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Abstract

A joint source-channel coding system for image communication over an addi-
tive white Gaussian noise channel is presented. It employs vector quantization
based hybrid digital-analog modulation techniques with bandwidth compres-
sion and expansion for transmitting and reconstructing the wavelet coefficients
of an image. The main advantage of the proposed system is that it achieves
good performance at the design channel signal-to-noise ratio (CSNR), while
still maintaining a “graceful improvement” characteristic at higher CSNRs.
Comparisons are made with two purely digital systems and two purely analog
systems. Simulation shows that the proposed system is superior to the other
investigated systems for a wide range of CSNRs.

Index Terms: Hybrid digital-analog coding, joint source-channel coding, vector
quantization, broadcasting, robustness, image coding, discrete wavelet transform.

1 Introduction

In applications such as broadcasting and robust communication of analog-valued
sources over wireless channels, there is a large variation in channel conditions de-
pending on the physical landscape, the communication distance, the weather situa-
tion, etc. Thus, a communication system designed to perform well for a broad range
of channel conditions is highly desired. Since it is difficult to introduce efficient signal
compression in purely analog communication schemes, digital communication tech-
niques are often preferred. One of the main advantages of digital communication
over analog communication is that it can be designed to (asymptotically) achieve the
theoretically optimal performance for a fixed channel signal-to-noise ratio (CSNR).
This excellent performance can be achieved by the separate design of optimal source
and channel codes. Systems which are designed based on this principle are often
referred to as tandem source-channel coding systems. There are, however, two fun-
damental disadvantages associated with digital tandem systems. One is the threshold
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effect : the system typically performs well at the design CSNR, while it degrades dras-
tically when the true CSNR falls beneath the design CSNR. This effect is due to the
quantizer’s sensitivity to channel errors and the total breakdown of most powerful
error-correcting codes at low CSNRs. The other trait is the levelling-off effect : as the
CSNR increases, the performance remains constant beyond a certain threshold. This
problem is due to the non-recoverable distortion introduced by the quantizer which
limits the system performance at high CSNRs.

To cope with the first problem, various digital systems known as joint source-
channel (JSC) coding systems have been proposed. By jointly designing the source
and channel codes, many results (e.g., [6]-[10]) show that noticeable gain can be
obtained in terms of coding efficiency, reconstructed signal quality, coding delay and
complexity. In particular, JSC schemes are more robust than tandem systems at
low CSNRs. However both coding systems still suffer from the levelling-off effect at
high CSNRs, since being digital systems, they employ quantization to “digitize” the
source. On the other hand, analog systems do not suffer from the levelling-off effect,
although they are generally inferior to digital systems in terms of rate-distortion-
capacity performance, particularly at the design CSNR.

In [1], Mittal and Phamdo propose a class of hybrid digital-analog (HDA) JSC
coding systems. They show that HDA systems can asymptotically achieve the optimal
performance at the design CSNR, while maintaining a “graceful improvement” at
high CSNRs. The threshold effect, although still inherent, is also less severe. Thus,
HDA systems exploit the advantages of both digital and analog systems. In [2], an
application of an HDA system to the coding of speech signals over Gaussian channels
is presented. In [3], Skoglund, Phamdo and Alajaji introduce and implement a vector
quantization (VQ) based HDA system with linear mapping in its analog component.
They also optimize the HDA system parameters using a similar procedure to that of
channel optimized vector quantization, hence increasing the system’s error resilience
at low CSNRs. The system in [3] is valid only for bandwidth expansion. In [4, 5],
a VQ based HDA system for both bandwidth expansion and bandwidth compression
is investigated. It employs a Karhunen-Loéve transform to decorrelate the source,
Turbo error-correcting coding in its digital part to improve the system performance
at low CSNRs and superposition coding of the analog and digital signals. This system
also allows for both linear and non-linear mapping in its analog component. Other
methods which combine digital and analog coding techniques include [11]-[16].

