

j is the number of the training ve
tors in S

i

.

IV. Numeri
al Results

We 
onsider a dual-transmit single-re
eive antenna

system using Alamouti's spa
e-time 
ode [3℄. Tables II

and III demonstrate the results of soft-de
oding for zero-

mean unit-varian
e i:i:d:Gaussian and Gauss-Markov

sour
es, respe
tively. For the sake of 
omparison, the

performan
e of other traditional 
oding systems is also

provided. The quantizer rate is 1 bps and its dimen-

sion is 2. As expe
ted, using more soft-de
oding bits in-


reases the SDR. Also, a large gain is observed in using

COVQ instead of VQ (whi
h does not exploit the 
han-

nel statisti
s). For example, for the Gauss-Markov sour
e

and at CSNR = �2 dB, the SDR of the soft-de
oding

COVQ with q = 3 bits is 0.4 dB higher than that of

the hard-de
oding COVQ and 2 dB higher than the VQ-

based system. We also 
onsider a tandem 
oding s
heme


onsisting of a rate 0.5 bps VQ and a 64-state rate 1/2


onvolutional 
ode (denoted by VQ+CC). Interestingly,

we note that this system is outperformed by the COVQ

for all shown values of CSNR. Ex
ept for a limited range

of CSNR (1 dB < 


s

< 3 dB) and only for the Gauss-

Markov sour
e, using only a VQ turns out to be better

than using a VQ and 
onvolutional 
ode; this indi
ates

that the performan
e loss due to the redu
ed bit rate in

sour
e 
oding is more important than the error prote
tion

gain through 
hannel 
oding. We also observe that the

soft-de
oding gain is minimal for q > 3. This agrees with

our 
apa
ity results in Table I and Figure 2.
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CSNR COVQ Other Systems

(dB) q = 1 q = 2 q = 3 VQ VQ+CC

10 4.155 4.159 4.161 4.155 1.664

8 3.919 3.982 4.003 3.913 1.664

4 2.933 3.198 3.245 2.845 1.642

0 1.615 1.918 1.969 1.228 0.540

-2 1.078 1.323 1.368 0.457 -0.486

Table II- Simulated SDR in dB for an i.i.d. N (0; 1) sour
e

ve
tor quantized at rate 1 bps and soft-de
oded with q bits.

Quantization dimension is 2; L

T

= 2 and L

R

= 1 (CC: 
onvo-

lutional 
ode).
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Figure 2: Capa
ity vs. the step-size of the uniform quantizer.

CSNR Capa
ity (bits/
hannel use)

(dB) q = 1 q = 2 q = 3 q = 4 q = 5

16.0 0.9945 0.9969 0.9973 0.9974 0.9974

14.0 0.9881 0.9929 0.9937 0.9939 0.9940

12.0 0.9752 0.9842 0.9858 0.9862 0.9864

10.0 0.9506 0.9660 0.9695 0.9702 0.9705

8.0 0.9070 0.9333 0.9381 0.9392 0.9397

6.0 0.8374 0.8760 0.8833 0.8849 0.8855

4.0 0.7386 0.7891 0.7987 0.8009 0.8015

2.0 0.6164 0.6741 0.6852 0.6877 0.6884

0.0 0.4849 0.5427 0.5540 0.5565 0.5572

-2.0 0.3608 0.4142 0.4223 0.4246 0.4252

-4.0 0.2560 0.2974 0.3057 0.3076 0.3081

Table I- Capa
ity (in bits/
hannel use) of the DMC derived

from q-bit soft-de
oding of BPSK-modulated spa
e-time 
oded

MIMO 
hannel with L

T

= 2 and L

R

= 1.

CSNR COVQ Other Systems

(dB) q = 1 q = 2 q = 3 VQ VQ+CC

10 7.301 7.311 7.314 7.273 4.027

8 6.744 6.869 6.938 6.627 4.027

4 4.937 5.316 5.400 4.395 3.966

0 3.014 3.382 3.451 1.758 1.127

-2 2.242 2.563 2.629 0.627 -0.874

Table III- Simulated SDR in dB for a zero-mean unit-varian
e

Gauss-Markov sour
e (� = 0:9) ve
tor quantized at rate 1 bps

and soft-de
oded with q bits. Quantization dimension is 2;

L

T

= 2 and L

R

= 1 (CC: 
onvolutional 
ode).


