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Abstract

We propose a segmentation method based

on Polya's model for the spread of con-

tagion. An initial segmentation is ob-

tained using a Maximum Likelihood (ML)

estimate or the Nearest Mean Classi�er

(NMC). The resulting clusters are then

subjected to a morphological process oper-

ating like the development of an infection

to yield segmentation of the image into ho-

mogeneous regions. This process is imple-

mented using contagion urn processes and

generalizes Polya's scheme by allowing spa-

tial interactions. The urn mixture model

provides a fuzzy representation of the pixel

label. The composition of the urns is iter-

atively updated by assuming a Markovian

relationship between neighboring pixel la-

bels. The asymptotic behavior of this pro-

cess is examined. Examples of the appli-

cation of this scheme for the segmentation

of Synthetic Aperture Radar (SAR) images

and Magnetic Resonance Images (MRI) are

provided.

1 Introduction

We describe a segmentation method using contagion

urn schemes that rely on a modi�ed version of the

Polya-Eggenberger sampling process

[

8

]

. It consists

of a biologically inspired sampling procedure origi-

nally designed to model the development of conta-

gious phenomena.

Many approaches have been studied for segmen-

tation. Unsupervised segmentation approaches in-

clude the Nearest Mean Classi�cation (NMC) and

the branch and bound procedure

[

3

]

. Supervised

methods generally proceed by formulating statisti-

cal model assumptions for the image formation and

the region generative processes. Maximum like-

lihood (ML) or maximum a posteriori estimation

(MAP) are then used for segmentation. Examples

of such approaches abound in the literature

[

4; 6;

11

]

. Techniques modeling images as Markov random

�elds (MRF) have been extensively investigated

[

4

]

.

MRF's attempt to represent spatial dependencies

and the MRF-Gibbs equivalence allows for the com-

putation of the maximum a posteriori (MAP) esti-

mate of the original image

[

4

]

.

This paper models images using urn processes.

The motivation for employing urn schemes is

twofold: �rst, urn processes can generate Markov

chains as well as MRF's

[

5

]

. Second, urn schemes are

of particular interest because they provide a natural

representation for fuzzy image labeling. Therefore,

they constitute an attractive generative process for

the underlying image regions which exhibit strong

spatial dependencies. Our work is related to the

Gibbs sampling procedure

[

4

]

by preserving key fea-

tures of the Gibbs sampler but using instead a con-

tagion sampling scheme. The spatial dependencies

of the pixel labels are captured by the contagious be-

havior which promotes smoothing of the image into

contiguous regions. The urn process for segmenta-

tion is related to relaxation labeling algorithms, ex-

cept that the urn process is not deterministic

[

10

]

.

We begin by applying either ML or NMC seg-

mentation technique to the image. The contagion

process is then applied to the image labels. In this

scheme, each pixel is represented by an urn with a

mixture of balls of di�erent colors, one color for each

class label. A neighborhood system is also de�ned

on each pixel. The balls of the urns of the neighbor-

hood system are then combined to determine the

next state of the urns. The iterative nature of the

algorithm incorporates temporal memory, while the

inclusion of the neighboring urns in the update pro-

motes spatial contagion. Moreover, the neighbor-

hood system is modi�ed, pending the existence of

an edge element in the neighborhood. This is done

to preserve edges by containing the propagation of

similar class labels within closed boundaries.



This paper is organized as follows: the initial

NMC and ML segmentations are presented in Sec-

tion 2. The contagion-based smoothing process is

then described in Section 3. In Section 4, the

stochastic properties of the resulting image process

are discussed. Finally, experimental results on SAR

and MR images are shown in Section 5.

2 Initial Segmentation

When no a priori information on the image statis-

tics is available, general clustering algorithms such

as NMC usually are applied. In the NMC method,

an initial arbitrary labeling is used from which cen-

troids of the feature vectors of each class are com-

puted. Next, all samples are reclassi�ed to the clus-

ter corresponding to the nearest mean, and the cen-

troids are recomputed. This process is iterated until

a stopping criterion is met

[

3

]

.

In contrast, when a stochastic model for the image

can be justi�ed, it is possible to apply ML segmen-

tation. The conditional distribution of the image;

i.e., the form of

p(X

s

=C

s

= l; C

r

; r 2 N

k

s

) (1)

is assumed. Here, C

s

is the label for pixel s, C

r

represents the pixel labels of N

k

s

, the k

th

order

neighborhood of pixel s, and X

s

is the given image

data

[

4

]

.

