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Abstrat

A progressive method for transmission of images over a bursty noise han-

nel is presented. It is based on disrete wavelet transform (DWT) oding and

hannel-optimized salar quantization. The main advantage of the proposed

system is that it exploits the hannel memory and hene has superior perfor-

mane over a similar sheme designed for the equivalent memoryless hannel

through the use of hannel interleaving. In fat, the performane of the pro-

posed system improves as the noise beomes more orrelated, at a �xed bit error

rate. Comparisons are made with other alternatives whih employ independent

soure and hannel oding over the fully interleaved hannel at various bit rates

and bit error rates. It is shown that the proposed method outperforms these

substantially more omplex systems for the whole range of onsidered bit rates

and for a wide range of hannel onditions.

1 Introdution

Justi�ed by Shannon's separation priniple [1℄, the traditional approah to data om-

muniation is to design \tandem systems" whih are omposed of independent soure

and hannel oders. Being only asymptotially optimal, tandem systems often result

in either too onservative or insuÆient protetion against hannel errors. In mul-

timedia ommuniations, the deoder output would have a oarse resolution in the

former ase, while the latter ase would result in poor quality.

It is known that in real world appliations, with restritions on delay and om-

plexity, joint design of the soure and hannel oders results in superior performane.

Several methods have been proposed for joint soure-hannel oding, whih may be

ategorized as unequal error protetion [2℄-[7℄, hannel-optimized salar and vetor

quantization [8℄-[12℄, optimization of index assignment [13, 14℄, and exploitation of

the residual redundany of the soure oder via MAP deoding [15℄-[19℄. All of the

above methods may be applied in image transmission, but the �rst two approahes

appear to draw more attention in the literature.

Unequal error protetion trades o� soure resolution and hannel error prote-

tion to alloate the available bit rate. The amount of hannel oding depends on

the hannel onditions, suh as the bit error rate. Most of suh strategies employ

rate-ompatible puntured onvolutional (RCPC) odes for error protetion [20℄, of-

ten with a measure of parity heking, suh as yli redundany hek (CRC), for

�

This work was supported in part by NSERC of Canada and PREA of Ontario.

Authors e-mail addresses: ffirouz, fady, linderg�mast.queensu.a



detetion of errors in the hannel-deoded sequene. In [2℄, entropy-oded subband

oding is employed for ompression. Paketization and RCPC hannel oding are

then used to transmit images over memoryless noisy hannels. While the oeÆients

at eah subband are given the same level of protetion in [2℄, in [3℄ di�erent rates of

the RCPC ode are used in eah subband aording to the sensitivity of the end-to-

end distortion to eah bit signi�ane level. In [4℄, the strong image oder SPIHT

introdued in [21℄ is applied for ompression, together with paketization, hek sum

bits, RCPC hannel oding and list Viterbi deoding [22℄. An adaptive soure and

hannel oding rate alloation sheme for �nite state hannels is examined in [5℄. The

work in [6℄ uses the Gilbert-Elliott hannel model [23℄ to alloate the RCPC ode rate

to various bloks inside eah image subband. The so-alled \all-pass �ltering" [24℄ is

also applied to inrease the peak signal to noise ratio (PSNR) by 3 dB. The Gilbert-

Elliott model was also used in [7℄, but neither of the two latter oders exploit the

hannel memory.

Channel optimized vetor quantization (COVQ) is another alternative for joint

soure-hannel oding [8, 9℄. In a typial implementation of this method, one may

modify the nearest neighbor and entroid equations of the generalized Lloyd algorithm

(GLA), taking the hannel rossover probabilities into aount, hene designing a

odebook for eah hannel ondition. After quantization, the binary indies are sent

diretly over the hannel. The deoder simply uses the reeived noisy bits to �nd the

transmitted indies. In [11℄, subband oding, all-pass �ltering, and hannel optimized

salar quantization (COSQ) are applied for image transmission over memoryless noisy

hannels. This method is similar in spirit to our approah, but our hannel has

memory and we use DWT-based subband oding whih is substantially less omplex

due to redued �lter lengths. Our work extends and improves the results in [12℄,

whih uses DCT oding, speially at low bit rates.

