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Abstract — In this work, we present two bounds (one
lower bound and one upper bound) on the probability
The bounds
— which are expressed in terms of only the individual

of a union of a finite number of events.

event probabilities and the pairwise event probabili-
ties — are applied to examine the symbol error (F;)
and bit error (P,) probabilities of an uncoded com-
munication system used in conjunction with M-ary
PSK/QAM modulations and maximum a posteriori
(MAP) decoding over AWGN channels. It is shown
that both bounds provide a good, and often excel-
lent, estimate of the error probabilities over the entire
range of the signal-to-noise ratio E,/Ny. The upper
bound on P; and the lower bound on P, are partic-
ularly impressive as they agree with the simulation
results even during very severe channel conditions.

1 Introduction

We present two bounds (one lower bound and one upper
bound) on the probability of the union of a finite family
of events (P(A; U---U Ap)) in terms of only the indi-
vidual event probabilities P(4;)’s and the pairwise event
probabilities P(A; N A;)’s. It is demonstrated in [7] that
the lower bound is always better than two similar lower
bounds, one by de Caen [5] and the other by Dawson
and Sankoff [4], that use the same information. The up-
per bound — which is expressed in terms of a weighted
connected graph G and its spanning tree — is based on a
greedy algorithm which constructs the optimal spanning
tree in G.

We then investigate the application of these bounds to
the probabilities of symbol error and bit error of non-
uniform coherent M-ary Phase-Shift Keying (PSK) and
Quadrature Amplitude Modulation (QAM) signaling in
the presence of additive white Gaussian noise (AWGN).

In previous related work [8], Séguin employed de Caen’s
inequality to derive a lower bound on the probabilities
of error for uniform M-ary signals derived from a binary
linear code and sent over AWGN channels.
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2 A Lower Bound on the Probability
of a Union

Consider a finite family of events A;, As,..., Ay in a
finite! probability space ({2, P), where N is a fixed pos-

itive integer. For each z € Q, let p(x)éP({x}), and let
the degree of © — denoted by deg(x) — be the number of
A;’s that contain z. Define

Bi(k) £ {z € A; : deg(z) = k}

and A
ai(k) = P(B;(k)),

where i =1,2,...,N and k =1,2,..., N. We obtain the
following lemma.

Lemma 1 ([7])

N N N a(k)
(Un)rEe

This brings us to the following result.

Theorem 1 ([7])

N 0:P(A;)?
i (zL:J1 Ai) . Z <Z§V_1 P(A;NA;) +(1-0;)P(4;)

YL P(AiNAj) —0;P(4) )

where

IFor a general probability space, the problem can be directly
reduced to the finite case since there are only finitely many Boolean
atoms specified by the A;’s [5].
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In [7], we also demonstrate that the above lower bound
is always sharper than two similar lower bounds, one by
de Caen [5] and the other by Dawson and Sankoff [4].

(k) =Y P(4;NA4))
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3 An Upper Bound on the Probability
of a Union

In this section, we provide an algorithmic upper bound
on the probability of a union. As in the case for the
lower bound, this upper bound is expressed in terms of
the individual and pairwise error probabilities.

Theorem 2 ([6]) Let Aj, As,---,
N > 3. Then

N N
P(U 4) < > P - P(4;() A)),

where Ty is any tree spanning the N indices of the sets
Ay, Ay, -+, Ax and (4,7) is an edge in Tp.

An be N sets, where

> (2)

(i,4)€To

We next apply the Greedy Algorithm in [9] which con-
structs the optimal spanning tree T such that the second
term in the right hand side of (2) is maximized [9][Thm.
2.2].

Greedy Algorithm: Cousider a (fully) connected graph

G with N vertices and j) of weights

2
P(A; N Aj). Construct a set of edges Ty as follows.
Step 0: To = 0.

Step 1: Add to T the edge with maximum weight.

N ) edges (i,

Step 2: From the remaining edges, add to Ty the edge
with maximum weight subject to the constraint that T
remain cycle-free.