For segmentation purposes, we estimate the pixel

labels by assuming that the conditional probability

of each class label, i.e. p(X

s

=C

s

= l), is governed by

a multivariate Gaussian distribution on the second

order neighborhood N

2

s

.

After obtaining the parameters of the di�erent

classes, the ML test determines the label for each

pixel in the image. The ML decision rule is described

as

^

l = argmax

l

p(X

s

=C

s

= l; C

r

; r 2 N

2

s

): (2)

The above schemes do not capture the statistics

and connectedness of local regions. Since the ML

test assumes that each pixel label is equally likely

throughout the image, it produces noisy segmenta-

tion. This assumption is incorrect, for in a local

region dominated by one class, the dominant class

has a higher prior probability than the other classes.

Such contextual information is not taken into ac-

count in either the ML or NMC estimate of the pixel

labels.

This drawback is usually addressed within the

framework of MAP segmentation. The MAP esti-

mate of the class label

^

l for a pixel given the observed

image X

s

is

^

l = argmax

l

p(C

s

= l=C

r

; r 2 N

2

s

; X

s

) (3)

Indeed, it can be shown that maximizing p(C

s

=

l=C

r

; r 2 N

2

s

; X

s

) is equivalent to maximizing

p(C

s

= l=C

r

; r 2 N

2

s

)p(X

s

=C

s

= l).

If segmentation of the image into homogeneous

regions is desired, it is intuitively appealing to model

the prior distribution p(C

s

= l=C

r

; r 2 N

2

s

) using an

MRF, as the MRF model relates the label of a pixel

with the labels of its neighboring pixels

[

6

]

.

If the prior is modeled as an MRF, the Gibbs-

MRF equivalence can be exploited by techniques

such as simulated annealing (SA) or other stochastic

relaxation methods to derive the MAP estimate

[

6

]

.

Unfortunately, techniques such as simulated an-

nealing have high computational costs. Indeed con-

vergence to the MAP estimate is possible only when

impractically slow annealing schedules are followed.

Instead, we propose to replace the annealing step by

an urn contagion process to model the spatial de-

pendencies between neighboring pixels.

3 Image Sampling with Contagion

The labeled image is described by an urn process.

Each pixel in the image is represented by an urn

containing a mixture of balls of di�erent colors rep-

resenting the classes. The proportion of each class

in the urn indicates the similarity of the pixel to the

class. The urn representation is therefore a fuzzy

representation of the segmented image. At each it-

eration the current urn is modi�ed by re-sampling

with contagion, a process that is inspired by the

original urn sampling process introduced by Polya

and Eggenberger in

[

8

]

.

3.1 Temporal Contagion

The work reported in

[

8

]

introduced the following

urn scheme as a model for the spread of a conta-

gious disease through a population. An urn origi-

nally contains T balls, of which W are white and B

are black (T = W + B). Successive draws from the

urn are made; after each draw, 1 + � (� > 0) balls

of the same color as was just drawn are returned to

the urn. Let � = W=T and � = �=T . De�ne the

binary process fZ

n

g

1

n=0

as follows:

Z

n

=

�

0; if the n

th

ball drawn is white;

1; if the n

th

ball drawn is black.

It can be shown that the process fZ

n

g is stationary

and non-ergodic

[

9; 7

]

. The urn scheme has in�nite

memory, in the sense that each previously drawn ball

has an equal e�ect on the outcome of the current

draw.

3.2 Temporal and Spatial Contagion

The urn sampling scheme proposed in this work in-

corporates both temporal and spatial contagion. In-

stead of representing an image by a �nite lattice of



pixels, we consider an image as a �nite lattice of

urns. In the \one-dimensional" urn sampling de-

scribed above, the e�ect of each sample propagates

through time. For the \two-dimensional" case, the

sampled ball at each iteration must depend not only

on the composition of the pixel's urn, but also on

the composition of the neighboring urns to encour-

age contagious behavior. Thus, we need to allow

for spatial interactions at each time instant by as-

sociating the urns of the neighboring pixels in the

determination of the newly sampled ball.

