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Abstract

We propose a segmentation method based on
Polya’s urn model for contagious phenomena. An
wnetial labeling of the pizel is obtained using ¢ Maz-
imum Likelihood (ML) estimate or the Nearest Mean
Classifier (NMC), which are used to determine the
wnttial composition of an urn representing the pizel.
The resulting urns are then subjecied to a modified
urn sampling scheme mimicking the development of
an infection to yield a segmentation of the image
into homogeneous regions. Eramples of the applica-
tion of this. scheme to the segmentation of synthetic
texture images, Ulira-Wideband Synthetic Aperture
Radar (UWB SAR) images and Magnetic Resonance
Images (MRI) are provided.

1 Introduction

Image segmentation is a fundamental problem in
computer vision which has been extensively studied.
With the advent of new image modalities such as
Synthetic Aperture Radar (SAR) and Magnetic Res-
onance Imaging (MRI), research into methods of seg-
mentation has attracted renewed interest. We de-
scribe a segmentation method using contagion urn
schemes that rely on modified versions of the Polya-
Eggenberger sampling process [1, 11].., This biologi-
cally inspired sampling procedure was originally de-
signed to model the development of contagious phe-
nomena.

For our segmentation purposes, we model a scene as
being composed of distinct, contiguous regions, each
of which is described by constant or homogeneous at-
tributes such as intensity or texture. An image is a
corrupted version of an underlying piecewise smooth
scene [10]. A natural approach to delineating the re-
gions in an image is to statistically estimate the at-
tributes of the regions and use the descriptions to dif-
ferentiate between the regions.

Techniques such as Maximum Likelihood (ML) use
these descriptions to divide the image into regions.
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However, the ML estimate of the pixel labels tends to
produce a speckly segmentation, and thus smoothing
algorithms such as relaxation labeling (RL) [13, 9] or
simuilated annealing (SA) [6, 8, 12] are applied. These
methods make use of contextual information by relat-
ing neighboring pixels to form the estimate of the pixel
label. They allow local information to propagate via
iterative processing [9].

This paper models images using contagion urn pro-
cesses. The idea behind this method is similar to
that of RL; it iteratively propagates local informa-
tion by contagion. The motivation for employing urn
schemes is twofold: First, urn' processes can gener-
ate Markov chains as well as MRFs [7]. Second, urn
schemes are of particular interest because they pro-
vide a natural probabilistic representation for the im-
age labels. Therefore, they constitute an attractive
generative process for the underlying image regions
which exhibit strong spatial dependencies. The spa-
tial dependencies of the pixel labels are captured by
the contagious behavior which promotes segmentation
of the image into regions. The urn process is analo-
gous to relaxation labeling algorithms, except that the
urn process is not deterministic, but stochastic. The
urn sampling scheme is also iterative and can be per-
formed in parallel at each site or pixel of the image.

This paper is organized as follows: The initial NMC
and ML segmentations are presented in Section 2. The
contagion-based smoothing process is then described
in Section 3. In Section 4, the stochastic properties of
the resulting image process are discussed. In Section
5 the relationships between the urn sampling scheme,
relaxation labeling, and simulated annealing are ex-
amined. Finally, experimental results on texture, SAR
and MR images are shown in Section 6.

2 Initial Segmentation

When no a priori information on the image statis-
tics is available, general clustering algorithms such as
NMC are usually applied. In the NMC method, an ini-



tial arbitrary labeling is used from which centroids of
the feature vectors of each class are computed. Next,
all samples are reclassified to the cluster correspond-
ing to the nearest mean, and the centroids are recom-
puted. This process is iterated until a stopping crite-
rion is met [5].

On the other hand, when a stochastic model for
the image can be justified, it is possible to apply ML
segmentation [3]. Here, the conditional distribution of
the image is assumed to be a correlated, multivariate
Gaussian using non-overlapping 3x3 windows.

The above schemes do not capture the homogeneity
of regions since the ML and NMC methods estimate
each pixel label independently. Contextual informa-
tion is not taken into account in either method.

This drawback is addressed by using MAP segmen-
tation. By assuming an MRF model for the prior
probabilities of the labels, contextual information is
incorporated into the MAP test [8]. The MAP esti-
mate generally requires computationally expensive op-
timization algorithms such as SA. Instead, we propose
to replace the annealing step by an urn contagion pro-
cess to model the spatial dependencies between neigh-
boring pixels. Our motivation for employing an urn
scheme lies in its ability to generate MRFs.

3 Urn Sampling with Contagion

In this section, the concept of temporal and spatial
contagion for image segmentation is introduced, and
the general urn sampling scheme for pixel classification
is outlined.

