
DECODING LDPC CODES OVER BINARY CHANNELS

WITH ADDITIVE MARKOV NOISE

Chris Nicola, Fady Alajaji and Tamás Linder

Department of Mathematics and Statistics
Queen’s University, Kingston, ON K7L 3N6, Canada

{nicola, fady, linder}@mast.queensu.ca

ABSTRACT

We study the design of a belief propagation decoder for low-

density parity check (LDPC) codes over binary channels with

additive M th-order Markov noise, specifically the queue-

based channel (QBC) [1]. The decoder is an extension of

the sum product algorithm (SPA) for the case of memoryless

channels and is similar to the one developed for the Gilbert-

Elliot channel [2, 3, 4]. Simulation results of randomly gener-

ated LDPC codes over the QBC show a significant improve-

ment over the standard decoding method for the “equiva-

lent memoryless” channel (resulting from ideal interleaving).

We also compare with the decoding method for the GEC for

cases where the QBC and GEC are statistically close.

1. INTRODUCTION

There have been several papers published recently on the topic of

LDPC codes focusing on performance over channels with mem-

ory (e.g., [2, 3, 4]). These papers discuss the decoding of LDPC

codes on channels based on hidden Markov models (HMMs),

particularly the Gilbert-Elliot Channel (GEC) [5]. These chan-

nel models are simple and widely used, but they have an infinite

noise memory. Thus, they may not always be good models for

many kinds of real world channels where the effect of memory

is finite.

The finite-memory Polya contagion channel [6] and the more

general queue-based channel (QBC) [1], are based on an M

th-

order Markov noise processes, where the state of the channel

is fully characterized by the last M noise symbols. For these

channels, each state transition corresponds to an error or no-error

event. With the GEC state transitions may or may not occur re-

gardless of whether or not an error occurs. Both the Polya chan-

nel and the QBC have closed-form solutions for the noise steady

state and block distributions and for capacity, making them good

models for mathematical analysis. For HMM-based channels

with memory (such as the GEC) the capacity must be estimated

numerically as no closed-form solution exists.

In this work, we present a modified version of the sum-product

algorithm for decoding LDPC codes over the QBC using a method

similar to the one used in [2] for the GEC. We generalize this

design for all binary channels with M

th-order Markov noise

and known or estimated one-step channel transition probabili-

ties. The decoder is simulated over the QBC and compared with

This work was supported in part by NSERC of Canada and PREA
of Ontario.

results for the binary symmetric channel (BSC) and the GEC

(with parameters chosen to statistically match the QBC). This is

done to show the effectiveness of the design as well as the per-

formance gain over a decoder which uses an ideal interleaver to

create a memoryless channel.

2. CHANNEL DESCRIPTION

The QBC [1] is a binary finite-memory Markov channel charac-

terized by four channel parameters ", �, p, and M . The noise

process is based on a length-M queue, q = (q

1

; q

2

; :::; q

M

),

which contains the last M channel noise symbols. The state of

the channel is characterized by the binary sequence within the

queue. The channel output at time i is given by y

i

= x

i

� e

i

,

where � denotes addition modulo-2, x
i

is the input symbol and

e

i

is the noise symbol. The input and noise processes are as-

sumed to be independent of each other. At time i, e
i

is chosen

either from the queue with probability " or from a BSC process

with probability 1� ".

� If e
i

is chosen from the queue, then an entry from the

queue is chosen randomly such that,

p(e

i

= q

j

) =

�

1=(M � 1 + �)

�=(M � 1 + �)

j = 1:::M � 1,

j = M .

� If e
i

is chosen from the BSC process, then,

p(e

i

= 1) = p:

After each transmission the entries of the queue are shifted to the

right by one and e

i

becomes the new first entry in the queue, q
1

.

Thus, there are only two possible state transitions from any one

state corresponding to e

i

= 0 and e

i

= 1.

The channel bit error probability (CBEP) for the QBC is p and

the length of the memory is M , the length of the queue. The

channel is described in detail in [1] where the authors have also

derived closed form expressions for the noise steady-state distri-

bution, the channel block distribution and the channel capacity.