3.3 A Fuzzy Image Labeling

Representation

The following presentation considers, without loss

of generality, a binary labeling problem. Let I

n

=

[p

(i;j)

n

] be a binary label image of size K � L, where

p

(i;j)

n

2 f0; 1g is the label of pixel (i; j) at iteration

n, n = 0; 1; : : :, (i; j) 2 I where

I : f(i; j) : i = 0; : : : ;K � 1; j = 0; : : : ; L� 1g:

To each pixel we associate an urn u

(i;j)

n

:

(B

(i;j)

n

;W

(i;j)

n

) with each pixel (i; j) at time n, where

B

(i;j)

n

and W

(i;j)

n

are respectively the number of

black and white balls in the urn. With this repre-

sentation we de�ne a membership function for each

pixel as:

m

B

F

(p

(i;j)

n

) =

B

(i;j)

n

(B

(i;j)

n

+W

(i;j)

n

)

3.4 An Algorithm for Segmentation

with Spatial Contagion

The general class of algorithms for the contagion-

based smoothing process can be described as follows:

� Initialization

Let I

0

be an initial segmentation (at time in-

dex n = 0). For each pixel (i; j), the initial urn

composition u

(i;j)

0

= (B

(i;j)

0

;W

(i;j)

0

) is obtained by

computing the relative frequencies of white and

black pixels in a spatial neighborhood centered

on (i; j). For this work, the second order (3x3)

neighborhood system for each pixel is adopted.

� Iterative ImageSampling

For n > 0, the urn composition of each pixel (i; j)

is updated by sampling from a combination of the

participating urns V

(i;j)

n�1

with V

(i;j)

n�1

: fu

(r;s)

n�1

: (r; s) 2

N

q

s

g, where N

k

q

is the neighborhood system de�ned

as in

[

4

]

:

N

k

q

: fq = (r; s) 2 I : (i� r)

2

+ (j � s)

2

� kg:

A simple, yet e�ective, sampling procedure is as fol-

lows: the urn u

(i;j)

n

for pixel p

(i;j)

n

, is updated by �rst

combining the balls of u

(i;j)

n�1

and the N neighboring

urns:

C

(i;j)

n�1

= ASSOCIATE(V

(i;j)

n�1

): (4)

The ASSOCIATE function forms a collection of

balls, C

(i;j)

n�1

, from the urns of the neighborhood. Ex-

amples of the ASSOCIATE function include group-

ing the urns of V

(i;j)

n�1

into a \super" urn or sam-

pling one ball from each urn to form the collection.

Furthermore, the neighborhood may be modi�ed if

an edge element exists in that neighborhood; if so,

those neighboring urns which lie on the other side of

the edge are excluded. This is necessary to preserve

edges and limit contagion to local areas.

Next, an operation on the new collection of balls,

C

(i;j)

n�1

, is performed i.e.,

Z

(i;j)

n

= SELECT (C

(i;j)

n�1

): (5)

The select function may determine the next state

of the urns by sampling one ball from C

(i;j)

n�1

or by

taking the majority class of C

(i;j)

n�1

.

We denote Z

(i;j)

n

as the outcome of the SELECT

function:

Z

(i;j)

n

=

�

0; if the n

th

ball drawn is white;

1; if the n

th

ball drawn is black.

If Z

(i;j)

n

= 0, add � white balls to urn u

(i;j)

n

; if

Z

(i;j)

n

= 1, add � black balls to urn u

(i;j)

n

.

This yields a new urn composition for each pixel

as

u

(i;j)

n

:

(

W

(i;j)

n

=W

(i;j)

n�1

+ (1� Z

(i;j)

n

) ��;

B

(i;j)

n

= B

(i;j)

n�1

+ (Z

(i;j)

n

) ��:

The above procedure is iterated until n = N . At

time N , the �nal composition of each individual urn

u

(i;j)

N

; (i; j) 2 I determines the �nal labeling of

the image. As described above, each urn represents

a fuzzy measure of the pixel label.

4 Statistical Properties

4.1 Temporal Contagion

The resulting sequence of generated images exhibits

both spatial and temporal dependencies represented

by a Markovian relationship in terms of the urns

u

(r;s)

n

; more speci�cally:

Prfu

(i;j)

n

jU

n�1

; U

n�2

; : : : ; U

0

g = Prfu

(i;j)

n

jV

(i;j)

n�1

g;

where U

n

: [u

(i;j)

n

] is the urn matrix associated with

I

n

, and V

(i;j)

n�1

is the set of participating urns de�ned

in the previous section.



