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Abstrat |

We onsider two time-invariant Markov soures of

arbitrary order and �nite alphabet desribed by the

probability distributions p

(n)

and q

(n)

, respetively.

We show that the Kullbak-Leibler divergene rate,

lim

n!1

1

n

D(p

(n)

kq

(n)

), between p

(n)

and q

(n)

exists and

is omputable. We also examine its rate of onver-

gene and illustrate it numerially. The main tools

used to obtain these results are the theory of non-

negative matries and Perron-Frobenius theory. Fi-

nally, we provide a formula for the Shannon entropy

rate lim

n!1

1

n

H(p

(n)

) of Markov soures and examine

its rate of onvergene.

I. Introdution

Let fX

1

; X

2

; : : :g be a �rst-order time-invariant Markov

soure with �nite alphabet X = f1; : : : ;Mg. Consider the

following two di�erent probability laws for this soure. Under

the �rst law,

PrfX

1

= ig =: p

i

and PrfX

k+1

= jjX

k

= ig =: p

ij

;

i; j 2 X ; so that

p

(n)

(i

n

) =: PrfX

1

= i

1

; : : : ; X

n

= i

n

g = p

i

1

p

i

1

i

2

� � � p

i

n�1

i

n

;

i

1

; : : : ; i

n

2 X ; while under the seond law the initial prob-

abilities are q

i

, the transition probabilities are q

ij

, and the

n-tuple probabilities are q

(n)

. Let p = (p

1

; : : : ; p

M

) and

q = (q

1

; : : : ; q

M

) denote the initial distributions under p

(n)

and q

(n)

respetively.

The Kullbak-Leibler divergene [11℄ between two distribu-

tions p̂ and q̂ de�ned on X is given by

D(p̂kq̂) =

X

i2X

p̂

i

log

p̂

i

q̂

i

;
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where the base of the logarithm is arbitrary. The appliation

of this measure an be found in many areas suh as approxi-

mation of probability distributions [3℄, [10℄, signal proessing

[8℄, [9℄, pattern reognition [1℄, [2℄, et. One natural diretion

for further studies is the investigation of the Kullbak-Leibler

divergene rate

lim

n!1

1

n

D(p

(n)

kq

(n)

)

between two probability distributions p

(n)

and q

(n)

de�ned on

X

n

, where

D(p

(n)

kq

(n)

) =

X

i

n

2X

n

p

(n)

(i

n

) log

p

(n)

(i

n

)

q

(n)

(i

n

)

;

for soures with memory. In [6, p. 40℄, Gray proved that the

Kullbak-Leibler divergene rate exists between a stationary

soure p

(n)

and a time-invariant Markov soure q

(n)

. This

result an also be found in [13, p. 27℄. To the best of our

knowledge, this is the only result available in the literature

about the existene and the omputation of the Kullbak-

Leibler divergene rate between soures with memory. In the

sequel, we provide a omputable expression for the Kullbak-

Leibler divergene rate between two arbitrary time-invariant

�nite alphabet Markov soures. Let us �rst reall some useful

results about non-negative stohasti matries (i.e., with the

property that the sum of the entries in eah row is equal to 1)

most of whih may be found in [4, Chapter 3℄, [5, Chapter 4℄,

and [12, Chapter 1℄.

II. Preliminaries

Matries and vetors are positive if all their omponents are

positive and non-negative if all their omponents are non-

negative. Throughout this setion, P denotes an M � M

stohasti matrix with elements p

ij

. The ij-th element of P

m

is denoted by p

(m)

ij

. We write i ! j if p

(m)

ij

> 0 for some

positive integer m, and we write i 6! j if p

(m)

ij

= 0 for every

positive integer m. We say that i and j ommuniate and

write i $ j if i ! j and j ! i. If i ! j but j 6! i for some



index j, then the index i is alled inessential (or transient);

otherwise, it is alled essential (or reurrent). Thus if i is es-

sential, i ! j implies i $ j, and there is at least one j suh

that i! j.

With these de�nitions, it is possible to partition the set of

indies f1; 2; : : : ;Mg into disjoint sets, alled lasses. All es-

sential indies an be subdivided into essential lasses in suh

a way that all the indies belonging to one lass ommuniate,

but annot lead to an index outside the lass. Moreover, all

inessential indies (if any) may be divided into two types of

inessential lasses: self-ommuniating lasses and non self-

ommuniating lasses. Eah self-ommuniating inessential

lass ontains inessential indies whih ommuniate with eah

other. A non self-ommuniating inessential lass is a single-

ton set whose element is an index whih does not ommuni-

ate with any index (inluding itself). A matrix is irreduible

if its indies form a single essential lass; i.e., if every index

ommuniates with every other index.