3. DECODER DESIGN

The standard SPA decoder works by passing messages on the

Tanner-factor graph of the LDPC code (Fig. 1). The graph con-

nects nodes representing the code-bits (x0
i

s) to nodes represent-

ing the parity-check nodes (0
i

s) those code-bits participate in



Parity−Check Tanner Factor Graph

Channel State Variable and Factor Nodes

Parity−Checks

Code Variables

. . .

. . .

. . .

s1 s2 s3 s4 s
n−2 s

n−1 s
n

x0 x1 x2 x3 x4 x
n−3 x

n−2 x
n−1

c0 c1 c2 c3 c4 c
m−3 c

m−2 c
m−1

s0

Fig. 1. A generalization of the factor graph for an LDPC code

over a channel with memory. The bottom chain in the graph

represents the relationship between the channel states.

Fig. 2. Diagram showing the six different messages passed by

the extended SPA.

(see [7] for a detailed description of the algorithm for memo-

ryless channels). We have modified this algorithm for a chan-

nel with memory by factoring the joint distribution for the QBC

channel in a similar manner to [2], which considers the GEC.

The joint distribution for the QBC is similar to that of the GEC

and other finite-state channels and is given by:

M

QBC

(y;x; s) = P

Y

(yjx; s)P

S

(s)P

X

(x); (1)

where x is a length n codeword vector, y is the channel output

vector of length n and s is the length n + 1 state sequence. We

note that given x and s there can only be one valid choice for y.

We can factor equation (1) to obtain the following equation:

M

QBC

(y;x; s) =

Q

n�1

i=0

i(e

i

js

i

; s

i+1

)

p(s

1

)

Q

n�1

j=0

p(s

j+1

js

j

)

Q

h

k

(x

k

): (2)

We define h

k

(x

k

) as the indicator function of the k

th parity

check and x
k

is the set of variables x
i

that participate in the kth

parity check. The function i(e

i

js

i

; s

i+1

) is an indicator function

of whether or not a particular state transition from s

i

to s

i+1

corresponds to an error or no-error (e
i

= 1 or 0) noting that

e

i

= x

i

� y

i

. The function p(s

j+1

js

j

) is simply the one-step

channel transition probability for the QBC and p(s

1

) is assumed

to be distributed according to the noise steady-state distribution

for the QBC. The extended factor graph is shown in Fig. 1.

We use the above factorization to derive the equations for the

messages passed along the extended factor graph, see Fig. 2.

The messages passed between parity checks, code-bits and the

channel factors are likelihood ratios (LRs),

P

ij

; S

ji

; �

i

; �

i

,

P (x

i

= 0jy

i

)

P (x

i

= 1jy

i

)

:

P

ij

and S

ji

are computed according to the standard SPA update

rules for the BSC:

S

ij

= �

i

Q

k 6=j

P

ki

;

P

ij

=

1�

Q

k 6=j

(1�S

ki

)=(1+S

ki

)

1+

Q

k 6=j

(1�S

ki

)=(1+S

ki

)

:

The SPA has four additional messages to handle the computation

of the channel factor probabilities. �
i

is the LR passed from the

code-bit variables and is computed as simply �
i

=

Q

k

P

ki

: This

message is converted to an estimate of the probability of error

according to

P (�

i

; y

i

) = y

i

+ (�1)

y

i

(1 + �

i

)

�1

:

The messages passed along the channel factor graph ~�

i

and ~

�

i

are vectors where the j

th entry is the estimate that the channel

is in state j at time i. �

i

is the LR passed back to the code-bit

nodes. The message update rule for these messages is defined

using the factorization in equation (2) as follows:

~�

i+1

[j℄ =

X

k;e

i

�

i

[k℄P

i

e

i

(�

i

; y

i

)P

kj

i(e

i

js

i

= j; s

i+1

= k);

~

�

i

[j℄ =

X

j;e

i

�

i+1

[k℄P

i

e

i

(�

i

; y

i

)P

jk

i(e

i

js

i

= k; s

i+1

= j);

�

i

=

 

P

j;k

�

i

[j℄�

i+1

[k℄P

jk

i(e

i

= 0js

i

= j; s

i+1

= k)

P

j;k

�

i

[j℄�

i+1

[k℄P

jk

i(e

i

= 0js

i

= j; s

i+1

= k)

!

