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Abstract

A progressive method for transmission of images over a bursty noise chan-
nel is presented. It is based on discrete wavelet transform (DWT) coding and
channel-optimized scalar quantization. The main advantage of the proposed
system is that it exploits the channel memory and hence has superior perfor-
mance over a similar scheme designed for the equivalent memoryless channel
through the use of channel interleaving. In fact, the performance of the pro-
posed system improves as the noise becomes more correlated, at a fixed bit error
rate. Comparisons are made with other alternatives which employ independent
source and channel coding over the fully interleaved channel at various bit rates
and bit error rates. It is shown that the proposed method outperforms these
substantially more complex systems for the whole range of considered bit rates
and for a wide range of channel conditions.

1 Introduction

Justified by Shannon’s separation principle [1], the traditional approach to data com-
munication is to design “tandem systems” which are composed of independent source
and channel coders. Being only asymptotically optimal, tandem systems often result
in either too conservative or insufficient protection against channel errors. In mul-
timedia communications, the decoder output would have a coarse resolution in the
former case, while the latter case would result in poor quality.

It is known that in real world applications, with restrictions on delay and com-
plexity, joint design of the source and channel coders results in superior performance.
Several methods have been proposed for joint source-channel coding, which may be
categorized as unequal error protection [2]-[7], channel-optimized scalar and vector
quantization [8]-[12], optimization of index assignment [13, 14], and exploitation of
the residual redundancy of the source coder via MAP decoding [15]-[19]. All of the
above methods may be applied in image transmission, but the first two approaches
appear to draw more attention in the literature.

Unequal error protection trades off source resolution and channel error protec-
tion to allocate the available bit rate. The amount of channel coding depends on
the channel conditions, such as the bit error rate. Most of such strategies employ
rate-compatible punctured convolutional (RCPC) codes for error protection [20], of-
ten with a measure of parity checking, such as cyclic redundancy check (CRC), for
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detection of errors in the channel-decoded sequence. In [2], entropy-coded subband
coding is employed for compression. Packetization and RCPC channel coding are
then used to transmit images over memoryless noisy channels. While the coefficients
at each subband are given the same level of protection in [2], in [3] different rates of
the RCPC code are used in each subband according to the sensitivity of the end-to-
end distortion to each bit significance level. In [4], the strong image coder SPIHT
introduced in [21] is applied for compression, together with packetization, check sum
bits, RCPC channel coding and list Viterbi decoding [22]. An adaptive source and
channel coding rate allocation scheme for finite state channels is examined in [5]. The
work in [6] uses the Gilbert-Elliott channel model [23] to allocate the RCPC code rate
to various blocks inside each image subband. The so-called “all-pass filtering” [24] is
also applied to increase the peak signal to noise ratio (PSNR) by 3 dB. The Gilbert-
Elliott model was also used in [7], but neither of the two latter coders exploit the
channel memory.

Channel optimized vector quantization (COVQ) is another alternative for joint
source-channel coding [8, 9]. In a typical implementation of this method, one may
modify the nearest neighbor and centroid equations of the generalized Lloyd algorithm
(GLA), taking the channel crossover probabilities into account, hence designing a
codebook for each channel condition. After quantization, the binary indices are sent
directly over the channel. The decoder simply uses the received noisy bits to find the
transmitted indices. In [11], subband coding, all-pass filtering, and channel optimized
scalar quantization (COSQ) are applied for image transmission over memoryless noisy
channels. This method is similar in spirit to our approach, but our channel has
memory and we use DWT-based subband coding which is substantially less complex
due to reduced filter lengths. Our work extends and improves the results in [12],
which uses DCT coding, specially at low bit rates.

One may encounter a combination of the above methods in the literature. For
example, in [25], a COVQ is designed for a channel equivalent to the combination of
an RCPC encoder, a memoryless channel, and an RCPC decoder.

An important property of many real life channels, including wireless channels,is
their memory. Using an efficient interleaver tends to render such channels memoryless;
however, even ideal interleavers result in delay and complexity. Furthermore, the
resulting associated memoryless channel has a lower capacity than the original channel
with memory (for the case of information stable channels [26]). Thus, it would be more
beneficial to deal with channels with memory in a different way. In wireless image
transmission where bandwidth is scarce, it is not practical to use two concatenated
channel codes, such as convolutional or Turbo codes and Reed-Solomon codes, because
the resolution of the received image would be too coarse, given a fixed bit rate. COVQ
may be employed in such cases. The fact that explicit knowledge of channel block
transition probabilities is a necessity for COVQ design restricts their use, because it
is not always easy to derive closed form expressions for the transition probabilities. In
[26], an alternative to the Gilbert-Elliott channel model is presented and the channel
block probabilities are explicitly derived. This model is used in [27] to design COSQ
and COVQ for generalized Gaussian as well as Gauss-Markov sources.