Proposition 1 [12, p. 14℄ By renumbering the indies (i.e.,

by performing row and olumn permutations), it is possible

to put a stohasti matrix P in the anonial form

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

P

1

: : : 0 0 : : : 0 : : : 0

0 : : : 0 0 : : : 0 : : : 0

: : : : : : : : : : : : : : : : : : : : : : : :

0 : : : P

h

0 : : : 0 : : : 0

P

h+11

: : : P

h+1h

P

h+1

: : : 0 : : : 0

: : : : : : : : : : : : : : : : : : : : : : : :

P

g1

: : : P

gh

P

gh+1

: : : P

g

: : : 0

P

g+11

: : : P

g+1h

P

g+1h+1

: : : P

g+1g

: : : 0

: : : : : : : : : : : : : : : : : : : : : : : :

P

l1

: : : P

lh

P

lh+1

: : : P

lg

: : : 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

where P

i

, i = 1; : : : ; g, are irreduible square matries, and

in eah row i = h + 1; : : : ; g at least one of the matries

P

i1

; P

i2

; : : : ; P

ii�1

is not zero. The matrix P

i

for i = 1; : : : ; h

orresponds to the essential lass C

i

; while the matrix P

i

for

i = h+1; : : : ; g orresponds to the self-ommuniating inessen-

tial lass C

i

. The other diagonal blok sub-matries whih or-

respond to non self-ommuniating lasses C

i

, i = g+1; : : : ; l,

are 1� 1 zero matries.

A right eigenvetor, b, orresponding to an eigenvalue �, is

a nonzero vetor suh that Pb = �b. A left eigenvetor, a,

orresponding to �, is a nonzero vetor suh that aP = �a.

Note that a is a row vetor while b is a olumn vetor.

Proposition 2 [5, p. 115℄ If P is irreduible, then P has a

real positive eigenvalue � = 1 that is greater than or equal to

the magnitude of eah other eigenvalue. There is a positive left

(right) eigenvetor, a(b), orresponding to �, unique within a

sale fator.

Remark: The left eigenvetor a is the unique stationary dis-

tribution � of P assoiated with the largest positive real eigen-

value � = 1 and b

t

= (1; : : : ; 1), where t denotes the transpose

operation.

Proposition 3 [7, p. 524℄ Let P be the probability tran-

sition matrix for an irreduible Markov soure. Also, let a(b)

be the left (right) eigenvetor assoiated with the largest pos-

itive real eigenvalue � = 1 suh that ab = 1. Also, let L = ba.

Then

lim

n!1

1

n

n

X

i=1

P

i

= L:

Moreover, there exists a �nite positive onstant C suh that











1

n

n

X

i=1

P

i

� L











1

�

C

n

;

for all n = 1; 2; : : : and k � k

1

is the l

1

norm, where the

l

1

norm of an M � M matrix A is de�ned by kAk

1

4

=

max

1�i;j�M

ja

ij

j.

With the aid of Proposition 1 and Proposition 3, it an be

shown that the es�aro limit lim

n!1

1

n

P

n

i=1

P

i

of an arbitrary

(not neessarily irreduible) stohasti matrix P exists and is

omputable.

Proposition 4 [4, p. 129℄ Let P be the probability tran-

sition matrix for an arbitrary Markov soure with assoiated

anonial form as in Proposition 1. Let a

i

(b

i

) be the left

(right) eigenvetor assoiated with � = 1 suh that a

i

b

i

= 1,

for i = 1; : : : ; h. Let

D =

2

6

6

6

4

b

1

a

1

: : : 0

0 : : : 0

: : : : : : : : :

0 : : : b

h

a

h

3

7

7

7

5

; B =

2

6

6

6

6

6

6

6

6

4

P

h+11

: : : P

h+1h

: : : : : : : : :

P

g1

: : : P

gh

P

g+11

: : : P

g+1h

: : : : : : : : :

P

l1

: : : P

lh

3

7

7

7

7

7

7

7

7

5

:

Also, let

C =

2

6

6

6

6

6

6

6

6

4

P

h+1

: : : 0 : : : : : : 0

: : : : : : : : : : : : : : : : : :

P

gh+1

: : : P

g

: : : : : : 0

P

g+1h+1

: : : P

g+1g

0 : : : 0

: : : : : : : : : : : : : : : : : :

P

lh+1

: : : P

lg

P

lg+1

: : : 0

3

7

7

7

7

7

7

7

7

5

:

We have the following:

lim

n!1

1

n

n

X

i=1

P

i

=

"

D 0

(I � C)

�1

BD 0

#

;

where I is the identity matrix.