�y

i

;

where P

i

e

i

=1

(�

i

; y

i

) = P

i

e

(�

i

; y

i

) and P

i

e

i

=0

(�

i

; y

i

) = 1 �

P

i

e

(�

i

; y

i

) and P is the one-step channel-state transition matrix.

~�

i

[j℄ and ~

�

i

[j℄ are the entries of ~�
i

and ~

�

i

that correspond to

state j.

We now define E and C to be the matrices of the one-step chan-

nel transition probabilities for the case where there is an error

and the case where there is not an error, respectively. Thus

C + E = P, where P is the complete one-step channel-state

transition matrix. We can rewrite the update rule above using

these matrices and the messages passed as:

~�

i+1

=

(1� P

i

e

)C

T

~�

i

+ P

i

e

E

T

~�

i

~u

T

2

M

[(1� P

i

e

)C

T

~�

i

+ P

i

e

E

T

~�

i

℄

;

~

�

i

=

(1� P

i

e

)C

~

�

i+1

+ P

i

e

E

~

�

i+1

~u

T

2

M

[(1� P

i

e

)C

~

�

i+1

+ P

i

e

E

~

�

i+1

℄

;

�

i

=

 

~�

T

i

C

~

�

i+1

~�

T

i

E

~

�

i+1

!

�y

i

:

As we noted above, the QBC has only two types of channel tran-

sitions from any state: one if an error occurs and one if no-error

occurs. Thus both C and E are sparse with only 2

M non-zero

entries in each matrix. This significantly reduces the compu-

tation needed on the channel sub-graph, making the QBC, and

other similar models, a good choice of channel for this type of

decoding algorithm.



These update rules can be applied to a more general family of

channels with M

th-order Markov noise. Any channel that has

2

M states where state transitions correspond to either an error or

no error can use this decoder design.

The algorithm proceeds in the following steps:

1. Initialization:

(a) Initialize the code bit-to-check node messages ac-

cording the the average probability of error:

S

ij

=

�

1� p

p

�

�y

i

(b) Initialize the first message of the channel graph ~�

1

with the steady-state distribution of the channel.

2. Repeat until codeword estimate passes the parity-check

or until N
max

iterations have been performed:

(a) Compute all P
ij

’s for each parity-check node.

(b) Compute the extrinsic message �
i

for each code-bit

and use the threshold � 0 to decide if the bit is a

’zero’.

(c) Check the current estimate of the codeword against

the parity check matrix and stop if it is a valid code-

word.

(d) Compute the forward messages of the channel graph

and set the first backward messages to the last for-

ward message (i.e., �
n+1

= �

n+1

).

(e) Compute the backward messages of the channel graph

and set the first forward message to the last back-

ward message (i.e., �
1

= �

1

).

(f) Compute the �
i

messages for each code-bit.

(g) Compute all the S
ij

’s for each code bit.

The SPA employs the same belief propagation method used to

decode Turbo codes, but because LDPC codes are defined by

their parity-check matrix, we can use the parity-check to de-

termine, after each iteration, if our estimate is valid (unlike the

case of Turbo codes). Additionally, since the parity-check ma-

trix is sparse by definition, the parity-check validation can be

performed with reduced complexity.

4. RESULTS

The LDPC codes used in the simulations were generated ran-

domly and all are rate 1/2 with 3 checks per bit and 6 bits per

parity-check (regular-LDPC codes). All cycles of minimum length

(cycles of length 4) in their Tanner graph are removed to improve

convergence of the decoding algorithm. Short cycles can affect

the performance of the algorithm by making messages in sepa-

rate iterations highly dependent [7].