Consider the original Polya sampling scheme. The

asymptotic properties of the joint distribution can

be characterized in the \one-dimensional" case, i.e.,

when all spatial interactions are inhibited at each

sampling step. In this case, it can be shown

[

9

]

that

the proportion of white balls in each urn after the

n'th trial �

(i;j)

n

, where

�

(i;j)

n

=

�+

�

Z

(i;j)

1

+ Z

(i;j)

2

+ � � �+ Z

(i;j)

n

�

�

1 + n�

;

is a martingale

[

2

]

and admits a limit Z as the num-

ber of draws increases inde�nitely. Indeed, �

(i;j)

n

(or

equivalently the sample average

1

n

P

n

k=1

Z

(i;j)

k

) con-

verges with probability one to Z

[

2

]

. This limiting

proportion Z is a continuous random variable with

support the interval (0; 1) and Beta probability den-

sity function with parameters (�=�; (1� �)=�):

f

Z

(z) =

8

>

<

>

:

�(1=�)

�(�=�)�((1��)=�)

z

�

�

�1

(1� z)

1��

�

�1

;

if 0 < z < 1;

0; otherwise.

�(�) is the gamma function described by

�(x) =

Z

1

0

t

x�1

e

�t

dt for x > 0:

The behavior of this pdf can be interpreted as fol-

lows: assuming � = 1 for simplicity, if the origi-

nal proportion of white balls in the urn is close to

one, then the limiting distribution of W

(i;j)

n

, will be

skewed towards 1. A similar behavior is obtained for

the case when � is close to zero. Therefore, the lim-

iting pattern will re
ect the underlying probability

Pr

�

p

(i;j)

1

= x

�

= �

x

(1� �)

(1�x)

:

For the M-ary labeling case, the above observa-

tions generalize with convergence to the Dirichlet

distribution

[

5

]

.

4.2 Temporal and Spatial Contagion

We examine the asymptotic behavior of two exam-

ples of a general urn sampling scheme for segme-

nation.

� Method1

Consider sampling from the \super" urn. Restat-

ing the problem, suppose there are N urns in the

neighborhood of pixelX

s

, each initially with b

i

black

balls and w

i

white balls, and b

i

+ w

i

= T for all i,

i = 1; 2; : : : ; N . We put the contents of all N urns

into a \super" urn, sample one ball, and add � balls

of the same color into the urn of the pixel X

s

. The

following properties are easily derived.

The probability of sampling exactly k black balls

from n iterations of the \super" urn is

Pr(X = k) =

�

n

k

�

B(� + k; � + n� k)

B(�; �)

; (6)

where � =

P

i

b

i

�

, � =

P

i

w

i

�

, and the beta function

B(�; �) =

�(�)�(�)

�(�+�)

.

The above process can be regarded as being gen-

erated by a sequence of independent Bernoulli trials

with parameter Z, where Z is random with beta dis-

tribution. In fact, it is identical with di�erent pa-

rameters to the Polya-Eggenberger distribution in

the \one-dimensional" case given above.

The average number of black balls in the \super"

urn at any given time is expressed as

E [B

n

] =

X

j

b

j

NT + n�

NT

: (7)

Therefore, the average proportion of black balls in

the \super" urn is

E

�

B

n

(NT + n�)

�

=

X

j

b

j

NT

(8)

Remarkably, the average proportion of black balls

in the \super" urn at any time instant equals the

original proportion of black balls. The above re-

sults show that the composition of the urn is highly

dependent on the original proportion of the balls.

Eventually, the majority class of the urns in a

given neighborhood will spread and dominate the

population of balls in that neighborhood. There-

fore, we conclude that this urn sampling scheme

will reinforce the majority class in a local spa-

tial neighborhood; it constitutes a positive-feedback

system that yields limiting patterns of the self-

reinforcing type

[

1

]

. The contagion e�ectively mod-

els the Markovian dependencies of the pixel labels.