In this paper, we present an HDA image communication scheme for additive
white Gaussian noise (AWGN) channels. Our main objective is to design a simple
(low-complexity, low-delay) system which performs well over a wide range of chan-
nel CSNRs, with the same emphasis as in [1]-[5] of obtaining a “graceful improve-
ment” characteristic at high CSNRs. This characteristic is particularly appealing for
Telemedicine and sensor networks applications where sensitive image data need to
be reliably communicated from remote locations irrespective of the channel environ-
ment. Section 2 gives a brief introduction to the HDA systems. In Section 3, the
proposed image coding scheme is presented. Simulation results are given in Section
4, and comparisons are made with purely digital and purely analog systems. Finally,
Section 5 concludes the paper.
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Figure 1: HDA system for bandwidth compression/expansion.
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Figure 2: HDA system for bandwidth expansion.

2 HDA System Description

We consider the problem of transmitting a d-dimensional analog source vector X ∈ Rd

over a memoryless Gaussian channel and reproducing it as X̂ at the receiver. In Fig. 1,
we present a general HDA system for bandwidth compression/expansion. The system
is a simplified version of the system presented in [4, 5], as it does not employ error
correcting codes in the digital part to avoid incurring additional delay and complexity.
In the digital part, the output index I of the VQ encoder ε1 is assigned a d̃-dimensional
channel symbol sI from a finite set {si} of possible symbols. The index I also chooses
a vector zI from the encoder codebook {zi}. The vector zI is subtracted from X to
form the (quantization) error vector E, and this vector is then used as input to the
mapping α, with output Z = α(E) ∈ Rd̃. The scaled version, a ·Z, is added to sI and
then fed to a discrete-time analog-amplitude channel with AWGN of zero mean and
variance σ2 per component. The scaling constant a regulates the power allocation of
the analog part with respect to the overall channel input power.

At the receiver, the received vector R is first fed to decoder δ1, resulting in output
index J , and a reconstructed codevector yJ is chosen for the digital part. Meanwhile,
the output index J is assigned a channel symbol. The result is subtracted from the
received vector R and scaled by the constant b, forming an estimate Ẑ. This estimate
is then fed to the analog mapping β, and the output Ê is added to yJ of the digital
part, resulting in the source vector estimate X̂.

In Fig. 2, we depict the HDA system for bandwidth expansion investigated in



✲X

Image
DWT ✲V2

✲V1

✲V3

HDA encoder

✲

✲

✲

channel
✲

✲

✲

HDA decoder

✲V̂1

✲V̂2

✲V̂3

IDWT ✲X̂

Figure 3: The structure of the HDA image coding system.

[3]. Note however that this system is a special case of the above bandwidth com-
pression/expansion system [4, 5]. Indeed, in the bandwidth compression/expansion
system, if we choose the channel symbols of the digital part as (si, 0)T , and choose
the mapping α as α(E) = (0,E)T , then Fig. 1 reduces to Fig. 2.

3 Image Coding Schemes

We consider the problem of transmitting gray-scale still images over a memoryless
Gaussian channel. Our design will focus on obtaining a good overall performance
with a “graceful improvement” characteristic at high CSNRs.

3.1 Vector Structures

Fig. 3 shows the block diagram of the proposed image coding system. An image is first
decomposed using a two-dimensional separable discrete wavelet transform (DWT);
here Antonni 9/7 biorthorgonal filters are used for DWT. The DWT is applied three
times, each time on the lowest frequency subband of the previous resolution level, re-
sulting in 10 subbands overall. The variance and mean of each subband are estimated
and all the wavelet coefficients are normalized to have zero mean and unit variance.
The normalized coefficients are grouped into vectors as follows.

• For the lowest frequency subband (LFS), each block of 2× 2 coefficients form a
vector of dimension 4, and referred to as a class 1 vector.

• For the highest frequency levels (there are three such subbands in total), each
block of 4 × 4 coefficients form a vector of dimension 16, and referred to as a
class 3 vector.