Proposition 5 [7, p. 492℄ Let A be a non-negative matrix.

The spetral radius �(A)

4

= max fj�j : � eigenvalue of Ag

satis�es

minfrow sumg � �(A) � maxfrow sumg:

The following lemma follows by appropriately modifying the

proof of the above proposition.

Lemma 1 If A is non-negative and irreduible and the row

sums are not all idential, then the spetral radius �(A) sat-

is�es

minfrow sumg < �(A) < maxfrow sumg:

Proof: Let � be the largest positive real eigenvalue of A with

assoiated stritly positive left eigenvetor a. Without loss of

generality a an be normalized, i.e., the sum of its omponents

is equal to 1. Let 1

t

be the row vetor

1

t

= (1; : : : ; 1):

Note that a1 = 1. We have aA = �a. Hene aA1 = �a1 = �.

On the other hand

aA1 = a

2

6

6

6

6

4

R

1

R

2

.

.

.

R

M

3

7

7

7

7

5

;

where R

i

, i = 1; : : : ;M denotes the sum of the i-th row. Let

R

max

= maxfR

1

; : : : ; R

M

g:

Then

aA1 < a

2

6

6

6

6

4

R

max

R

max

.

.

.

R

max

3

7

7

7

7

5

=

M

X

i=1

a

i

R

max

= R

max

:

Therefore

� < R

max

Similarly, we an show that

� > R

min

;

where

R

min

= minfR

1

; : : : ; R

M

g:

Finally we onlude that

R

min

< �(A) < R

max

:

Proposition 6 [7, p. 494℄ If a non-negative matrix A has

a right positive eigenvetor b, then for all n = 1; 2; : : : and for

all i = 1; : : : ;M we have

M

X

j=1

a

(n)

ij

�

�

max

1�k�M

b

k

min

1�k�M

b

k

�

�

n

(A):

The following orollary follows diretly from the previous

proposition by observing that, a

(n)

ij

�

P

M

j=1

a

(n)

ij

for all i =

1; : : : ;M and j = 1; : : : ;M .

Corollary 1 If A is non-negative and irreduible, then A

n

�

�

n

(A)C (i.e., a

(n)

ij

� �

n

(A)

ij

), for all n = 1; 2; : : :, where

C = (

max

1�k�M

b

k

min

1�k�M

b

k

) is a matrix with idential entries that are

independent of n.

III. Kullbak-Leibler divergene rate

A First-order Markov soures

We assume �rst that the Markov soure fX

1

; X

2

; : : :g is of

order one. Later, we generalize the results for soures of ar-

bitrary order k. Let p and q be the initial distributions with

respet to p

(n)

and q

(n)

respetively. Also, let P and Q be the

probability transition matries with respet to p

(n)

and q

(n)

respetively. Without loss of generality, we may assume that

p and P are absolutely ontinuous with respet to q and Q

respetively (i.e., q

i

= 0 ) p

i

= 0 and q

ij

= 0 ) p

ij

= 0 for

all i; j 2 X ). We have the following results.

Theorem 1 Suppose that the Markov soure fX

1

; X

2

; : : :g

under p

(n)

and q

(n)

is irreduible. Let

V

t

= (S(X

2

jX

1

= 1); : : : ; S(X

2

jX

1

=M));

where

S(X

2

jX

1

= i)

4

=

X

j2X

p

ij

log

p

ij

q

ij

:

The Kullbak-Leibler divergene rate between p

(n)

and q

(n)

is

given by

lim

n!1

1

n

D(p

(n)

kq

(n)

) =

X

i2X

�

i

S(X

2

jX

1

= i);

where � = (�

1

; : : : ; �

M

) is the unique stationary distribution

of P .