One may enounter a ombination of the above methods in the literature. For

example, in [25℄, a COVQ is designed for a hannel equivalent to the ombination of

an RCPC enoder, a memoryless hannel, and an RCPC deoder.

An important property of many real life hannels, inluding wireless hannels,is

their memory. Using an eÆient interleaver tends to render suh hannels memoryless;

however, even ideal interleavers result in delay and omplexity. Furthermore, the

resulting assoiated memoryless hannel has a lower apaity than the original hannel

with memory (for the ase of information stable hannels [26℄). Thus, it would be more

bene�ial to deal with hannels with memory in a di�erent way. In wireless image

transmission where bandwidth is sare, it is not pratial to use two onatenated

hannel odes, suh as onvolutional or Turbo odes and Reed-Solomon odes, beause

the resolution of the reeived image would be too oarse, given a �xed bit rate. COVQ

may be employed in suh ases. The fat that expliit knowledge of hannel blok

transition probabilities is a neessity for COVQ design restrits their use, beause it

is not always easy to derive losed form expressions for the transition probabilities. In

[26℄, an alternative to the Gilbert-Elliott hannel model is presented and the hannel

blok probabilities are expliitly derived. This model is used in [27℄ to design COSQ

and COVQ for generalized Gaussian as well as Gauss-Markov soures.

In this paper, we present an image ompression method for the noisy hannel



with memory introdued in [26℄. The algorithm is omposed of two parts: a DWT-

based transform oder and a hannel optimized salar quantizer whih uses a �xed

bit alloation table for all image tiles, as opposed to JPEG2000 and its oding engine

EBCOT [28℄ where di�erent bit alloations are provided for di�erent bloks. One

salient feature of this method is that its performane improves as hannel noise be-

omes more orrelated, making it attrative for wireless hannels. Also, the rate an

virtually be hanged ontinuously and hene very eÆient use of the available bit rate

is possible. Moreover, it provides reasonable image quality at bit rates as low as 0.125

bpp and bit error rates as high as 0.1. Our system performs better than a similar

system designed for a memoryless hannel and used in series with an ideal interleaver,

whih inreases delay. Also, it outperforms unequal error protetion shemes whih

use salar quantization, onvolutional oding and ideal interleaving. The proposed

method o�ers the following features.

� The hannel interleaver is left out. This eliminates additional delay and, more

importantly, exploits to a bigger extent the apaity of the hannel with memory,

whih is larger than the apaity of the equivalent (interleaved) memoryless

hannel.

� Unlike unequal error protetion shemes (e.g., [2℄-[4℄, [6, 7℄) the omputational

omplexity of bit alloation is negligible.

� Unlike many other shemes, suh as unequal error protetion and [28℄, enod-

ing is performed only one; no multi-stage soure ompression and subsequent

hannel oding is required.

� The proposed method is progressive. Beginning from the lowest resolution sub-

band, the transmitter sends the data of the next resolution level every time.

Note that for now our objetive is to demonstrate the advantages of COSQ over

methods whih use hannel interleaving to suppress the e�et of hannel memory. We

onsider bursty hannels with memory, for whih omplex shemes whih use RCPC

odes (suh as [2℄ and [4℄) might not be suitable.

2 COSQ-Based Image Coding for Bursty Noise Channels

A. Struture

Figure 1 shows the blok diagram of the employed image oding system. Tiling

is simply dividing the image into bloks of size 2

m

� 2

m

where m � 3 is an integer.
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Figure 1: The struture of the proposed oding system.



It is known that larger tile sizes result in higher PSNR [29℄; they however require

more memory. The DC shifter takes a onstant, say 128, o� all entries in eah tile.