• For the remaining two frequency levels (six subbands in total with three sub-
bands for each level), one coefficient from the coarser level and a block of 2× 2
coefficients from the finer level (with the same frequency direction as the coarser
one) form a vector of dimension 5, and referred to as a class 2 vector.

Since the three classes of vectors have unequal roles in the reconstruction of the
overall image, different coding strategies will be employed in their processing and
transmission.



3.2 Bandwidth Expansion

In [3], an iterative training algorithm is presented to find the optimal design of the
HDA system for bandwidth expansion. Here, we use the system in [3] with a trans-
mission rate of 2 channel uses/source symbol to code vectors of class 1 and class 2,
since these classes of vectors involve the low and middle frequency components of the
image, which are vital for the overall image quality. In total, 1/4 of the coefficients
are coded using the bandwidth expansion system.

3.3 Bandwidth Compression

The remaining 3/4 portion of the coefficients is formed into vectors of class 3 and
coded via the HDA bandwidth compression system. In particular, we employ an
HDA system with a rate of 1/2 channel use/source symbol. The system is realized as
follows. For a d-dimensional analog vector source (here for class 3 vectors, d = 16),
a VQ of d/2 bits is employed. The mapping α in the analog part takes in a d-
dimensional error vector E and outputs a vector Z of dimension d/2. More precisely,
E is decomposed into d/2 two-dimensional subvectors (components 1 and 2 in the first
vectors, 3 and 4 in second, etc.), and for each subvector, an output is generated using
the arithmetic average value of the two components. Similarly, the decoding mapping
β reconstructs each two-dimensional subvector using the corresponding component of
Ẑ, to form the estimate Ê.

By adopting the approach in [3], we optimize (in the sense of minimizing the
overall mean square error distortion) the above compression system as follows. For an
arbitrary vector X ∈ Rd, denote X1 = (X1, X3, . . . , Xd−1)T , X2 = (X2, X4, . . . , Xd)T

and X̄ = X1 + X2. For a fixed encoder ε1, it can be shown that the optimal {zi},
{yj} and b are given by

zk
i = mk

y(i) + b(si − ms(i)), k = 1, 2, i = 0, . . . , N − 1, (1)

yk
j = E[Xk − 1

2
ab(X̄ − z̄I) − b(sI − sJ + W)|J = j], (2)

b =
E

[
X̄

T
(a

2 (X̄− z̄I − E[X̄− z̄I |J ]) + sI − E[sI |J ])
]

2E||a2(X̄− z̄I − E[X̄ − z̄I |J ]) + sI − E[sI |J ]||2 + σ2d
, (3)

where N = 2
d
2 , m̄k

y(i) = E[ȳJ |I = i] and ms(i) = E[sJ |I = i]. Furthermore, for a
fixed decoder δ1, the optimal encoder regions are

Si =

{
x ∈ Rd : ||x − zi||2 +

(
1

2
a2b2 − ab

)
||x̄ − z̄i||2 + hi

≤ ||xk − zk
j ||2 +

(
1

2
a2b2 − ab

)
||x̄ − z̄j ||2 + hj , ∀j

}
, (4)



where

hi
△
=

2∑

k=1

E[||yk
J + β(sI − sJ)||2|I = i] − E[||zI ||2|I = i].

These optimality results are next utilized (as in [3]) to formulate an iterative
training algorithm for the compression system. Although they are derived here for a
system with rate 1/2, they can also be determined for an HDA compression system
with any rate less than 1.

3.4 Models for Wavelet Coefficients

It is known that the distribution of the wavelet coefficients of each subband can be
well approximated by the generalized Gaussian distribution (GGD) (e.g., [17, 18])
whose probability density function (pdf) is given by

f(x) =
αη(α, σs)

2Γ(1/α)
exp{−[η(α, σs)|x|]α}

where η(α, σs) = 1
σs

(
Γ(3/α)
Γ(1/α)

) 1
2
, α > 0 is a shaping parameter, σs is the standard

deviation of the distribution, and Γ(·) is the Gamma function. The pdf of the GGD
reduces to the Laplacian pdf when α = 1 and yields the Gaussian pdf when α = 2.
Based on our experiments on natural images and the results in [17], we assume a
Laplacian distribution for all subbands. All coefficients are quantized using a VQ
trained for a Laplacian source with zero mean and unit variance.