Proof: We have that

1

n

D(p

(n)

kq

(n)

) =

1

n

X

i2X

[p(X

1

= i) + � � � + p(X

n�1

= i)℄S(X

2

jX

1

= i)

+

1

n

X

i2X

p(X

1

= i) log

p(X

1

= i)

q(X

1

= i)

;



whih an be also written as

1

n

D(p

(n)

kq

(n)

) =

1

n

p(I + P + � � �+ P

n�2

)V (1)

+

1

n

X

i2X

p

i

log

p

i

q

i

: (2)

Note that (2) approahes 0 as n!1. Hene, by Proposition

3, we obtain the desired result.

Theorem 2 Suppose that the Markov soures p

(n)

and q

(n)

are arbitrary (not neessarily irreduible, stationary, et.). Let

V

t

= (S(X

2

jX

1

= 1); : : : ; S(X

2

jX

1

=M)), where

S(X

2

jX

1

= i)

4

=

X

j2X

p

ij

log

p

ij

q

ij

:

Let the anonial form of P be as in Proposition 1. Also, let B,

D and C be as de�ned in Proposition 4. The Kullbak-Leibler

divergene rate between p

(n)

and q

(n)

is given by

lim

n!1

1

n

D(p

(n)

kq

(n)

) = p

"

D 0

(I � C)

�1

BD 0

#

V:

Proof: We have that

1

n

D(p

(n)

kq

(n)

) =

1

n

p(I + P + � � �+ P

n�2

)V

+

1

n

X

i2X

p

i

log

p

i

q

i

:

Then, the desired result follows immediately from Proposition

4.

Theorem 3 The rate of onvergene of the Kullbak-Leibler

divergene rate between p

(n)

and q

(n)

is of the order 1=n.

Proof: Clearly, the rate of onvergene of (2) to 0 is of the

order 1=n. In Proposition 3, it is proved that the rate of

onvergene of the es�aro sum of an irreduible matrix is of

the order 1=n. On the other hand, if P is not irreduible,

let P

i

, i = h + 1; : : : ; g be the sub-matries orresponding to

inessential lasses as in Proposition 1. Every P

i

is irreduible

and hene, by Corollary 1, we have that

P

n

i

� �

n

(P

i

)G

i

; i = h+ 1; : : : ; g (3)

where G

i

is a matrix with idential entries that are indepen-

dent of n. If P

i

has all row sums idential then �(P

i

) < 1 by

Proposition 5. Otherwise, �(P

i

) < 1 by Lemma 1. Hene, by

(3), P

n

i

onverges exponentially fast to the zero matrix of the

same dimensions for eah i = h+1; : : : ; g. By onsidering the

es�aro sum of the anonial form of P , we get that the rate of

onvergene of (1) is of the order 1=n. Therefore the rate of

onvergene of the Kullbak-Leibler divergene rate is of the

order 1=n.

B k-th order Markov soures

Now, suppose that the Markov soure has an arbitrary order

k. De�ne fW

1

;W

2

; : : :g as the proess obtained by k-step

bloking the Markov soure fX

1

; X

2

; : : :g; i.e.,

W

n

:= (X

n

; X

n+1

; : : : ; X

n+k�1

):

Then fW

n

g is a �rst order Markov soure with M

k

states.

Let p

w

n�1

w

n

:= Pr(W

n

= w

n

jW

n�1

= w

n�1

). Let p =

(p

1

; : : : ; p

M

k

) and q = (q

1

; : : : ; q

M

k

) denote the arbitrary ini-

tial distributions of W

1

under p

(n)

and q

(n)

respetively. Also,

let p

ij

and q

ij

denote the transition probability that W

n

goes

from index i to index j under p

(n)

and q

(n)

respetively,

i; j = 1; : : : ;M

k

. Then learly D(p

(n)

kq

(n)

) an be written

as

1

n

D(p

(n)

kq

(n)

) =

1

n

p(I + P + � � �+ P

n�2

)V

+

1

n

X

i2X

k

p(W

1

= i) log

p(W

1

= i)

q(W

1

= i)

:

It follows diretly that the previous results also hold for a

Markov soure of arbitrary order.

IV. Shannon entropy rate

The existene and the omputation of the Shannon entropy

rate of an arbitrary time-invariant �nite-alphabet Markov

soure an be dedued from the existene and the ompu-

tation of the Kullbak-Leibler divergene rate. We have the

following orollaries.