In this paper, we present an image compression method for the noisy channel



with memory introduced in [26]. The algorithm is composed of two parts: a DWT-
based transform coder and a channel optimized scalar quantizer which uses a fized
bit allocation table for all image tiles, as opposed to JPEG2000 and its coding engine
EBCOT [28] where different bit allocations are provided for different blocks. One
salient feature of this method is that its performance improves as channel noise be-
comes more correlated, making it attractive for wireless channels. Also, the rate can
virtually be changed continuously and hence very efficient use of the available bit rate
is possible. Moreover, it provides reasonable image quality at bit rates as low as 0.125
bpp and bit error rates as high as 0.1. Our system performs better than a similar
system designed for a memoryless channel and used in series with an ideal interleaver,
which increases delay. Also, it outperforms unequal error protection schemes which
use scalar quantization, convolutional coding and ideal interleaving. The proposed
method offers the following features.

e The channel interleaver is left out. This eliminates additional delay and, more
importantly, exploits to a bigger extent the capacity of the channel with memory,
which is larger than the capacity of the equivalent (interleaved) memoryless
channel.

e Unlike unequal error protection schemes (e.g., [2]-[4], [6, 7]) the computational
complexity of bit allocation is negligible.

e Unlike many other schemes, such as unequal error protection and [28], encod-
ing is performed only once; no multi-stage source compression and subsequent
channel coding is required.

e The proposed method is progressive. Beginning from the lowest resolution sub-
band, the transmitter sends the data of the next resolution level every time.

Note that for now our objective is to demonstrate the advantages of COSQ over
methods which use channel interleaving to suppress the effect of channel memory. We
consider bursty channels with memory, for which complex schemes which use RCPC
codes (such as [2] and [4]) might not be suitable.

2 COSQ-Based Image Coding for Bursty Noise Channels

A. Structure

Figure 1 shows the block diagram of the employed image coding system. Tiling
is simply dividing the image into blocks of size 2™ x 2™ where m > 3 is an integer.

- _
“image —| Tiling [ DC shift DWT COSQ encoder
r(ieﬁgégd‘— DC shift [~ iDWT — COSQ decoder «+—Channel with memory

Figure 1: The structure of the proposed coding system.



It is known that larger tile sizes result in higher PSNR [29]; they however require
more memory. The DC shifter takes a constant, say 128, off all entries in each tile.
Subtracting the average value of each tile from its entries would result in higher
PSNR; but it increases the amount of side information. Next, the DWT of each tile
is extracted three times, every time on the lowest resolution subband of the previous
resolution level. The schemes in [2]-[4], [6, 7, 11, 21] aim to exploit the intra-block
dependencies by considering groups of coefficients which are expected to have high
correlation and call them “sub-sources”. Our method is different in that we use the
inter-tile dependencies. If cg;-) is the coefficient at row i and column j of the k™

)™ sub-source is {17 where 7' is the number of tiles. Depending on

tile, our (i, y
the available bit rate, some of the sub-sources are then normalized (to have a unit
variance) and quantized, using a COSQ for channels with memory. The resulting
bit-stream is sent directly over the channel. The receiver is simply the inverse of the
transmitter.

For COSQ design, we need to know the distribution of the samples to be quan-
tized. It is well-known that the distribution of the DWT coefficients of images ap-
proximately follows the generalized Gaussian distribution [11, 30], with a probability

density function given by
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where n(a,0) = - (11:8‘;3;) * is the rate of decay, o2 is the variance, and D(-) is

the Gamma function. For a=1 and 2, the above yields the Laplacian and Gaussian
distributions, respectively. For simplicity, we assume here that the sub-sources in
all subbands have the Laplacian distribution and we quantize them using a COSQ
trained for such a source with a unit variance.