In Fig. 3, we show the performance of the LDPC codes over the

QBC compared with its ideally interleaved (memoryless) version

(BSC). For these simulations we have fixed � = 1, M = 4 and

" is chosen for each p so as to ensure a fixed channel noise cor-

relation value of 0.5. We note a significant improvement due to

exploiting the channel memory at the decoder when compared

 1e-04

 0.001

 0.01

 0.1

 1

 0.26 0.23 0.2 0.18 0.16 0.14 0.12 0.1 0.09 0.08 0.07

O
ut

pu
t B

it 
E

rr
or

 R
at

e 
(B

E
R

)

Channel Bit Error Probability (CBEP)

Comparison of QBC and BSC decoding of LDPC codes

BSC
BSC Shannon Limit

QBC
QBC Shannon Limit

Fig. 3. Plot of SPA decoding the BSC and QBC and their re-

spective Shannon limits. The code length is 100,000 and the

maximum iterations is 200.

to using an interleaver. But there remains a considerable per-

formance gap to the QBC Shannon limit. The QBC achieves a

BER of 10�4 at a CBEP �
=

0:157 where the Shannon limit for

this QBC at a BER of 10�4 is 0:2304. For the BSC, we achieve

a BER 10

�4 at CBEP �
=

0:080 and the Shannon limit is 0:11.

From Fig. 3, we however remark that, proportionally, there is lit-

tle difference in the performance gap for the two channels. The

QBC decoder achieved 68% of the Shannon limit while the BSC

decoder achieved 72%.

In [8], the authors show that for a considerable range of channel

conditions, the QBC can be designed to be nearly statistically

identical to the GEC. In Table 1, results are shown comparing

the QBC to the GEC for two sets of parameters taken from [8].

The performance of the two decoders is very close. Addition-

ally, these results demonstrate that an improvement in perfor-

mance over the memoryless channel can be achieved when using

a channel model to model the noise process of another channel,

which is of interest for the real-world communication environ-

ment, as there is always a mismatch between the real channel

and its adapted model.

5. CONCLUSIONS

We have demonstrated how the sum product algorithm can be

modified to decode binary channels with additive M

th-order

Markov noise. The benefit of considering the channel memory

is demonstrated experimentally, showing a significant gain over

the memoryless strategy of employing an interleaver. In fact, we

observe that for the same code, one can expect close to the same

performance relative to capacity for the QBC as is obtained for

the BSC.

The extended SPA decoder for Markov channels has the advan-

tage of operating only on the extrinsic information (�
i

) of the

standard SPA decoder. Thus, it could be operated in parallel to

the standard decoder using separate hardware. A channel factor

computer could read the extrinsic information being stored by

the decoder, compute the forward-backward calculations, and

then write new channel error probabilities for the standard de-



Channels Parameters

GEC CBEP P

g

P

b

g b

Exp. 1 0.09 0.0519 0.6118 0.0450 0.0033

Exp. 2 0.08 0.0439 0.5746 0.0450 0.0033

QBC CBEP " � p M

Exp. 1 0.09 0.5705 0.4168 0.0900 5

Exp. 2 0.08 0.5711 0.4312 0.0800 5

Results

BER GEC QBC GEC w/ QBC QBC w/ GEC BSC

Decoder Decoder

Exp. 1 1.6E-05 <10�5 1.9E-03 5.8E-04 6.5E-02

Exp. 2 <10�5 <10�5 1.0E-05 1.7E-05 6.5E-03

Table 1. Results from comparison of decoding on the GEC (with

parameters P
g

, P
b

, g and b), the QBC channel that approximates

the GEC, the GEC using the QBC decoder (and vice-versa) and

the BSC. For this simulation a length 10,000 code was used with

a maximum of 200 decoding iterations.

coder to use on its next iteration. Such a design would allow

for inexpensive modification of existing systems and hardware

already designed to use the SPA for decoding.