Corollary 2 Suppose that the Markov soure fX

1

; X

2

; : : :g

under p

(n)

is irreduible. Let

V

t

= (H(X

2

jX

1

= 1); : : : ; H(X

2

jX

1

=M));

where

H(X

2

jX

1

= i)

4

= �

X

j2X

p

ij

log p

ij

:

The Shannon entropy rate of p

(n)

is given by

lim

n!1

1

n

H(p

(n)

) =

X

i2X

�

i

H(X

2

jX

1

= i);

where � = (�

1

; : : : ; �

M

) is the unique stationary distribution

of P .

Corollary 3 Let the anonial form of P be as in Proposition

1. Also, let B, D and C be as de�ned in Proposition 4. Then,

the Shannon entropy rate is given by

lim

n!1

1

n

H(p

(n)

) = p

"

D 0

(I � C)

�1

BD 0

#

V;

where V

t

= (H(X

2

jX

1

= 1); : : : ; H(X

2

jX

1

=M)), and

H(X

2

jX

1

= i)

4

= �

X

j2X

p

ij

log p

ij

:



Corollary 4 The rate of onvergene of the Shannon entropy

rate of p

(n)

is of the order 1=n.

V. Numerial examples

In this setion, we use the natural logarithm.

Example 1: Let P and Q be two possible probability tran-

sition matries for fX

1

; X

2

; : : :g de�ned as follows:

P =

2

6

6

6

6

6

6

4

1=4 0 0 1=2 1=4

2=3 0 1=3 0 0

0 0 1=5 0 4=5

4=7 0 3=7 0 0

0 0 3=4 0 1=4

3

7

7

7

7

7

7

5

;

and

Q =

2

6

6

6

6

6

6

4

2=5 0 0 2=5 1=5

4=5 0 1=5 0 0

0 0 2=3 0 1=3

5=6 0 1=6 0 0

0 0 3=8 0 5=8

3

7

7

7

7

7

7

5

:

Let p = (2=7; 4=7; 1=7; 0; 0) and q = (1=5; 1=5; 3=5; 0; 0) be two

possible initial distributions under p

(n)

and q

(n)

, respetively.

In anonial form, P and Q an be rewritten as

P =

2

6

6

6

6

6

6

4

1=5 4=5 0 0 0

3=4 1=4 0 0 0

0 1=4 1=4 1=2 0

3=7 0 4=7 0 0

1=3 0 2=3 0 0

3

7

7

7

7

7

7

5

;

and

Q =

2

6

6

6

6

6

6

4

2=3 1=3 0 0 0

3=8 5=8 0 0 0

0 1=5 2=5 2=5 0

1=6 0 5=6 0 0

1=5 0 4=5 0 0

3

7

7

7

7

7

7

5

;

simply by permuting the seond and �fth rows (olumns)

and the �rst and third rows (olumns). Note that P has 1

essential lass, 1 inessential self-ommuniating lass and 1

inessential non self-ommuniating lass. Aordingly, the ini-

tial distributions are rewritten as p = (1=7; 0; 2=7; 0; 4=7) and

q = (3=5; 0; 1=5; 0; 1=5), after permuting the �rst and third

indies and the seond and �fth indies. We obtain the fol-

lowing.

n

1

n

D(p

(n)

kq

(n)

)

10 0.3473

50 0.3671

100 0.3698

By Theorem 2, the Kullbak-Leibler divergene rate is equal

to 0.3725. Clearly, as n gets large

1

n

D(p

(n)

kq

(n)

) is loser to

the Kullbak-leibler divergene rate.

Example 2: Suppose that the Markov soure is of order 2

under p

(n)

and q

(n)

respetively. Let fW

1

;W

2

; : : :g be the

proess obtained by 2-step bloking the Markov soure. Let

P and Q be two possible transition matries for fW

1

;W

2

; : : :g

de�ned as follows:

P =

2

6

6

6

4

1=3 2=3 0 0

0 0 1 0

2=5 3=5 0 0

0 0 1=6 5=6

3

7

7

7

5

;

and

Q =

2

6

6

6

4

3=4 1=4 0 0

0 0 1 0

7=8 1=8 0 0

0 0 2=3 1=3

3

7

7

7

5

;

Let p = (1=8; 3=8; 2=8; 2=8) and q = (1=7; 2=7; 3=7; 1=7) denote

two possible initial distributions of W

1

under p

(n)

and q

(n)

respetively. The set of indies f1; 2; 3g forms an essential

lass, while the singleton set f4g forms a self-ommuniating

non-essential lass. Hene, P and Q are not irreduible. We

obtain the following.

n

1

n

D(p

(n)

kq

(n)

)

10 0.2982

50 0.3253

100 0.3277

By Theorem 2, the Kullbak-Leibler divergene rate is equal

to .3301. Clearly, as n gets large

1

n

D(p

(n)

kq

(n)

) is loser to

the Kullbak-leibler divergene rate.

