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Abstrat | We introdue a binary ommuniation

hannel with memory whose noise is generated by

a queue of length K. The queue is operated under

two modes: uniform and non-uniform. The result-

ing noise proess is shown to be a stationary and er-

godi Markov soure of order K. Analyti expres-

sions for the noise stationary distribution, apaity

and burst frequeny of the uniform queue-based han-

nel are presented. For the non-uniform queue-based

hannel, only numerial results are provided. Next,

the apaity and burst frequeny of the uniform and

non-uniform queue-based hannels are ompared with

those of the �nite-memory Polya ontagion hannel

and the Gilbert-Elliott hannel.

1 Introdution

We introdue a binary ommuniation hannel with mem-

ory whose noise proess is based on a �nite queue of length

K. More spei�ally, we onsider the hannel in two

ases: a uniform queue-based mode where we experiment

on the ells of the queue with equal probability, and a

non-uniform queue-based mode where we experiment on

the ells of the queue with di�erent probabilities.

The statistial properties of the uniform queue-based

hannel are �rst investigated. The resulting hannel noise

is a stationary and ergodi Markov soure of order K.

Expressions for the noise stationary distribution, hannel

apaity and noise burst frequeny are presented in terms

ofK. For the non-uniform queue-based hannel, the noise

is also stationary, ergodi and Markovian of orderK. But

we have no losed-form expression for the noise stationary

distribution; hene, only numerial results are provided.

Next, the apaity and burst frequeny of the uniform and

non-uniform queue-based hannels are ompared with

those of the �nite-memory Polya ontagion hannel [1℄

and the Gilbert-Elliott hannel [3℄. It is shown (both an-

alytially and numerially) that, surprisingly, the uniform

queue-based hannel and the �nite-memory Polya onta-

gion hannel have an idential blok transition probability

when they have the same memory, bit error rate (BER)

and orrelation oeÆient; hene, they have idential a-

This work was supported in part by NSERC of Canada. Emails:

libo�shannon.mast.queensu.a, fady�shannon.mast.queensu.a

and takahara�glen.mast.queensu.a.

paities and burst frequenies. When q

1

! 1, the non-

uniform ase onverges to the uniform ase with memory

K = 1. The non-uniform queue-based hannel has lower

burst frequenies than the uniform hannel for low or-

relation oeÆients, and it has higher burst frequenies

for high orrelation oeÆients. Finally, the non-uniform

queue-based hannel has larger apaities than the uni-

form ase when the queue probability q

1

<

1

K

, and it has

smaller apaities than the uniform ase when q

1

>

1

K

.

2 A Queue-Based Channel with Memory

In most real-world ommuniations hannels, noise dis-

tortion may produe errors in a bursty fashion; i.e., er-

rors our in lusters or bunhes separated by fairly long

error-free segments of data. This phenomenon is om-

monly know as \memory" [2℄. In the quest to develop

models that adequately represent real hannel behavior

and that are mathematially tratable, we present a bi-

nary hannel with additive bursty noise based on a �nite

queue. It o�ers an interesting alternative to the Gilbert

model and others.

Consider the binary hannel given by Y

i

= X

i

�Z

i

, where

X

i

, Z

i

, and Y

i

are, respetively, the i

th

input, noise, and

output of the hannel. We assume that the input and

noise soures are independent of eah other. Consider

the following two parels.

� Parel 1 is a queue of length K, that initially on-

tains K balls.

-

A

i1

A

i2

A

i3

� � �

A

iK

-

Let A

ij

(i is a time index referring to the i

th

experi-

ment), j = 1; 2; � � � ;K, indiate the olor of the ball

in the orresponding ell of the queue at time i:

A

ij

=

�

1; if the j

th

ell ontains a red ball,

0; if the j

th

ell ontains a blak ball:

� Parel 2 is an urn that ontains a very large number

of balls where the proportion of blak balls is 1 � p

and the proportion of red balls is p, where p 2 (0; 1);

usually p� 1=2.

Let the probability of seleting parel 1 (the queue) be "

and the probability of seleting parel 2 (the urn) be 1�";



where " 2 (0; 1). The noise proess fZ

i

g is generated by

one of the following mehanisms.

