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Abstrat | In a previous work, Poor and Verd�u es-

tablished an upper bound to the reliability funtion

of arbitrary single-user disrete-time hannels with

memory. They also onjetured that their bound is

tight for all oding rates. In this work, we demon-

strate via a ounterexample involving memoryless bi-

nary erasure hannels that the Poor-Verd�u upper

bound is, unfortunately, not tight at low rates. We

also examine possible improvements to this bound.

I. Introdution

Consider an arbitrary input proess X de�ned by a sequene

of �nite-dimensional distributions [4℄ X
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the orresponding output proess indued by X via the han-

nel W
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whih is an arbi-

trary sequene of n-dimensional onditional distributions from

X

n

to Y

n

, where X and Y are the input and output alphabets,

respetively. We assume throughout that X is �nite and that

Y is arbitrary.

In [3℄, Poor and Verd�u established an upper bound to the

reliability funtion E

�

(R) of W. They then onjetured that

this bound is tight for all ode rates. However, no known

proof ould substantiate this onjeture. In this work, we

demonstrate via a ounterexample that their original upper

bound formula is not neessarily tight at low rates. A possible

improvement to this bound is then addressed.

II. Preliminaries

For any R > 0, de�ne the hannel reliability funtion E

�
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for a hannel W as the largest salar � > 0 suh that there

exists a sequene of (n;M
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where P

e

(n;M

n

) is the ode average error probability. For an

input proess X and hannelW, the large deviation spetrum

of the hannel is de�ned as
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)) is the

hannel information density.
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Theorem 1 [3, 1℄ The hannel reliability funtion satis�es
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for any R > 0, where Q(R) is the set of all input proesses

X suh that eah X

n

in X is uniformly distributed over its

support S(X

n

), and R < lim inf
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III. Looseness of E

PV

(R) at low rates

Theorem 2 [1℄ For a binary erasure hannel (BEC) with

rossover probability 0 < � < 1, the Poor-Verd�u bound

E

PV

(R) satis�es

E
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for 0 < R < 1�
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The key idea is to observe that for an input

~

X with

~

X

n

uniformly distributed over f0; 1g

n

, �

~

X

(R) oinides with the

spae partitioning upper bound to E

�

(R), whih is itself loose

at low rates [2℄.

We an further restrit the ondition on the input proess

to yield that for any � > 0,
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where P(R; �) is the set of all input proesses X suh that eah

X

n

in X is uniformly distributed over its support S(X

n

), and

R < lim inf
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(�)

PV

(R) is

an improvement of E

PV

(R), it is also unfortunately loose at

rates lose to zero. We have the following result.

Theorem 3 [1℄ Consider a BEC with rossover probability �,

and �x � > 0. The following holds.

lim
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Remark: From the proofs of the Poor-Verd�u upper bound in

[3℄ and Theorem 1 in [1℄, the best upper bound that an be

readily obtained is:

E

�

(R) � inf

�>0

E

(�)

PV

(R):

Investigating the tightness of this bound at low rates for the

BEC or other hannels is an interesting future work.
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