On the Poor-Verdú Conjecture for the Reliability Function of Channels with Memory

Fady Alajaji[†], Po-Ning Chen* and Ziad Rached[†]
[†]Department of Mathematics and Statistics
Queen's University, Kingston, Ontario K7L 3N6, Canada
*Department of Communication Engineering
National Chiao Tung University, Hsin Chu, Taiwan 30050

Abstract — In a previous work, Poor and Verdú established an upper bound to the reliability function of arbitrary single-user discrete-time channels with memory. They also conjectured that their bound is tight for all coding rates. In this work, we demonstrate via a counterexample involving memoryless binary erasure channels that the Poor-Verdú upper bound is, unfortunately, not tight at low rates. We also examine possible improvements to this bound.

I. INTRODUCTION

Consider an arbitrary input process \mathbf{X} defined by a sequence of finite-dimensional distributions [4] $\mathbf{X} \stackrel{\triangle}{=} \left\{ X^n = \left(X_1^{(n)}, \cdots, X_n^{(n)} \right) \right\}_{n=1}^{\infty}$. Let $\mathbf{Y} \stackrel{\triangle}{=} \left\{ Y^n = \left(Y_1^{(n)}, \cdots, Y_n^{(n)} \right) \right\}_{n=1}^{\infty}$ be the corresponding output process induced by \mathbf{X} via the channel $\mathbf{W} \stackrel{\triangle}{=} \{ W^n = P_{Y^n | X^n} : \mathcal{X}^n \to \mathcal{Y}^n \}_{n=1}^{\infty}$ which is an arbitrary sequence of *n*-dimensional conditional distributions from \mathcal{X}^n to \mathcal{Y}^n , where \mathcal{X} and \mathcal{Y} are the input and output alphabets, respectively. We assume throughout that \mathcal{X} is finite and that \mathcal{Y} is arbitrary.

In [3], Poor and Verdú established an upper bound to the reliability function $E^*(R)$ of **W**. They then conjectured that this bound is tight for all code rates. However, no known proof could substantiate this conjecture. In this work, we demonstrate via a counterexample that their original upper bound formula is not necessarily tight at low rates. A possible improvement to this bound is then addressed.

II. PRELIMINARIES

For any R > 0, define the channel reliability function $E^*(R)$ for a channel **W** as the largest scalar $\beta > 0$ such that there exists a sequence of (n, M_n) codes with

 $\beta \leq \liminf_{n \to \infty} -\frac{1}{n} \log_2 P_e(n, M_n)$

and

$$R < \liminf_{n \to \infty} \frac{1}{n} \log_2 M_n,$$

where $P_e(n, M_n)$ is the code average error probability. For an input process **X** and channel **W**, the large deviation spectrum of the channel is defined as

$$\pi_{\mathbf{X}}(R) \stackrel{\Delta}{=} \liminf_{n \to \infty} -\frac{1}{n} \log_2 Pr\left[\frac{1}{n} i_{X^n W^n}(X^n; Y^n) \le R\right],$$

where $i_{X^n W^n}(X^n; Y^n) = \log_2(W^n(Y^n|X^n)/P_{Y^n}(Y^n))$ is the channel information density.

Theorem 1
$$[3, 1]$$
 The channel reliability function satisfies

$$E^*(R) \leq E_{PV}(R) \stackrel{\Delta}{=} \sup_{\mathbf{X} \in \mathcal{Q}(R)} \pi_{\mathbf{X}}(R),$$

for any R > 0, where Q(R) is the set of all input processes **X** such that each X^n in **X** is uniformly distributed over its support $S(X^n)$, and $R < \liminf_{n \to \infty} \frac{1}{n} \log_2 |S(X^n)|$.

III. LOOSENESS OF $E_{PV}(R)$ at low rates

Theorem 2 [1] For a binary erasure channel (BEC) with crossover probability $0 < \epsilon < 1$, the Poor-Verdú bound $E_{PV}(R)$ satisfies

$$E_{PV}(R) > E^*(R)$$

for $0 < R < 1 - \sqrt{\epsilon}$.

The key idea is to observe that for an input $\tilde{\mathbf{X}}$ with \tilde{X}^n uniformly distributed over $\{0, 1\}^n$, $\pi_{\tilde{\mathbf{X}}}(R)$ coincides with the space partitioning upper bound to $E^*(R)$, which is itself loose at low rates [2].

We can further restrict the condition on the input process to yield that for any $\rho > 0$,

$$E^*(R) \le E_{PV}^{(
ho)}(R) \stackrel{ riangle}{=} \sup_{\mathbf{X}\in\mathcal{P}(R,
ho)} \pi_{\mathbf{X}}(R)$$

where $\mathcal{P}(R,\rho)$ is the set of all input processes **X** such that each X^n in **X** is uniformly distributed over its support $\mathcal{S}(X^n)$, and $R < \liminf_{n \to \infty} \frac{1}{n} \log_2 |\mathcal{S}(X^n)| < R + \rho$. Although $E_{PV}^{(\rho)}(R)$ is an improvement of $E_{PV}(R)$, it is also unfortunately loose at rates close to zero. We have the following result.

Theorem 3 [1] Consider a BEC with crossover probability ϵ , and fix $\rho > 0$. The following holds.

$$\lim_{R \downarrow 0} E^{\rho}_{PV}(R) > \lim_{R \downarrow 0} E^*(R).$$

Remark: From the proofs of the Poor-Verdú upper bound in [3] and Theorem 1 in [1], the best upper bound that can be readily obtained is:

$$E^*(R) \le \inf_{\rho > 0} E_{PV}^{(\rho)}(R).$$

Investigating the tightness of this bound at low rates for the BEC or other channels is an interesting future work.

References

- F. Alajaji, P.-N. Chen and Z. Rached, "A note on the Poor-Verdú conjecture for the channel reliability function," *IEEE Trans. Inform. Theory*, to appear.
- [2] R. Blahut, Principles and Practice of Information Theory, A. Wesley, MA, 1988.
- [3] H. V. Poor and S. Verdú, "A lower bound on the probability of error in multi-hypothesis testing," *IEEE Trans. Inform. The*ory, Vol. 41, No. 6, pp. 1992-1994, November 1995.
- [4] S. Verdú and T. S. Han, "A general formula for channel capacity," *IEEE Trans. Inform. Theory*, pp. 1147-1157, July 1994.

This work was supported in part by NSERC of Canada and by NSC of Taiwan, R.O.C. Email: fady@polya.mast.queensu.ca.