Through simulations of the QBC and GEC channel models, we

note that a channel model can be matched to the statistics of an-

other channel to offer a decoding gain over the memoryless strat-

egy. This suggests that simple models for channels with memory

can be used to design improved decoders for real-world channels

though statistical analysis and channel matching, or through de-

coders which perform channel parameter estimation based on the

received data. The results indicate that while such a strategy is

not perfect, it could offer a notable improvement over existing

memoryless strategies.

Despite strong demonstrated performance, there is still a signif-

icant performance gap vis-a-is the Shannon limit that is left un-

exploited. In [9], the authors use the technique of density evolu-

tion [10] to design irregular LDPC codes for the AWGN channel

with near capacity-achieving performance. This technique is ex-

tended in [2, 11] to the GEC and the Polya-contagion channel for

regular LDPC codes and then in [12] for irregular LDPC codes

over the GEC. Design and analysis of irregular LDPC codes for

the QBC using density evolution would likely offer significant

performance gains allowing the memory of the channel to be ex-

ploited further.

Density evolution is unfortunately a complex process even for

memoryless channels. However it may be sufficient to perform

this analysis on simple channel models. An irregular code that

demonstrates significant performance gains on a BSC channel

using the standard SPA decoder may also offer comparable gains

on a channel with memory, such as the QBC, if it is decoded ap-

propriately to exploit the channel memory. Exploring the perfor-

mance of irregular LDPC codes over the QBC will be the subject

of future work.

6. REFERENCES

[1] L. Zhong, F. Alajaji, and G. Takahara, “A queue-based

model for binary communication channels,” in Proc. Forty-

First Annual Allerton Conference on Communication,

Control and Computing, Monticello, IL, October 2003.

[2] A. W. Eckford, F. R. Kschischang, and S. Pasupathy,

“Analysis of LDPC codes in channels with memory,” in

Proc. 21st Queen’s Biennial Symposium on Communica-

tions, Kingston, Ontario, Canada, June 2002.

[3] E. Ratzer, “Low-density parity-check codes on Markov

channels,” in Proc. Second IMA Conference on Mathemat-

ics in Communications, December 2002.

[4] J. Garcia-Frias, “Decoding of low-density parity-check

codes over finite-state binary Markov channels,” IEEE

Trans. Commun., vol. 52, no. 11, pp. 1840–1843, Novem-

ber 2004.

[5] M. Mushkin and I. Bar-David, “Capacity and coding for

the Gilbert-Elliott channel,” IEEE Trans. Inform. Theory,

vol. 35, no. 6, pp. 1277–1290, November 1989.

[6] F. Alajaji and T. Fuja, “A communications channel mod-

eled on contagion,” IEEE Trans. Inform. Theory, vol. 40,

no. 6, pp. 2035–2041, November 1994.

[7] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor

graphs and the sum product algorithm,” IEEE Trans. In-

form. Theory, vol. 47, no. 2, pp. 498–519, February 2001.

[8] L. Zhong, F. Alajaji, and G. Takahara, “An approximation

of the Gilbert-Elliott channel via a queue-based channel

model,” in Proc. IEEE International Symposium on Infor-

mation Theory, Chicago, June-July 2004.

[9] T. J. Richardson, M. A. Shokrollahi, and R. L. Ur-

banke, “Design of capacity-approaching irregular low-

density parity-check codes,” IEEE Trans. Inform. Theory,

vol. 47, no. 2, pp. 619–637, February 2001.

[10] T. J. Richardson and R. L. Urbanke, “The capacity of low-

density parity-check codes under message-passing decod-

ing,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 599–

618, February 2001.

[11] V. Nagarajan and O. Milenkovic, “Performance analysis

of structured LDPC over the Polya-urn channel with finite

memory,” in Proc. Canadian Conf. Electrical Computer

Engineering, Niagara Falls, Canada, May 2004.

[12] A. W. Eckford, F. R. Kschischang, and S. Pasupathy,

“Designing very good low-density parity-check codes for

the Gilber-Elliot channel,” in Proc. 8th Canadian Work-

shop on Information Theory, Waterloo, Ontario, Canada,

May 2003.