Polya [11] introduced the following urn scheme as a
model for the spread of a contagious disease through
a population. An urn originally contains T balls, of
which W are white and B are black (T = W + B).
Successive draws from the urn are made; after each
draw, 1 + A (A > 0) balls of the same color as was
just drawn are returned to the urn. Let p = W/T
and 6 = A/T. Define the binary process {Z,}3 , as
follows:

n-|

It can be shown that the process {Z,} is stationary
and non-ergodic [4, 11]. The urn scheme has infinite
memory, in the sense that each previously drawn ball
has an equal effect on the outcome of the current draw.

The urn sampling scheme proposed in this paper
incorporates both temporal and spatial contagion. In-
stead of representing an image by a finite lattice of
pixels, we consider an image as a finite lattice of urns.
In the single-urn sampling described above, the effect

0,
1,

if the n*® ball drawn is white;
if the nt? ball drawn is black.
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of each sample propagates through time. For the lat-
tice of urns, the sampled ball at each iteration must
depend not only on the composition of the pixel’s urn,
but also on the compositions of the neighboring urns
to encourage contagious behavior. Thus, we need to
allow for spatial interactions at each time instant by
involving the urns of the neighboring pixels in the de-
termination of the newly sampled ball.

The following presentation considers an L-ary label-
ing problem. Let I, = [pgf] )] be an L-ary label image
of size H x K, where pg,”) € {1,...,L} is the label of

pixel (7,4) at iteration n, n = 0,1,..., (¢,5) € T
where 7 : {(4,j): 1 =0,...,H-1;7=0,..., K — 1}
We associate an urn u$l” N (B((,z;f), Bg’,f), .. B("]))

with each pixel p(*4) at time n, where B( ']) is the
number of balls of color { in the urn. With thls repre-
sentation we define a similarity function for each pixel
as

Bl

I Ko

Tr B

This can be interpreted as the probability that pixel
p(59) belongs to class 1.

The general class of algorithms for the contagion-
based segmentation process will now be described. Ini-
tialization of the urn composition, provided by ML or
NMC, is critical for the algorithm to converge to an
appropriate segmentation. When the correlated Gaus-
sian assumption is used for the ML estimate, the urn
initialization proceeds in the following manner. The
similarity of pixel p{¥) to class [ is determined by the
Mahalanobis distance, Distance(; ;)(I). Next, the dis-
tances are converted to probabilities by

mip (p)) =

Distance(; ;)(1)~*
Z,L:l Distance; j)(1)~? .

Finally, the probabilities are mapped directly to the
urn composition of pixel (3, j) by

Pup(l) = 1)

B{') = T+ P jy(1), (2)
where B( “4) is the number of balls of color [ in pixel
(i,7)’s urn at time 0 and 7' is the total number of balls
initially in the urn.

Likewise, when applying NMC, the relative dis-
tances of the feature vectors of a pixel to the centroids
in feature space are used-to determine the similarity
of the pixel to each class as shown in (1), and the urns
are initialized as in (2).

Once the urns are initialized, the general modi-
fied Polya-Eggenberger urn sampling scheme proceeds



as follows. For n > 0, the urn composition of each
pixel (4,7) at time n is updated by sampling from
a combination of the participating urns V(") with
V) () (r)s) € NF}, where N’C is the neigh-
borhood system defined as in {6]: NS : {g=(r,s) €
T:(i-7r)2+(G—-52<k}A simp]e, yet effective,
sampling procedure is as follows: The urn u$h?) for
pixel p(9) is updated by first combining the balls of
(”] ) and the N neighboring urns:
clt3) = ASSOCIATE (V). 3)
The ASSOCIATE function forms a collection of balls,
C(“ ) from the urns of the neighborhood. Examples of
the ASSOCIATE function include grouping the urns
of V(”J) into a “super” urn or sampling one ball from
each urn to form the collection.
Next, a selection operation on the new collection of
balls, C( ’]) , is performed, i.e.
79 = SELECT (c("9)). (4)
The SELECT function may determine the next state
of the urns by sampling one ball from C(l’] ) or by tak-

ing the majority class of C,(:_Jl) .

We denote by Z,(,i’j) the outcome of the SELECT
function:

Z,(,i’j) = I if the n'" selected ballis color I.

If Z(”’) =1, add A balls of color [ to urn u(”). This
yields a new urn composition for each pixel, as given
above.

The above procedure is iterated until n = N. At
time N, the final composition of each individual urn
ug\',”), (1,7) € T determines the final labeling of the
image.