� Method2

This second example is described as follows: We

sample one ball from each of the urns in pixelX

(i;j)

's

neighborhood, V

(i;j)

n�1

. From this collection of balls,

we compute the majority class, denoted Z

(i;j)

n

. We

update urn u

(i;j)

n

in the same manner described in

the previous section, i.e.

u

(i;j)

n

:

(

W

(i;j)

n

=W

(i;j)

n�1

+ (1� Z

(i;j)

n

) ��;

B

(i;j)

n

= B

(i;j)

n�1

+ (Z

(i;j)

n

) ��:

:

The urn composition of urn u

(i;j)

n

is governed

by the Polya-Eggenberger distribution as explained

above. Eventually, the initial majority class of each

urn in the neighborhood will dominate its composi-

tion.

It is di�cult to �nd a general closed-form expres-

sion for P (Z

(i;j)

n

= k), the probability that class k

is the majority of the individual samples. The dif-

�culty arises because we are trying to �nd the ma-

jority of a set of samples of a non-i.i.d. process.

Hence, we resort to heuristic arguments. Results of

this method are given in Figure 1.



5 Experimental Results

For segmentation of SAR imagery, we start with ML

segmentation. As shown in Figure 1(a), the resulting

labeling is spotty, a characteristic of the ML segmen-

tation technique. Application of simulated anneal-

ing generates a contiguous segmentation of the im-

age (Figure 1(b)). Likewise, Figure 1(c) shows that

ten iterations of the urn sampling scheme operat-

ing on the ML segmentation yields an image labeled

into locally homogeneous regions. The SAR image

used in this example is Lincoln Laboratory's ADTS

SAR data, which is fully polarimetric with 1 foot

resolution.

Whereas simulated annealing achieves segmenta-

tion by optimizing a function (the MAP pixel la-

bel estimate), modi�ed urn schemes smooth the

segmented image by morphologically processing the

pixel labels. Since the Polya urn schemes model

contagious behavior in a population, modi�ed urn

schemes allow dominant pixel labels to propagate

within local regions, analogous to di�usion methods

for segmentation. The advantage in using the urn

scheme lies in the reduction of the computational

complexity of the segmentation algorithm. We avoid

the time and computational costs of simulated an-

nealing by employing a simpler algorithm.

To segment the MR images, we obtain an initial

segmentation by the NMC. The inherent noise of

this image modality leads to the speckled segmen-

tation. The contagion urn process then operates on

the pixel labels to produce a smoother segmentation.

The output after one and ten iterations are shown

in Figures 2(b) and 2(c), respectively. Note that the

edges are preserved by limiting contagion to local ar-

eas. An edge map, computed by the Canny edge de-

tector, is employed to modify each pixel's sampling

neighborhood to prohibit sampling over di�erent re-

gion types.

In both cases, urn sampling method 2 is imple-

mented; one ball is sampled from the urns of the

neighborhood and a majority rule is applied to de-

termine the next state of the urns. For this work,

each urn is initialized with ten total balls, and �,

the number of balls added at each iteration, is two.

6 Conclusion

In this paper, we have illustrated howmodi�ed Polya

urn sampling schemes can be implemented for image

segmentation. Given an initial speckled segmenta-

tion, the contagion process obtains a smoother seg-

mentation into homogeneous regions by its Marko-

vian properties. Two general properties incorpo-

rate temporal and spatial contagion. First, iterative

updating is required for temporal contagion. Sec-

ond, sampling from neighboring urns, similar to the

Gibbs sampler, is necessary to encourage spatial con-

tagion.

Further lines of research include the evaluation of

the optimal values for the parameter �, the ratio

of � to the initial number of balls in an urn. For

instance, if � is too high, then the segmentation is

over-smoothed; if it is too low, then the algorithm

may not converge to the appropriate segmentation.

As mentioned above, the initial composition of the

urns determines to a great extent the outcome of the

contagion process. Therefore, �nding an appropriate

method to initialize the urn composition is critical

to accurately segment the image.
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(b) Segmentation after Simulated Annealing.(a) ML Segmentation.

(c) After Urn Process.

Figure 1: Segmentation ADTS SAR Image after 10 iterations of SA and Urn Process



(b) After 1 iteration of Urn Process.(a) Noisy NMC segmentation.

(c) After 10 iterations of Urn Process.

Figure 2: Segmentation of MR Images using Urn Process with Inhibition