Subtrating the average value of eah tile from its entries would result in higher

PSNR; but it inreases the amount of side information. Next, the DWT of eah tile

is extrated three times, every time on the lowest resolution subband of the previous

resolution level. The shemes in [2℄-[4℄, [6, 7, 11, 21℄ aim to exploit the intra-blok

dependenies by onsidering groups of oeÆients whih are expeted to have high

orrelation and all them \sub-soures". Our method is di�erent in that we use the

inter-tile dependenies. If 

(k)

i;j

is the oeÆient at row i and olumn j of the k

th

tile, our (i; j)

th

sub-soure is f

(k)

i;j

g

T

k=1

where T is the number of tiles. Depending on

the available bit rate, some of the sub-soures are then normalized (to have a unit

variane) and quantized, using a COSQ for hannels with memory. The resulting

bit-stream is sent diretly over the hannel. The reeiver is simply the inverse of the

transmitter.

For COSQ design, we need to know the distribution of the samples to be quan-

tized. It is well-known that the distribution of the DWT oeÆients of images ap-

proximately follows the generalized Gaussian distribution [11, 30℄, with a probability

density funtion given by

f(x) =

��(�; �)

2�(1=�)

expf�[�(�; �)jxj℄

�

g (1)

where �(�; �) =

1

�

�

�(3=�)

�(1=�)

�

1

2

is the rate of deay, �

2

is the variane, and �(�) is

the Gamma funtion. For �=1 and 2, the above yields the Laplaian and Gaussian

distributions, respetively. For simpliity, we assume here that the sub-soures in

all subbands have the Laplaian distribution and we quantize them using a COSQ

trained for suh a soure with a unit variane.

B. Model for Channel with Memory

Based on [26℄, we use the Polya-ontagion hannel model whih assumes that any

noise sample depends only on the sum of theM previous samples. The resulting noise

proess is a stationary ergodi Markov soure of order M . If X

i

, Y

i

, and Z

i

represent

the input, output, and noise in that order and � is addition modulo 2, the hannel

input-output relationship is desribed by Y

i

= X

i

�Z

i

. Assuming that the input and

noise are independent, for i �M we have, for any e

i�1

i�M

2 f0; 1g

M

(see [26℄):

PrfZ

i

= 1jZ

i�1

i�M

= e

i�1

i�M

g = Pr

(

Z

i

= 1

�

�

�

�

�

i�1

X

j=i�M

Z

j

=

i�1

X

j=i�M

e

j

)

=

� + Æ

P

i�1

j=i�M

e

j

1 +MÆ

where � is the bit error rate (BER) and Æ � 0 ontrols the orrelation oeÆient of the

noise given by

Æ

Æ+1

. The hannel apaity (whose losed-form expression is derived in

[26℄) inreases with Æ, showing that COVQ may ahieve less distortion for hannels

with memory. This is supported by the simulation results in [27℄ for generalized

Gaussian soures. If Æ is set to zero, the noise proess beomes memoryless and the



hannel redues to a binary symmetri hannel (BSC). Remark also that this model is

less omplex than the Gilbert-Elliott hannel model and is ompletely spei�ed with

only three parameters.

C. COSQ Design

If d = d

H

(x;y) denotes the Hamming distane between the binary hannel input

blok x=(x

1

; : : : ; x

n

) and the output blok y=(y

1

; : : : ; y

n

), we have [26℄:

� For n �M , P(yjx) = L(n; d; �; Æ), where

L(n; d; �; Æ) =

Q

d�1

i=0

(�+ iÆ)

Q

n�d�1

i=0

(1� � + iÆ)

Q

d�1

i=0

(1 + iÆ)

:

� For n > M ,

P(yjx) = L(M; s

M+1

; �; Æ)

n

Y

i=M+1

�

�+ s

i

Æ

1 +MÆ

�

e

i

�

1�

�+ s

i

Æ

1 +MÆ

�

1�e

i

where e

i

= x

i

� y

i

and s

i

= e

i�M

+ � � �+ e

i�1

.

The signi�ane of the above formulas is that unlike many other hannel models in

the literature, they provide easy and omputationally inexpensive tools to implement

the GLA algorithm for noisy hannels.