Mehanism 1 Uniform queue-based hannel with

memory: By ipping a biased oin (with P (Head)="),

we selet one of the 2 parels (selet the queue if Head

and the urn if Tail). Then a pointer randomly points at

a ball from the seleted parel, and identi�es its olor.

Mehanism 2 Non-uniform queue-based hannel

with memory: By ipping a biased oin (with

P (Head)="), we selet one of the 2 parels (selet the

queue if Head and the urn if Tail). If parel 1 (the queue)

is seleted, then a pointer points at the ball in ell 1 with

probability q

1

and points at the ball in ell l with prob-

ability q

l

= (1 � q

1

)=(K � 1), for l = 2; 3; � � � ;K, and

identi�es its olor. If parel 2 (the urn) is seleted, a

pointer randomly points at a ball, and identi�es its olor.

If the seleted ball is red, we introdue a red ball in ell

1 of the queue, pushing the last ball in ell K out. If the

seleted ball is blak, we introdue a blak ball in ell 1 of

the queue, pushing the last ball in ell K out. The noise

proess fZ

i

g is then modeled as follows:

Z

i

=

�

1; if the i

th

experiment points at a red ball;

0; if the i

th

experiment points at a blak ball:

De�nition 1 For a given mehanism, de�ne the state

of the hannel to be S

i

4

=(A

i1

; A

i2

; � � � ; A

iK

); the bi-

nary K�tuple in the queue after the i

th

experiment is

ompleted. Note that, in terms of the noise proess,

the hannel state at time i an be written as S

i

=

(Z

i

; Z

i�1

; � � � ; Z

i�K+1

), for i � K.

2.1 Uniform Queue-Based Channel

Noise Properties: We now investigate the properties of

the binary noise proess fZ

n

g

1

n=1

. We �rst observe that

fZ

n

g

1

n=1

is a homogeneous Markov proess of order K,

sine for n � K + 1,

Pr[Z

n

= 1jZ

n�1

= a

n�1

; � � � ; Z

1

= a

1

℄

= "

a

n�1

+ � � �+ a

n�K

K

+ (1� ")p

= Pr[Z

n

= 1jZ

n�1

= a

n�1

; � � � ; Z

n�K

= a

n�K

℄;

where a

j

2 f0; 1g, j = 1; � � � ; n:

Throughout this work, we onsider the ase where the

initial distribution of the Markov noise fZ

n

g is drawn a-

ording to its stationary distribution; hene the noise pro-

ess fZ

n

g is stationary. fS

n

g is a homogeneous Markov

proess with stationary (or initial) distribution [4℄

�

i

=

1

Q

K

m=1

(1� "

m

K

)

K�1�!(i)

Y

j=0

["

j

K

+ (1� ")(1� p)℄

!(i)�1

Y

l=0

["

l

K

+ (1� ")p℄;

for i = 0; 1; 2; � � � ; 2

K

� 1, where !(i) is the number

of \ones" in the binary representation of the deimal

integer i and

Q

a

i=0

(�)

4

=1, if a < 0.

Blok Transition Probability: For an input blok

X = [X

1

; � � � ; X

n

℄ and an output blok Y = [Y

1

; � � � ; Y

n

℄,

where n is the blok length, the blok transition proba-

bility of the resulting binary hannel is as follows [4℄.

� For blok length n � K,

Pr(Y = yjX = x) =

1

Q

K

l=K�n+1

(1� "

l

K

)

n�d�1

Y

s=0

["

s

K

+ (1� ")(1� p)℄

d�1

Y

t=0

["

t

K

+ (1� ")p℄;

where d is the number of \ones" in x� y.

� For blok length n � K + 1,

Pr(Y = yjX = x) = L

n

Y

i=K+1

�

"

�

i�1

K

+ (1� ")p

�

a

i

�

"

K � �

i�1

K

+ (1� ")(1� p)

�

1�a

i

;

where L =

Q

K�1��

K

j=0

["

j

K

+ (1 � ")(1 � p)℄

Q

�

K

�1

l=0

["

l

K

+ (1 � ")p℄=

Q

K

t=1

(1 � "

t

K

),

Q

a

i=0

(�)

4

=1,

if a < 0, �

i�1

= a

i�1

+ � � �+ a

i�K

, and a

i

= x

i

� y

i

.

