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Abstract | In this work, we present two bounds (one

lower bound and one upper bound) on the probability

of a union of a �nite number of events. The bounds

{ which are expressed in terms of only the individual

event probabilities and the pairwise event probabili-

ties { are applied to examine the symbol error (P

s

)

and bit error (P

b

) probabilities of an uncoded com-

munication system used in conjunction with M-ary

PSK/QAM modulations and maximum a posteriori

(MAP) decoding over AWGN channels. It is shown

that both bounds provide a good, and often excel-

lent, estimate of the error probabilities over the entire

range of the signal-to-noise ratio E

b

=N

0

. The upper

bound on P

s

and the lower bound on P

b

are partic-

ularly impressive as they agree with the simulation

results even during very severe channel conditions.

1 Introduction

We present two bounds (one lower bound and one upper

bound) on the probability of the union of a �nite family

of events (P (A

1

[ � � � [ A

N

)) in terms of only the indi-

vidual event probabilities P (A

i

)'s and the pairwise event

probabilities P (A

i

\A

j

)'s. It is demonstrated in [7] that

the lower bound is always better than two similar lower

bounds, one by de Caen [5] and the other by Dawson

and Sanko� [4], that use the same information. The up-

per bound { which is expressed in terms of a weighted

connected graph G and its spanning tree { is based on a

greedy algorithm which constructs the optimal spanning

tree in G.

We then investigate the application of these bounds to

the probabilities of symbol error and bit error of non-

uniform coherent M -ary Phase-Shift Keying (PSK) and

Quadrature Amplitude Modulation (QAM) signaling in

the presence of additive white Gaussian noise (AWGN).

In previous related work [8], S�eguin employed de Caen's

inequality to derive a lower bound on the probabilities

of error for uniform M -ary signals derived from a binary

linear code and sent over AWGN channels.

�
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2 A Lower Bound on the Probability

of a Union

Consider a �nite family of events A

1

; A

2

; : : : ; A

N

in a

�nite

1

probability space (
; P ), where N is a �xed pos-

itive integer. For each x 2 
, let p(x)

4

=P (fxg), and let

the degree of x { denoted by deg(x) { be the number of

A

i

's that contain x. De�ne

B

i

(k)

4

= fx 2 A

i

: deg(x) = kg

and

a

i

(k)

4

= P (B

i

(k));

where i = 1; 2; : : : ; N and k = 1; 2; : : : ; N . We obtain the

following lemma.

Lemma 1 ([7])

P

 

N

[

i=1

A

i

!

=

N

X

i=1

N

X

k=1

a

i

(k)

k

:

This brings us to the following result.

Theorem 1 ([7])
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P

N
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P (A

i
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) + (1� �

i

)P (A
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(1� �

i

)P (A
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N
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i

\ A

j
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i

P (A

i
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!

; (1)

where

�

i

4

=

�

i

�

i

�

�

�

i

�

i

�

;

�

i

4

=

N

X

k=1

a

i

(k) = P (A

i

);

1

For a general probability space, the problem can be directly

reduced to the �nite case since there are only �nitely many Boolean

atoms speci�ed by the A

i

's [5].



and

�

i

4

=

N

X

k=1

(k � 1)a

i

(k) =

X

j:j 6=i

P (A

i

\ A

j

):

In [7], we also demonstrate that the above lower bound

is always sharper than two similar lower bounds, one by

de Caen [5] and the other by Dawson and Sanko� [4].

3 An Upper Bound on the Probability

of a Union

In this section, we provide an algorithmic upper bound

on the probability of a union. As in the case for the

lower bound, this upper bound is expressed in terms of

the individual and pairwise error probabilities.

Theorem 2 ([6]) Let A

1

; A

2

; � � � ; A

N

be N sets, where

N � 3. Then

P

�

N

[

i=1

A

i

�

�

N

X

i=1

P (A

i

)�

X

(i;j)2T

0

P (A

i

\

A

j

); (2)

where T

0

is any tree spanning the N indices of the sets

A

1

; A

2

; � � � ; A

N

and (i; j) is an edge in T

0

.

We next apply the Greedy Algorithm in [9] which con-

structs the optimal spanning tree T

0

such that the second

term in the right hand side of (2) is maximized [9][Thm.

2.2].

Greedy Algorithm: Consider a (fully) connected graph

G with N vertices and

�

N

2

�

edges (i; j) of weights

P (A

i

\ A

j

). Construct a set of edges T

0

as follows.