Example 3: Consider the Markov soure under p

(n)

as in

Example 1. We obtain the following.

n

1

n

H(p

(n)

)

10 0.5437

50 0.5088

100 0.5044

By Corollary 3, the Shannon entropy rate is equal to 0.5001.

Clearly, as n gets large

1

n

H(p

(n)

) is loser to the Shannon

entropy rate.

Example 4: Consider the following seond order Markov

soure with probability transition matrix

P

2

6

6

6

4

1=3 2=3 0 0

0 0 1 0

1=2 1=2 0 0

0 0 1=4 3=4

3

7

7

7

5

;



and initial distribution p = (1=5; 2=5; 0; 2=5). The set of in-

dies f1; 2; 3g forms an essential lass, while the singleton set

f4g forms a self-ommuniating non-essential lass. Hene, P

is not irreduible. We obtain the following.

n

1

n

H(p

(n)

)

10 0.4641

50 0.4339

100 0.4298

By Corollary 3, the Shannon entropy rate is equal to 0.4256.

Clearly, as n gets large

1

n

H(p

(n)

) is loser to the Shannon

entropy rate.

VI. Conlusion and Future work

In this work, we derived a formula for the Kullbak-Leibler

divergene rate between two time-invariant �nite-alphabet ar-

bitrary Markov soures (not neessarily, irreduible, station-

ary, et.). We illustrated numerially and investigated its rate

of onvergene. Finally, we examined the omputation and

the existene of the Shannon entropy rate for Markov soures

and investigated its rate of onvergene. A possible future di-

retion is the investigation of the results for Hidden Markov

soures and for more general soures with memory suh as

stationary ergodi soures.

Referenes

[1℄ M. B. Bassat, \f-entropies, probability of error, and feature

seletion," Inform. Contr., vol. 39, pp. 227{242, 1978.

[2℄ C. H. Chen, Statistial Pattern Reognition, Rohelle Park, NJ:

Hayden Book Co., Ch. 4, 1973.

[3℄ C. K. Chow and C. N. Liu, \Approximating disrete probabil-

ity distributions with dependene trees," IEEE Trans. Inform.

Theory, vol. IT-14, no. 3, pp. 462{467, May 1968.

[4℄ D. R. Cox and H. D. Miller, The Theory of Stohasti Proesses,

Methuen and Co Ltd, 1965.

[5℄ R. G. Gallager, Disrete Stohasti Proesses, Kluwer, Boston,

1996.

[6℄ R. M. Gray, Entropy and Information Theory, Springer-Verlag,

New York, 1990.

[7℄ R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge

University Press, 1985.

[8℄ T. T. Kadota and L. A. Shepp, \On the best �nite set of lin-

ear observables for disriminating two Gaussians signals," IEEE

Trans. Inform. Theory, vol. IT-13, no. 2, pp. 278{284, Apr.

1967.

[9℄ T. Kailath, \The divergene and Bhattaharyya distane mea-

sures in signal seletion," IEEE Trans. Commun. Tehnol., vol.

COM-15, no. 1, pp. 52{60, Feb. 1967.

[10℄ D. Kazakos and T. Cotsidas, \A deision theory approah

to the approximation of disrete probability densities," IEEE

Trans. Pattern Anal. Mahine Intell., vol. PAMI-2, vol. 1, pp.

61{67, Jan. 1980.

[11℄ S. Kullbak and R. A. Leibler, \On information and suÆ-

ieny," Ann. Math. Statist., vol. 22, pp. 79{86, 1951.

[12℄ E. Seneta, Non-Negative Matries and Markov Chains,

Springer-Verlag New York In., 1981.

[13℄ Z. Ye and T. Berger, Information Measures For Disrete Ran-

dom Fields, Siene Press, Beijing, New York, 1998.