Capaity: The uniform queue-based hannel with mem-

ory is a hannel with stationary ergodi Markov additive

noise of memory K and BER p. The hannel apaity

C

K

is positive and non-dereasing in K and is given by

C

K

= 1�

K

X

i=0

�

K

i

�

L

i

h

b

�

"

i

K

+ (1� ")p

�

where L

i

=

Q

K�1�i

j=0

["

j

K

+(1�")(1�p)℄;

Q

i�1

l=0

["

l

K

+(1�

")p℄=

Q

K

m=1

(1 � "

m

K

); and

Q

a

t=0

(�)

4

=1 if a < 0, and h

b

(�)

is the binary entropy funtion.

Burst Frequeny: Noise sequenes of 1s between two

0s are alled error bursts. The length of a burst is de�ned

as one plus the total number of 1s in the noise sequene

between two 0s. If B

n

denotes the length of an error burst

starting at time n and onditioned on Z

n

= 0, then we

obtain the following (f. [4℄).

� For 1 � l � K � 1, where K > 1,

Pr[B

n

= l℄ =

1

1� p

�

1

Q

K

u=K�l

(1� "

u

K

)

1

Y

s=0

["

s

K

+ (1� ")(1� p)℄

l�2

Y

t=0

["

t

K

+ (1� ")p℄:



� For l = K,

Pr[B

n

= K℄ =

K�2

Y

t=0

["

t

K

+ [(1� ")p℄

[(1� ")(1� p)℄ � ["

1

K

+ (1� ")(1� p)℄

(1� p)

Q

K

u=1

(1� "

u

K

)

:

� For l � K + 1,

Pr[B

n

= l℄ =

Q

K�2

t=0

["

t

K

+ [(1� ")p℄

(1� p)

Q

K

u=1

(1� "

u

K

)

[(1� ")(1� p)℄ � ["

K � 1

K

+ (1� ")p℄

�["+ (1� ")p℄

l�K�1

� [(1� ")(1� p)℄:

2.2 Non-Uniform Queue-Based Channel

For the non-uniform queue-based hannel, the noise is

also stationary, ergodi and Markovian of order K. But

we have no analytial expression for the noise stationary

distribution in terms of K; hene, only numerial results

are given for spei� values of K.

Capaity: We take K = 3 as an example.

C

3

= 1� [�

7

X

i;j=0

�

i

p

ij

log

2

p

ij

℄;

where [p

ij

℄ is the noise transition probability matrix.

Burst Frequeny: We take K = 2 as an example.

� For l = 1, Pr[B

n

= l℄ =

�

0

1�p

:

� For l = 2,

Pr[B

n

= l℄ =

�

2

1� p

� ["(1� q

1

) + (1� ")(1� p)℄:

� For l � 3,

Pr[B

n

= l℄ =

�

2

1� p

� ["q

1

+ (1� ")p℄

�["+ (1� ")p℄

l�3

� [(1� ")(1� p)℄:

3 Comparisons with other Channels

We next ompare the uniform queue-based hannel with

the Polya ontagion [1℄ and Gilbert-Elliott [3℄ hannels in

terms of apaity and burst frequeny. Similar ompar-

isons are made for the non-uniform queue-based hannel.

We �rst observe that it an be shown analytially [4℄

that the �nite-memory ontagion hannel and the uni-

form queue-based hannel are surprisingly idential; i.e.,

they have the same blok transition probability for the

same memory K, BER and noise orrelation oeÆient

Cor. Therefore the two hannels have idential apaities

and burst frequenies under the above onditions.

In Figs. 1-6, apaity and burst frequeny results are pre-

sented for the four hannels under various hannel on-

ditions. For the Gilbert-Elliott hannel the parameter

p

G

represents the hannel BER when the hannel is in a

good state, while p

B

denotes the BER under a bad han-

nel state. Throughout these �gures, we let p

G

= 2�10

�5

and p

B

= 0:92. For the non-uniform queue-based han-

nel, the ell probability q

1

= 0:9 was used.