Step 3: Repeat Step 2 until Tj contains IV — 1 edges.

4 Non-Uniform Signaling over AWGN
Channels

4.1 Problem Formulation

We apply the bounds to estimate the symbol error prob-
ability (Ps) and the bit error probability (F) of non-
uniform M-PSK or M-QAM modulated additive white
Gaussian noise (AWGN) channels. The problem formu-
lation is as follows.

We consider a non-uniform? independent and identically
distributed (i.i.d.) binary source {X;}, with distribu-
tion P{X = 0} = p, that is transmitted via M-PSK

2The justification for the non-uniformity assumption of the
source is as follows. In many practical image and speech compres-
sion techniques, after some transformation, the transform coeffi-
cients are turned into bit streams (binary source). Due to the sub-

or M-QAM modulation (with Gray mapping) over an
AWGN channel with single-sided power spectral density
Np. The source stream is grouped in blocks of log, M
bits which are each subsequently mapped to a modula-
tion signal for transmission over the channel. At the re-
ceiver, optimal maximum a posteriori decoding (MAP)
is performed in estimating the transmitted M -ary signal.
More specifically, if one of M signals s1, so, - .., sas is sent,
then the MAP decoder declares that s; was sent if, for
1=1,2,...,M and i # k, the MAP metric of sy, is bigger
than the metric of s;; i.e.,

P (sg|r) > P (silr),
where r is the received signal.

4.1.1  Symbol Error Rate: The probability of symbol de-
coding error P is

M
P, = Z P(e|sy) P(
u=1

where P(e|s,,) is the conditional probability of error given
that s, was sent, and €,; represents the event that s; has
a higher MAP metric than s, given that s, was sent. It
can be shown that

P (eus) =Q<

fp(uem) s, (3)

u=1 i#u

dui
V2N

V2NoIn P (s,) /P (s;)
+ 2duz > ’

and

dui + \/QN()IHP(Su) /P (Sz)
vV 2N0 2duz ’
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P (Eui N fuj) =V (pij:

duj

V2No 2dy;
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dui = |[8i = s4ll,
< 8§ — Suy8j — Su >
Pij = )
I[si = sull - [1sj — sull

Q (z) \/%/ exp (—y*/2) dy
o _ w —2P”wy+y )
pijsa,b) / [ e T wa,
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and where || || is the Euclidean norm and < -,
the usual dot product.

¥ (

- > denotes

If we apply Theorems 1 and 2 (along with the Greedy Al-
gorithm) to P(UJ,, €u:) and substitute in (3), we obtain
a lower and an upper bound on P; in terms of P(ey;),
P(ey; Neyj) and P(sy).

optimality of the compression scheme, the bit stream often exhibits
a certain amount of redundancy [2, 3, 10]. This embedded residual
redundancy can be characterized by modeling the bitstream as an
ii.d. non-uniform process or as a Markov process [1, 2, 3].



4.1.2  Bit Error Rate: Under the MAP decoding crite-
rion, the bit error probability P, can be written as

M
Pb = ZPb(])P(S])a
Jj=1

where
1
Py(j) = E(# of bit i i t
»(5) log, 11 (# of bit errors|s; is sent)
1 M
= 10g2 M — d(Cm,Cj)Am/j, (4)
and
Ay = P(sy is decoded|s; is sent)
- 1- P( U {P(silr) > P(siulr)ls; is sent})
= ].—P(U eimj); (5)

where j =1,..., M, ¢y, and ¢; are the (Gray coded) bit
assignments for signals s, and s;, respectively, d(cm, ¢;)
is the Hamming distance between c,, and c¢;, and €,
represents the event that symbol s; has a higher metric
than symbol s, given that symbol s; was sent. As in
the case for the symbol error probability, we can derive
P(€im;) and P(€imj Nerm; ) in terms of the Q(-) and ¥(-)
functions. Finally, applying Theorems 1 and 2 (with the
Greedy Algorithm) to P(U,,, €im;) in (5) yields an up-
per bound and a lower bound to the bit error probability
Py, respectively.