B. Model for Channel with Memory

Based on [26], we use the Polya-contagion channel model which assumes that any
noise sample depends only on the sum of the M previous samples. The resulting noise
process is a stationary ergodic Markov source of order M. If X;, Y;, and Z; represent
the input, output, and noise in that order and & is addition modulo 2, the channel
input-output relationship is described by Y; = X; @ Z;. Assuming that the input and
noise are independent, for i > M we have, for any e/}, € {0, 1}™ (see [26]):
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where € is the bit error rate (BER) and 6 > 0 controls the correlation coefficient of the
noise given by 5%1' The channel capacity (whose closed-form expression is derived in
[26]) increases with 0, showing that COVQ may achieve less distortion for channels
with memory. This is supported by the simulation results in [27] for generalized
Gaussian sources. If 0 is set to zero, the noise process becomes memoryless and the



channel reduces to a binary symmetric channel (BSC). Remark also that this model is
less complex than the Gilbert-Elliott channel model and is completely specified with
only three parameters.

C. COSQ) Design

If d = dy(x,y) denotes the Hamming distance between the binary channel input
block x=(xy,...,2,) and the output block y=(yi,...,y,), we have [26]:

e For n < M, P(y|x) = L(n,d,¢,0), where
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The significance of the above formulas is that unlike many other channel models in
the literature, they provide easy and computationally inexpensive tools to implement
the GLA algorithm for noisy channels.

Various algorithms have been proposed for COVQ design among which we name
the modified GLA initialized by simulated annealing [13], noisy channel relaxation
[31], stochastic relaxation [32], and deterministic annealing [33]. After some experi-
ments with the above algorithms, we decided to use the modified GLA with simulated
annealing because of its computational efficiency. Unlike other methods, it computes
the codebooks for rates as high as 9 bits per sample in a reasonable time.

D. Bit Allocation

It is well known that in DWT subband coding, the end-to-end distortion is more
sensitive to errors in the low resolution subbands. Therefore, when allocating bits to
the sub-sources, the subbands at which they are located should be taken into account.

Usually, the distortion of sub-source 7 is weighted by the Ly norm of the wavelet
basis functions of the subband to which it belongs, denoted by w?. The end-to-end
distortion is then written as D = Ziszl w?d;, where S is the number of sub-sources
and d; is the distortion of sub-source ¢. Note that if two sub-sources are at the same
subband, they are weighted identically. As often used in the literature, we use the
mean squared error distortion measure and hence d; = ﬁ Zi\r{:l ij:l(cm,n — Cmn)?
for a sub-source of size M x N. The above weights are derived by approximation [28]
and we use other weights which are based on heuristics and result in up to 0.2 dB
overall gain in PSNR. Because of the way we built our sub-sources, the sub-sources



may have different weights even within the same subband. Therefore, we represent
the end-to-end distortion as

L L T
D =Y widiy, dij = % > () — &)y (2)
i=1 j=1 k=1
for a tile size of L x L and T tiles. Our heuristic method is as follows: Consider-
ing a tile, we change one coefficient by a given number, compute the inverse DWT
and evaluate the distortion. Having done this for all coefficients, we normalize the
results by the largest absolute value to get the relative sensitivities. We repeated
this experiment for various perturbations. While the results were nearly constant for
perturbations larger than 10, we applied the average values in our study. The result
for tile size 8x8 and the Daubechies irreversible 9/7 filters [29] is given in Table 1.

1.000000 | 0.320970 | 0.049902 | 0.054666 | 0.017026 | 0.013157 | 0.014377 | 0.011178
0.320970 | 0.096788 | 0.111598 | 0.123654 | 0.020076 | 0.015414 | 0.016787 | 0.013148
0.049902 | 0.111598 | 0.017467 | 0.021970 | 0.020997 | 0.016066 | 0.017496 | 0.013707
0.054666 | 0.123654 | 0.021970 | 0.022344 | 0.029752 | 0.023575 | 0.025070 | 0.019940
0.017026 | 0.020076 | 0.020997 | 0.029689 | 0.006893 | 0.005148 | 0.005430 | 0.004485
0.013157 | 0.015414 | 0.016066 | 0.023575 | 0.005148 | 0.003757 | 0.004615 | 0.003270
0.014377 | 0.016787 | 0.017496 | 0.025070 | 0.005430 | 0.004615 | 0.004894 | 0.003865
0.011178 | 0.013148 | 0.013707 | 0.019940 | 0.004485 | 0.003270 | 0.003865 | 0.002846

Table 1- Table of sensitivities for tile size 8 x 8.