3.5 Adaptive Decoding

As in [3], motivated by a broadcast scenario, we apply the training algorithms to a
fixed-encoder adaptive-decoder optimized HDA system. For example, the optimized
HDA bandwidth expansion system is designed for a fixed CSNR value ∗ (in decibels),
yielding a fixed encoder ε1, and fixed {zi} and a, which are not modified as the true
CSNR changes. On the other hand, the decoder has knowledge of the true CSNR
and adapt to it by updating the values of {yj} and b as the CSNR varies.

3.6 Side Information

Certain side information must be reliably transmitted over the channel, including the
means and variances of each subband. By observing the statistical properties of the
subband data for a variety of images, we found that the mean values for all subbands
except for the LFS are very small compared to the standard deviation. Thus, all
these mean values (except the LFS) are assumed to be zero in our design. For a
3-level 10-band octave decomposition, we use 12 bits to quantize the variance of each
subband and 8 bit to quantize the mean value of the LFS, resulting in a total of
128 bits. The image size needs to also be known at the receiver (it is represented
via a natural binary code). The side information is usually error protected before



transmission. For an image of size 512 × 512 and a rate-1/2 error control code, the
overhead consists of 292 bits in total, or equivalently around 0.001 bits per pixel. In
the following discussion, we assume that the side information is transmitted error
free, and we do not include it in the calculation of the overall system rate (as it is
negligible).

4 Simulation Results

We next implement the proposed HDA image coding system for the transmission of
gray-scale images over AWGN channels and test it for the images Lena and Goldhill,
both of size 512 × 512. Binary phase-shift keying (BPSK) modulation is used in
the digital part of the HDA system. Performance comparisons are made with purely
analog and purely digital systems.

A. VQHDA System

In the VQHDA system, 5-bit and 4-bit VQs are used to quantize class 1 and class 2
vectors, respectively. The codebooks are trained using the corresponding training
algorithm for the rate-2 bandwidth expansion HDA system. An 8-bit VQ is employed
to quantize class 3 vectors. The codebooks are obtained using the training algorithm
for the rate- 1

2 compression HDA system. All VQs are trained using 300,000 training
vectors. The encoder of each VQ is determined for a fixed CSNR, while adaptive
decoding is employed at the receiver. The overall channel input power is set to unity
in all systems. For bandwidth compression, 10% of the total power is allocated to the
analog part, while for bandwidth expansion the power is evenly distributed between
the digital and analog parts (the best power allocation between the digital and analog
parts is determined via a numerical study). The overall system rate is 0.83 channel
use/pixel. For comparison, we also evaluate the performance of one purely analog
system and two purely digital systems.

B. Purely Analog System

The purely analog system, denoted by Analog, consists of a rate-one linear analog
code (α, β), where α : Rd → Rd is a linear encoder and β : Rd → Rd is a linear
decoder. Let the source variance be σ2

s and the channel input power constraint be P
(which is set to unity in the simulations), while the channel noise variance is σ2. The
encoder/decoder pair is given by

α(X) =

√
P

σ2
s

X and β(Z) =

√
σ2

sP

P + σ2
Z.

Note that the encoder α is independent of the noise variance σ2. The system employs
a similar rate allocation as that of the VQHDA system. Class 1 and class 2 vectors
are transmitted twice, and the receiver employs a linear minimum mean square error
decoder. Class 3 vectors employ a similar method as in the bandwidth compression
system, taking 2 components as input and sending the average value. The total rate
of the system is around 0.875 channel use/pixel.