Various algorithms have been proposed for COVQ design among whih we name

the modi�ed GLA initialized by simulated annealing [13℄, noisy hannel relaxation

[31℄, stohasti relaxation [32℄, and deterministi annealing [33℄. After some experi-

ments with the above algorithms, we deided to use the modi�ed GLA with simulated

annealing beause of its omputational eÆieny. Unlike other methods, it omputes

the odebooks for rates as high as 9 bits per sample in a reasonable time.

D. Bit Alloation

It is well known that in DWT subband oding, the end-to-end distortion is more

sensitive to errors in the low resolution subbands. Therefore, when alloating bits to

the sub-soures, the subbands at whih they are loated should be taken into aount.

Usually, the distortion of sub-soure i is weighted by the L

2

norm of the wavelet

basis funtions of the subband to whih it belongs, denoted by w

2

i

. The end-to-end

distortion is then written as D =

P

S

i=1

w

2

i

d

i

, where S is the number of sub-soures

and d

i

is the distortion of sub-soure i. Note that if two sub-soures are at the same

subband, they are weighted identially. As often used in the literature, we use the

mean squared error distortion measure and hene d

i

=

1

MN

P

M

m=1

P

N

n=1

(

m;n

� ̂

m;n

)

2

for a sub-soure of size M �N . The above weights are derived by approximation [28℄

and we use other weights whih are based on heuristis and result in up to 0.2 dB

overall gain in PSNR. Beause of the way we built our sub-soures, the sub-soures



may have di�erent weights even within the same subband. Therefore, we represent

the end-to-end distortion as

D =

L

X

i=1

L

X

j=1

w

i;j

d

i;j

; d

i;j

=

1

T

T

X

k=1

(

(k)

i;j

� ̂

(k)

i;j

)

2

(2)

for a tile size of L � L and T tiles. Our heuristi method is as follows: Consider-

ing a tile, we hange one oeÆient by a given number, ompute the inverse DWT

and evaluate the distortion. Having done this for all oeÆients, we normalize the

results by the largest absolute value to get the relative sensitivities. We repeated

this experiment for various perturbations. While the results were nearly onstant for

perturbations larger than 10, we applied the average values in our study. The result

for tile size 8�8 and the Daubehies irreversible 9/7 �lters [29℄ is given in Table 1.

1.000000 0.320970 0.049902 0.054666 0.017026 0.013157 0.014377 0.011178

0.320970 0.096788 0.111598 0.123654 0.020076 0.015414 0.016787 0.013148

0.049902 0.111598 0.017467 0.021970 0.020997 0.016066 0.017496 0.013707

0.054666 0.123654 0.021970 0.022344 0.029752 0.023575 0.025070 0.019940

0.017026 0.020076 0.020997 0.029689 0.006893 0.005148 0.005430 0.004485

0.013157 0.015414 0.016066 0.023575 0.005148 0.003757 0.004615 0.003270

0.014377 0.016787 0.017496 0.025070 0.005430 0.004615 0.004894 0.003865

0.011178 0.013148 0.013707 0.019940 0.004485 0.003270 0.003865 0.002846

Table 1- Table of sensitivities for tile size 8� 8.

We employed dynami programming for bit alloation. In partiular, we extended

the work in [10℄ to the Markov hannel and to the ase where the overall distortion

has di�erent sensitivities to di�erent sub-soures. The bit alloation problem is to

minimize (2) subjet to

P

L

i=1

P

L

j=1

r

i;j

� B and 0 � r

i;j

� r

max

, where r

i;j

is the

number of bits alloated to the (i; j)

th

sub-soure and B is the total number of bits

available, so that the overall bit rate equals B=L

2

(negleting the side information

for now). r

max

is the maximum number of bits whih may be alloated to a sub-

soure. In this paper, we hoose r

max

= 9 bits to have relatively small odebooks and

fast enoding. Modeling the sub-soures as independent Laplaian soures, we an

write eah d

i;j

in (2) as �

2

i;j

d

L

(r

i;j

) where d

L

(r

i;j

) is the distortion of a unit-variane

Laplaian soure quantized for a set of hannel onditions (i.e., �; Æ;M) and �

2

i;j

is the

variane of the (i; j)

th

sub-soure. The problem now is to alloate the available bits

to L

2

Laplaian soures, eah with variane w

i;j

�

2

i;j

, given the hannel onditions. We

use the algorithm in [10℄ to solve this problem whih is guaranteed by [10℄ to ahieve

optimal bit alloation.