5 Numerical Results

The computation of the two bounds to the probability of
symbol error Ps; and bit error P, are performed for the
8-PSK, 16-PSK, 32-PSK and 16-QAM modulation sys-
tems. The results for p = 0.5 and 0.9 are displayed in
terms of the SNR Ej, /Ny, where Ej is the energy per in-
formation bit, in Figures 1-8. For the sake of comparison,
we provide the actual simulation results for each system.
We also provide the union upper bound in the Ps plots.
Note that when p = 0.5, MAP decoding reduces to max-
imum likelihood (ML) decoding. The chosen values of
E, /Ny correspond to a very noisy channel environment
(e.g. Ey/No <6 dB for the 8-PSK system).

We observe from the P, plots in Figures 1-5 that the
lower bound converges to the upper bound rapidly, and
that both bounds are very good over the entire considered
range of E,/Ny. More importantly, the upper bound is
extremely close to the simulation results for all values of
Ey /Ny, thus providing a very accurate estimate of the
exact symbol error probability.

Finally, we remark from Figures 6-8 that in the case of the
bit error rate bounds, while the upper bound is not always
good (specially for highly non-uniform sources), the lower
bound completely coincides with the simulation results.

6 Conclusion

A lower bound and an algorithmic upper bound on the
probability of a finite union of events were provided in
terms of only the individual and pairwise event probabil-
ities. The benefits of these bounds were illustrated via
the estimation of the symbol and bit error probabilities
of non-uniform M-PSK/QAM signaling over very noisy
AWGN communication channels used in conjunction with
MAP decoding. The upper bound on P; and the lower
bound on P, provided an excellent estimate of the exact
error probability. Future work may include the applica-
tion of these bounds to Rayleigh fading channels and the
analysis of channel coded communications systems.
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Comparison of Bounds For Symbol Error
Using 16-QAM Modulation, p=0.5

Comparison of Bounds For Symbol Error
Using 8-PSK Modulation, p=0.5
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Figure 1: Bounds for P; using 8-PSK modulation and Figure 3: Bounds for Ps using 16-QAM modulation and
p = 0.5 (ML decoding). p = 0.5 (ML decoding).

Comparison of Bounds For Symbol Error
Using 16-QAM Modulation, p=0.9

Comparison of Bounds For Symbol Error
Using 8-PSK Modulation, p=0.9
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p=0.9 (MAP decoding).
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p=0.9 (MAP decoding).




Comparison of Bounds For Symbol Error
Using 32-PSK Modulation, p=0.9

Comparison of Bounds For Bit Error
Using 8-PSK Modulation, p=0.9
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Figure 5: Bounds for P; using 32-PSK modulation and Figure 7: Bounds for P, using 8-PSK modulation and
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p=0.9 (MAP decoding).

Comparison of Bounds For Bit Error
Using 8-PSK Modulation, p=0.5
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p=0.9 (MAP decoding).

1le-0.6

le-0.4
1e-0.8

1le-0.6
le-1.0
le-1.2 1le-0.8

le-1.4

le-1.6

le-1.0

Comparison of Bounds For Bit Error

Using 16-PSK Modulation, p=0.9

=) 2 le12
=1 =1
o o
g g
= le-1.8 5
o T lel4
S e
Y 1e-20 u
] 0 le-1.6

le-2.2

—— New Lower Bound 1e-1.8
- New Upper Bound
le-2.4 N pp New Lower Bound
Xl Simulation
16-2.0 New Upper Bound
e-2. N .

1e.2.6 [o39] Simulation

le-2.8 le-2.2

1e-3.0 le-2.4

T T T T T T T T T
-4 -2 0 2 4 10 o 5 10

Figure 6: Bounds for P, using 8-PSK modulation and Figure 8: Bounds for P, using 16-PSK modulation and

SNR (Eb/NO)

p = 0.5 (ML decoding).
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p=0.9 (MAP decoding).