We employed dynamic programming for bit allocation. In particular, we extended
the work in [10] to the Markov channel and to the case where the overall distortion
has different sensitivities to different sub-sources. The bit allocation problem is to
minimize (2) subject to ZiL:1 Zle rij < B and 0 < r;; < rypax, where ;5 is the
number of bits allocated to the (i, )™ sub-source and B is the total number of bits
available, so that the overall bit rate equals B/L? (neglecting the side information
for now). rpax is the maximum number of bits which may be allocated to a sub-
source. In this paper, we choose ., = 9 bits to have relatively small codebooks and
fast encoding. Modeling the sub-sources as independent Laplacian sources, we can
write each d;; in (2) as 07;dL(ry;) where dp(r;;) is the distortion of a unit-variance
Laplacian source quantized for a set of channel conditions (i.e., €,, M) and UiZ,j is the
variance of the (7, 7)™ sub-source. The problem now is to allocate the available bits
to L? Laplacian sources, each with variance wiyjai j» given the channel conditions. We
use the algorithm in [10] to solve this problem which is guaranteed by [10] to achieve
optimal bit allocation.

Note that d(r; ;) is calculated off-line. Also, although ‘7i2,j is image-dependent, it
is not computed inside the algorithm. Indeed, the computational complexity of this

algorithm is favorable compared to [3, 4, 6, 7, 28|.

3 Simulation Results

We implemented the proposed image coder for the compression and transmission of
gray-scale images over the contagion channel with M = 1 and tested it for the image



Lena (tests performed on other images such as Goldhill, Baboon, and Peppers gave
results consistent with the Lena experiments). The simulation results of all tested
systems are shown in Figure 2. We refer to our system as COSQ, followed by the
d of the channel it is designed for (e.g., COSQ-5 and COSQ-10). COSQ-IL denotes
the same system which uses an ideal channel interleaver, and hence it is designed
for the memoryless BSC. Three other tandem systems are also considered. They
employ scalar quantization, a very strong convolutional code and an ideal interleaver.
The convolutional codes are selected from [22] and are all nonsystematic and have
64 states (6 memory elements per output bit). They are the strongest convolutional
codes reported in [22] for this memory size, with dgee= 10, 14, and 20 for rates 1/2,
1/3, and 1/4, respectively. At the receiver, the maximum likelihood Viterbi algorithm
is used. We refer to these systems as “CC 1/2 IL”, “CC 1/3 IL”, and “CC 1/4 IL” in
that order. The best performance among the tandem systems is shown by “C best”.
This could represent the performance curve of a UEP system using an RCPC code
with a very small mother code rate and a large puncturing period. The rate allocation
algorithm for such a system is computationally prohibitive, but this curve is helpful
for comparison purposes. As expected, when BER increases, “C best” begins with
“C 1/2 IL”, switches to “C 1/3 IL” at intermediate BER values and ends with “C
1/4 IL”. As smaller tile sizes require less memory, they are attractive for hardware
implementation; therefore, two tile sizes are considered, 8 x8 and 64x64. Each test
was repeated 50 times. The average PSNR is reported for various total bit rate and
BER values. The PSNR is defined as 10log;, %, where D is the mean square error
between the original and decoded images.

We clearly observe that the performance curve of the COSQ-IL is always lower
than the curves of COSQ-5 and COSQ-10. This shows that it is preferable to exploit
the channel memory rather than destroying it. The COSQ-based method for corre-
lated noisy channels is also better than the interleaver-based tandem systems when
noise is correlated. Indeed, substantial coding gains are observed for the whole range
of the channel BER. As mentioned earlier, this is because the COV(Q system exploits
the larger capacity of the channel with memory for all BERs and the fact that, at
high BERs, the RCPC decoders of the tandem schemes fail to correct all channel
errors, causing an error propagation effect.

Note that the results derived for the tandem schemes are indeed an upper-bound
to their performance. In reality, no ideal interleaver exists. Tandem systems are
substantially more complex and introduce considerable delay. Moreover, they are
very sensitive to channel memory; a performance degradation as high as 10.5 dB was
observed in “C best” when we applied the correlated noise with 6 =5 and M =1 at
total bit rate of 1 bpp.

Throughout this work, we considered binary channels with memory which model
physical channels used in conjunction with hard-decision demodulation. Future work
might address the design of efficient COSQ-based image coding schemes for soft-
decision demodulated channels with memory. It is expected that additional coding
gains can be obtained via the use of the channel soft-decision information; this was
indeed observed in [34, 35| for the case of ideal Gaussian sources.
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Figure 2: Performance of the implemented image coders for various channel conditions and
bit rates.