C. Purely Digital System

Two purely digital systems are also investigated. The first digital system uses channel
optimized vector quantization (COVQ). For this system, vectors are formed using the
same vector schemes as in the VQHDA system. A 4-dimensional 9-bit COVQ, a 5-
dimensional 9-bit COVQ, and a 16-dimensional 8-bit COVQ are trained at a designed
CSNR using 100,000 training vectors. The output indices of each VQ are then directly
sent over the BPSK modulated channel. The channel input power per channel use
is also set to unity. The receiver employs hard decision demodulation and adaptive
COVQ decoding. The second digital system, denoted by LBG-VQ, uses the Linde,
Buzo and Gray (LBG) vector quantization algorithm, where a 4-dimensional 9-bit
LBG-VQ, a 5-dimensional 9-bit LBG-VQ, and a 16-dimensional 8-bit LBG-VQ are
trained using 300,000 training vectors. The remaining system parts are identical to
their counterparts in the COVQ system. Adaptive decoding is also employed. Both
systems have an overall rate of 0.832 channel use/pixel.

D. Results

The performance of each system is measured in terms of the peak signal-to noise ratio
(PSNR), which is defined (in dB) by

PSNR = 10 log10

(255)2

D
,

where D is the mean square error between the original and decoded images. In Figs. 4
and 5, we present performance results for the various systems, where the encoder of
both the proposed VQHDA system and the COVQ system is designed for a fixed
CSNR of 10 dB. We observe that the VQHDA system outperforms the purely analog
and LBG-VQ systems for most CSNRs, and provide substantial improvements over
the purely digital systems from medium to high CSNRs. Note that the performance
of the VQHDA system saturates at a CSNR of 30 dB; this is due to the non-reversible
analog linear map in the bandwidth compression system. It is observed in [4] that
replacing the linear analog map with a non-linear map enables the HDA system to
saturate at an arbitrarily high CSNR.

5 Conclusion

An image communication system using VQ-based HDA JSC coding for AWGN chan-
nels is proposed. Both bandwidth expansion and compression HDA systems are
used for the coding and transmission of the image wavelet coefficients: bandwidth
expansion is applied on the low and medium frequency subbands, while bandwidth
compression is applied on the high frequency subbands. Numerical results show that
the proposed system is superior to purely analog and purely digital systems for a
wide range of CSNRs. The power and rate allocations in the proposed scheme are
selected via a numerical study. Future work may focus on optimizing the rate allo-
cation among the different subbands, optimizing the power allocation between the
digital and analog parts, and applying non-linear analog maps for the bandwidth
compression system.
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COVQ, PSNR=28.24 dB Analog, PSNR=27.18 dB VQHDA, PSNR=33.69 dB

COVQ, PSNR=28.37 dB Analog, PSNR=33.58 dB VQHDA, PSNR=37.03 dB

Figure 4: Comparison between the different systems, where the VQHDA and COVQ
systems are designed at CSNR = 10 dB . The true CSNR is 10 dB for the first row
and 20 dB for the second row. Adaptive decoding is used for all systems.

Lena True CSNR (in dB)
512 × 512 0 5 10 15 20 25 30

VQHDA at 10 dB 17.53 23.15 33.41 37.67 39.61 40.80 41.01
Analog 18.71 22.54 27.16 31.57 35.14 37.54 39.16

COVQ at 10 dB 18.48 25.19 28.24 28.27 28.27 28.27 28.27
LBG-VQ 14.76 17.46 27.20 28.29 28.34 28.34 28.34

Goldhill True CSNR (in dB)
512 × 512 0 5 10 15 20 25 30

VQHDA at 10 dB 16.76 22.02 32.06 35.37 37.00 37.75 38.03
Analog 18.28 21.99 26.41 30.45 33.50 35.15 36.44

COVQ at 10 dB 18.10 25.13 28.35 28.37 28.37 28.37 28.37
LBG-VQ 14.51 17.17 27.36 28.46 28.48 28.48 28.48

Figure 5: PSNR results for the different systems for transmitting Lena 512×512 and
Godlhill 512 × 512 with rate 0.83 channel use/pixel (except the analog system with
rate 0.875 channel use/pixel). Adaptive decoding is employed in all systems.