Step 0: T

0

= ;.

Step 1: Add to T

0

the edge with maximum weight.

Step 2: From the remaining edges, add to T

0

the edge

with maximum weight subject to the constraint that T

0

remain cycle-free.

Step 3: Repeat Step 2 until T

0

contains N � 1 edges.

4 Non-Uniform Signaling over AWGN

Channels

4.1 Problem Formulation

We apply the bounds to estimate the symbol error prob-

ability (P

s

) and the bit error probability (P

b

) of non-

uniform M -PSK or M -QAM modulated additive white

Gaussian noise (AWGN) channels. The problem formu-

lation is as follows.

We consider a non-uniform

2

independent and identically

distributed (i.i.d.) binary source fX

i

g, with distribu-

tion PfX = 0g = p; that is transmitted via M -PSK

2

The justi�cation for the non-uniformity assumption of the

source is as follows. In many practical image and speech compres-

sion techniques, after some transformation, the transform coe�-

cients are turned into bit streams (binary source). Due to the sub-

or M -QAM modulation (with Gray mapping) over an

AWGN channel with single-sided power spectral density

N

0

. The source stream is grouped in blocks of log

2

M

bits which are each subsequently mapped to a modula-

tion signal for transmission over the channel. At the re-

ceiver, optimal maximum a posteriori decoding (MAP)

is performed in estimating the transmitted M -ary signal.

More speci�cally, if one ofM signals s

1

; s

2

; : : : ; s

M

is sent,

then the MAP decoder declares that s

k

was sent if, for

i = 1; 2; : : : ;M and i 6= k, the MAP metric of s

k

is bigger

than the metric of s

i

; i.e.,

P (s

k

jr) > P (s

i

jr) ;

where r is the received signal.

4.1.1 Symbol Error Rate: The probability of symbol de-

coding error P

s

is

P

s

=

M

X

u=1

P (�js

u

)P (s

u

) =

M

X

u=1

P

�

[

i 6=u

�

ui

�

P (s

u

); (3)

where P (�js

u

) is the conditional probability of error given

that s

u

was sent, and �

ui

represents the event that s

i

has

a higher MAP metric than s

u

given that s

u

was sent. It

can be shown that

P (�

ui

) = Q

�

d

ui

p

2N

0

+

p

2N

0

lnP (s

u

) =P (s

i

)

2d

ui

�

;

and

P (�

ui

\ �

uj

) =	

�

�

ij

;

d

ui

p

2N

0

+

p

2N

0

lnP (s

u

) =P (s

i

)

2d

ui

;

d

uj

p

2N

0

+

p

2N

0

lnP (s

u

) =P (s

j

)

2d

uj

�

;

where

d

ui

= jjs

i

� s

u

jj;

�

ij

=

< s

i

� s

u

; s

j

� s

u

>

jjs

i

� s

u

jj � jjs

j

� s

u

jj

;

Q (x) =

1

p

2�

Z

1

x

exp

�

�y

2

=2

�

dy

	(�

ij

; a; b) =

1

2�

q

1� �

2

ij

Z

1

a

Z

1

b

e

�

(

x

2

�2�

ij

xy+y

2

)

2

(

1��

2

ij

)

dx dy;

and where jj � jj is the Euclidean norm and < �; � > denotes

the usual dot product.

If we apply Theorems 1 and 2 (along with the Greedy Al-

gorithm) to P (

S

i 6=u

�

ui

) and substitute in (3), we obtain

a lower and an upper bound on P

s

in terms of P (�

ui

),

P (�

ui

\ �

uj

) and P (s

u

).

optimality of the compression scheme, the bit stream often exhibits

a certain amount of redundancy [2, 3, 10]. This embedded residual

redundancy can be characterized by modeling the bitstream as an

i.i.d. non-uniform process or as a Markov process [1, 2, 3].