We note that apaity inreases as Cor inreases (Figs. 1-

2) and as BER dereases (Fig. 3), as expeted. For the

uniform queue-based and the ontagion hannels, apa-

ity also inreases with K (Figs. 1-2). When Cor = 0:1,

the apaities of the uniform queue-based and ontagion

hannels are always larger than that of the Gilbert-Elliott

hannel for any K (Fig. 1). But as Cor inreases, the a-

paity of the Gilbert-Elliott hannel grows faster. When

Cor = 0:9, the uniform queue-based hannel and the on-

tagion hannel have lower apaities than the Gilbert-

Elliott hannel for small Ks and have higher apaities

for large Ks (Fig. 2).

It is lear from Fig. 3 and Fig. 4 that the three hannels

have almost equal apaities and burst frequenies when

K = 1. This means that in these ases we an replae the

Gilbert-Elliott hannel with the (less omplex) uniform

queue-based hannel (or the ontagion hannel) if our tar-

get is to ahieve an error burst behavior and apaity that

are lose to those of the Gilbert-Elliott hannel.

The non-uniform queue-based hannel has lower burst fre-

quenies than the uniform hannel for low values of Cor

(Fig. 5). But it has higher burst frequenies for high val-

ues of Cor and burst length � 3 (Fig. 6). But the burst

frequenies of the non-uniform hannel dereases faster

than those of the uniform hannel; thus the former even-

tually has lower burst frequeny when the burst length

is big enough. We notie that the non-uniform hannel

has similar burst frequeny as the Gilbert-Elliott han-

nel. This is beause the non-uniform hannel was used

with q

1

= 0:9, and as q

1

! 1 the hannel onverges to

the uniform ase with K = 1 (see Fig. 4).

Finally, we observe (see [4℄) that the non-uniform queue-

based hannel has larger apaities than the uniform ase

when the queue probability q

1

<

1

K

, and it has smaller

apaities than the uniform ase when q

1

>

1

K

.

Referenes

[1℄ F. Alajaji and T. Fuja, \A ommuniation hannel

modeled on ontagion," IEEE Trans. Inform. Theory,

Vol. 40, pp. 2035-2041, Nov. 1994.

[2℄ L. N. Kanal and A. R. K. Sastry, \Models for hannels

with memory and their appliations to error ontrol,"

Pro. IEEE , Vol. 66, pp. 724-744, July 1978.

[3℄ M. Mushkin and I. Bar-David, \Capaity and oding

for the Gilbert-Elliott hannel," IEEE Trans. Inform.

Theory, Vol. 35, pp. 1277-1290, Nov. 1989.



[4℄ L. Zhong, \A binary hannel with additive

bursty noise based on a �nite queue," M.S.

Projet, Department of Mathematis and Statis-

tis, Queen's University, Nov. 2000. Available at:

http://markov.mast.queensu.a/publiations.html.

0 2 4 6 8 10 12 14 16 18 20
0.989

0.9895

0.99

0.9905

0.991

0.9915

0.992

0.9925

Memory

C
a
p
a
ci

ty

Graph of the capacity for BER=0.001 and correlation coefficient=0.1

The finite−memory contagion channel        
The uniform queue−based channel with memory
The Gilbert−Elliott channel                

Figure 1: Capaity vs. K for BER=0.001 and Cor=0.1.
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Figure 2: Capaity vs. K for BER=0.001 and Cor=0.9.
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Figure 3: Capaity vs. BER for K = 1 and Cor=0.1.
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Figure 4: Burst frequeny vs. burst length for K = 1,

BER=0.001 and Cor=0.1.
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Figure 5: Burst frequeny vs. burst length for K = 2,

BER=0.001 and Cor=0.0990991.

2 4 6 8 10 12 14 16 18 20

10
−6

10
−5

10
−4

10
−3

Burst Length

B
u
rs

t 
F

re
q
u
e
n
cy

Graph of burst frequency for memory=2, BER=0.001 and correlation coefficient=0.8999

The non−uniform queue−based channel with memory
The uniform queue−based channel with memory    
The Gilbert−Elliott channel                    

Figure 6: Burst frequeny vs. burst length for K = 2,

BER=0.001 and Cor=0.8999.