For this paper, we have developed two specific
methods based on the general urn process. In method
1, the contents of the N urns in. the neighborhood
of pixel p(*/) are collected into a “super” urn. One
ball is sampled from the “super” urn, and A balls of
that color are added to the urn of pixel plid), u(z’])
In method 2, one ball is sampled from each of the N
urns in the neighborhood to form the collection e,

Then A balls of the majority color in C,(f’j ) are added
(i)

to uy

4 Statistical Properties
The idea behind our urn sampling scheme is to pro-
mote spatial contagion of the pixel labels. At the end
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of the iterative process, homogeneous regions should
be described by one label. It is in this sense that the
urn process generates MRF's; the label of a pixel is de-
termined by the urns in its neighborhood. In this sec-
tion, we report asymptotic results to provide insight
as to why the urn sampling scheme allows the initial
majority color of a region to dominate the population
of the urns in that region.

Consider the original, binary Polya sampling
scheme. The asymptotic properties of the joint dis-
tribution can be characterized in the temporal case,
i.e., when all spatial interactions are inhibited at each
samphng step. In this case, it can be shown [11] that
the proportlon of white balls in each urn after the nt?

trial pn ) , Where

p+ (2004287 44 288
1+ né ’

) =

is a martingale [4] and admits a limit Y as the number
of draws increases indefinitely. Indeed, psf ) (or equiv-

alently the sample average 1> 7_, Z,(cz’] )) converges
with probability 1 to ¥ [4]. This limiting proportion
Y is a continuous random variable with support the
interval (0,1) and beta probability density function
with parameters (p/6, (1 — p)/6):

I(1/6) e
OOy L A CEE) R

fY(y)= if0<y<l;

0, otherwise.

The behavior of this pdf can be interpreted as follows:
Assuming 6 = 1 for simplicity, if the original fraction
of white balls in the urn is close to 1, then the limiting
distribution of W,Si’] ) will be skewed towards 1. A
similar behavior is obtained for the case when p is
close to 0. Therefore, the limiting pattern will reflect
the underlying probability

Pr (o) = 2) = p7(1- p)4~2.

For the L-ary labeling case, the above observations
generalize with convergence to the Dirichlet distribu-
tion [7].

We now examine the asymptotic behavior of the
two specific sampling schemes given above. Consider
sampling from the “super” urn. Restating the prob-
lem, suppose there are N urns in the neighborhood
of pixel X, each initially with b; black balls and w;
white balls, and b; + w; =T for all7,i=1,2,...,N.
We put the contents of all N urns into a “super” urn,
sample one ball, and add A balls of the same color
into the urn of pixel X,. The following properties are
easily derived:



The probability of sampling exactly & black balls
from n iterations of the “super” urn is

n ) Bla+k,B8+n—Fk)
k B(a, ) '

where o = 5, %, B = 3_; &, and the beta function
Blo,p) = T8 3],

The above process can be regarded as being gener-
ated by a sequence of independent Bernoulli trials with
parameter Z, where Z is random with beta distribu-
tion. In fact, it is identical with different parameters
to the Polya-Eggenberger distribution in the single-
urn case given above,

Remarkably, it can also be shown [3] that the aver-
age proportion of black balls in the “super” urn at any
time equals the original proportion of black balls. This
shows that the composition of the urn is highly depen-
dent on the original proportion of the balls. Eventu-
ally, the majority class of the urns in a given neigh-
borhood will spread and dominate the population of
balls in that neighborhood. Therefore, we conclude
that this urn sampling scheme will reinforce the ma-
jority class in a spatial neighborhood; it constitutes a
positive-feedback system that yields limiting patterns
of the self-reinforcing type [2]. The contagion effec-
tively models the Markovian dependencies of the pixel
labels. .

The second method is described as follows: We
sample one ball from each urn in V,(ffl). From this
collection of balls, we compute the majority class, de-
noted by Z,(,i’j). We update urn ug’j) in the same
manner described in the previous section. Eventually,
the initial majority class of each urn in the neighbor-
hood will dominate its composition, thereby propagat-
ing the label throughout the neighborhood.

It is difficult to find a general closed-form expres-
sion for P(Z$") = k), the probability that class k is
the majority of the individual samples. The difficulty
arises because we are trying to find the majority of a
set of samples of a non-i.i.d. process. Hence, we resort
to heuristic arguments.

The sequence of images generated by both methods
exhibits both spatial and temporal dependencies rep-
resented by a Markovian relationship in terms of the

urns uS{*“; more specifically:

Pr(X =k) = ( (5)

Pri{ul|Un_1,Up_3,...,Us} = Pr{ul®d i)y,

where Up, : [uﬁf J )] is the urn matrix associated with
I, and V,(ffl) is the set of participating urns defined

in the previous section.
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5 Comparison of Methods

While there are many techniques for image segmen-
tation, here we briefly examine the relationships be-
tween the urn sampling scheme and other methods
with closely similar flavors, namely relaxation label-
ing and simulated annealing.