4.1.2 Bit Error Rate: Under the MAP decoding crite-

rion, the bit error probability P

b

can be written as

P

b

=

M

X

j=1

P

b

(j)P (s

j

);

where

P

b

(j) =

1

log

2

M

E(# of bit errorsjs

j

is sent)

=

1

log

2

M

M

X

m=1

d(c

m

; c

j

)A

m=j

; (4)

and

A

m=j

= P (s

m

is decodedjs

j

is sent)

= 1� P

�

[

i 6=m

fP (s

i

jr) > P (s

m

jr)js

j

is sentg

�

= 1� P

�

[

i 6=m

�

imj

�

; (5)

where j = 1; : : : ;M , c

m

and c

j

are the (Gray coded) bit

assignments for signals s

m

and s

j

, respectively, d(c

m

; c

j

)

is the Hamming distance between c

m

and c

j

, and �

imj

represents the event that symbol s

i

has a higher metric

than symbol s

m

given that symbol s

j

was sent. As in

the case for the symbol error probability, we can derive

P (�

imj

) and P (�

imj

\ �

kmj

) in terms of the Q(�) and 	(�)

functions. Finally, applying Theorems 1 and 2 (with the

Greedy Algorithm) to P (

S

i 6=m

�

imj

) in (5) yields an up-

per bound and a lower bound to the bit error probability

P

b

, respectively.

5 Numerical Results

The computation of the two bounds to the probability of

symbol error P

s

and bit error P

b

are performed for the

8-PSK, 16-PSK, 32-PSK and 16-QAM modulation sys-

tems. The results for p = 0:5 and 0.9 are displayed in

terms of the SNR E

b

=N

0

, where E

b

is the energy per in-

formation bit, in Figures 1-8. For the sake of comparison,

we provide the actual simulation results for each system.

We also provide the union upper bound in the P

s

plots.

Note that when p = 0:5, MAP decoding reduces to max-

imum likelihood (ML) decoding. The chosen values of

E

b

=N

0

correspond to a very noisy channel environment

(e.g. E

b

=N

0

� 6 dB for the 8-PSK system).

We observe from the P

s

plots in Figures 1-5 that the

lower bound converges to the upper bound rapidly, and

that both bounds are very good over the entire considered

range of E

b

=N

0

. More importantly, the upper bound is

extremely close to the simulation results for all values of

E

b

=N

0

, thus providing a very accurate estimate of the

exact symbol error probability.

Finally, we remark from Figures 6-8 that in the case of the

bit error rate bounds, while the upper bound is not always

good (specially for highly non-uniform sources), the lower

bound completely coincides with the simulation results.

6 Conclusion

A lower bound and an algorithmic upper bound on the

probability of a �nite union of events were provided in

terms of only the individual and pairwise event probabil-

ities. The bene�ts of these bounds were illustrated via

the estimation of the symbol and bit error probabilities

of non-uniform M -PSK/QAM signaling over very noisy

AWGN communication channels used in conjunction with

MAP decoding. The upper bound on P

s

and the lower

bound on P

b

provided an excellent estimate of the exact

error probability. Future work may include the applica-

tion of these bounds to Rayleigh fading channels and the

analysis of channel coded communications systems.
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Comparison of Bounds For Symbol Error
Using 8-PSK Modulation, p=0.5
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Figure 1: Bounds for P

s

using 8-PSK modulation and

p = 0:5 (ML decoding).

Comparison of Bounds For Symbol Error
Using 8-PSK Modulation, p=0.9
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Figure 2: Bounds for P

s

using 8-PSK modulation and

p = 0:9 (MAP decoding).

Comparison of Bounds For Symbol Error
Using 16-QAM Modulation, p=0.5
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Figure 3: Bounds for P

s

using 16-QAM modulation and

p = 0:5 (ML decoding).

Comparison of Bounds For Symbol Error
Using 16-QAM Modulation, p=0.9
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Figure 4: Bounds for P

s

using 16-QAM modulation and

p = 0:9 (MAP decoding).



Comparison of Bounds For Symbol Error
Using 32-PSK Modulation, p=0.9
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Figure 5: Bounds for P
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using 32-PSK modulation and

p = 0:9 (MAP decoding).

Comparison of Bounds For Bit Error
Using 8-PSK Modulation, p=0.5
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Figure 6: Bounds for P

b

using 8-PSK modulation and

p = 0:5 (ML decoding).

Comparison of Bounds For Bit Error
Using 8-PSK Modulation, p=0.9
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Figure 7: Bounds for P

b

using 8-PSK modulation and

p = 0:9 (MAP decoding).

Comparison of Bounds For Bit Error
Using 16-PSK Modulation, p=0.9
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Figure 8: Bounds for P

b

using 16-PSK modulation and

p = 0:9 (MAP decoding).