Note that d

L

(r

i;j

) is alulated o�-line. Also, although �

2

i;j

is image-dependent, it

is not omputed inside the algorithm. Indeed, the omputational omplexity of this

algorithm is favorable ompared to [3, 4, 6, 7, 28℄.

3 Simulation Results

We implemented the proposed image oder for the ompression and transmission of

gray-sale images over the ontagion hannel with M = 1 and tested it for the image



Lena (tests performed on other images suh as Goldhill, Baboon, and Peppers gave

results onsistent with the Lena experiments). The simulation results of all tested

systems are shown in Figure 2. We refer to our system as COSQ, followed by the

Æ of the hannel it is designed for (e.g., COSQ-5 and COSQ-10). COSQ-IL denotes

the same system whih uses an ideal hannel interleaver, and hene it is designed

for the memoryless BSC. Three other tandem systems are also onsidered. They

employ salar quantization, a very strong onvolutional ode and an ideal interleaver.

The onvolutional odes are seleted from [22℄ and are all nonsystemati and have

64 states (6 memory elements per output bit). They are the strongest onvolutional

odes reported in [22℄ for this memory size, with d

free

= 10, 14, and 20 for rates 1/2,

1/3, and 1/4, respetively. At the reeiver, the maximum likelihood Viterbi algorithm

is used. We refer to these systems as \CC 1/2 IL", \CC 1/3 IL", and \CC 1/4 IL" in

that order. The best performane among the tandem systems is shown by \C best".

This ould represent the performane urve of a UEP system using an RCPC ode

with a very small mother ode rate and a large punturing period. The rate alloation

algorithm for suh a system is omputationally prohibitive, but this urve is helpful

for omparison purposes. As expeted, when BER inreases, \C best" begins with

\C 1/2 IL", swithes to \C 1/3 IL" at intermediate BER values and ends with \C

1/4 IL". As smaller tile sizes require less memory, they are attrative for hardware

implementation; therefore, two tile sizes are onsidered, 8�8 and 64�64. Eah test

was repeated 50 times. The average PSNR is reported for various total bit rate and

BER values. The PSNR is de�ned as 10log

10

255

2

D

, where D is the mean square error

between the original and deoded images.

We learly observe that the performane urve of the COSQ-IL is always lower

than the urves of COSQ-5 and COSQ-10. This shows that it is preferable to exploit

the hannel memory rather than destroying it. The COSQ-based method for orre-

lated noisy hannels is also better than the interleaver-based tandem systems when

noise is orrelated. Indeed, substantial oding gains are observed for the whole range

of the hannel BER. As mentioned earlier, this is beause the COVQ system exploits

the larger apaity of the hannel with memory for all BERs and the fat that, at

high BERs, the RCPC deoders of the tandem shemes fail to orret all hannel

errors, ausing an error propagation e�et.

Note that the results derived for the tandem shemes are indeed an upper-bound

to their performane. In reality, no ideal interleaver exists. Tandem systems are

substantially more omplex and introdue onsiderable delay. Moreover, they are

very sensitive to hannel memory; a performane degradation as high as 10.5 dB was

observed in \C best" when we applied the orrelated noise with Æ = 5 and M = 1 at

total bit rate of 1 bpp.

Throughout this work, we onsidered binary hannels with memory whih model

physial hannels used in onjuntion with hard-deision demodulation. Future work

might address the design of eÆient COSQ-based image oding shemes for soft-

deision demodulated hannels with memory. It is expeted that additional oding

gains an be obtained via the use of the hannel soft-deision information; this was

indeed observed in [34, 35℄ for the ase of ideal Gaussian soures.
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Figure 2: Performane of the implemented image oders for various hannel onditions and

bit rates.