The idea behind the urn sampling scheme is that
within a region, one label should be dominant. By re-
peatedly sampling with replacement from an urn, or
a group of urns, the most frequently occurring color
or label will asymptotically dominate the populations
in the urns. Hence, contagion will promote the homo-
geneity of local regions.

Another interpretation of the urn process can be
derived from the fact that when the urns are initial-
ized by the ML estimate, the urn compositions repre-
sent the conditional probabilities of the image pixels.
The subsequent iterative process updates these prob-
abilities by adding balls of certain colors. The Polya-
Eggenberger sampling process is such that it will nat-
urally emphasize the majority labels.

Relaxation labeling for pixel classification is an it-
erative procedure which assigns a best label to a pixel
under certain pre-defined constraints. As noted by
Kittler [9], RL’s update mechanism is based on heuris-
tic arguments so that the update and resulting seg-
mentation is influenced by the pre-defined constraints
between class labels. In the urn sampling scheme,
improved segmentation is achieved without imposing
such constraints. Indeed the population of each urn
represents the support for the labels at each pixel.
The changing of the urn compositions represents the
changing of the supports; when one color dominates
the population, the ambiguity of the label of a pixel is
reduced.

Likewise, SA can also be viewed as a mechanism
which updates the conditional probability of each
pixel. The conditional probability serves as an initial
estimate of the optimal point on a highly non-convex
surface; an energy function for the prior distribution
of the labels is adopted, and the simulated annealing
procedure iteratively adds or subtracts from the con-
ditional probability to arrive at the optimal point.

6 Experimental Results

In all of the examples given in this section, urn
sampling method 1 is used; each urn is initialized with
100 balls, and A, the number of balls added at each
iteration, is 10. Urn sampling method 2 gives similar
results. '

In Figures 1 and 2, the ability of the urn process
to segment an image into regions of different textures
is demonstrated. The initial ML estimate is found by



la. Original texture image. 1b. ML segmentation. 1c. RL segmentation. 1d. Urn segmentation.

2a. Original texture image. 2b. ML segmentation. 2c. 1 iteration. 2d. 15 iterations.

4a. Proton density image. 4b. T2 image. 4c. NMC segmentation. 4d. Urn Process.

Figures 1-4: Experimental Results.
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assuming that the textures can be described by a cor-
related Gaussian model. This model is unable to de-
scribe the grainy texture of the background, resulting
in the inaccurate segmentation shown in Figures 1 and
2(b). The urn sampling process operates on the urns
to produce a smoother segmentation. Figure 1 shows
that the urn process provides a better segmentation
than relaxation labeling. Note that the contagion-
based segmentation usually preserves the edges of the
texture regions better than the RL method. Figure
2 illustrates the iterative improvement resulting from
the urn sampling scheme. The noisy background seg-
mentation causes the RL algorithm to diverge to a
nonsensical solution. However, the urn representation
allows the urn sampling scheme to gradually adjust
the urn compositions to achieve a smoother segmen-
tation.

The UWB SAR images used in this study were
obtained from the Army Research Laboratory. The
image in Figure 3(a) shows the Aberdeen Proving
Grounds in Aberdeen, MD during the summer of 1995.
In segmenting this image, we start with ML segmenta-
tion. As shown in Figure 3(b), the resulting labeling

is speckled, a characteristic of the ML segmentation

technique. Application of 20 iterations of simulated
annealing generates only a slightly smoother segmen-
tation of the image (Figure 3(c)). For details on the
implementation of SA for SAR image segmentation,
the interested reader ‘is referred to [12]. Note in Fig-
ure 3(d) that the urn process provides results that are
comparable to SA in only 10 iterations.

To segment the MR image in Figure 4 we obtain
an initial segmentation by NMC. The proton density
and T2 relaxation times are the components of the
two-dimensional feature vector used for NMC. Since
NMC is based solely on the means of the vectors, the
initial segmentation is especially sensitive to the in-
herent noise of the MR image modality. This leads to
the speckled segmentation shown in Figure 4(c). The
distances from a pixel’s feature vector to the centroids
in feature space determine the initial composition of
the urns. The urn process then operates on the urns to
produce a smoother segmentation. The output after
_ ten iterations is shown in Figure 4(d).

7 Conclusion

In this paper, we have illustrated how modified
Polya urn sampling schemes can be implemernted for
image segmentation. A modified sampling scheme pro-
motes temporal and spatial contagion of pixel labels
to produce a smooth segmentation. Theoretical and
experimental comparisons between the urn sampling
method, relaxation labeling, and simulated annealing
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are given.
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