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Abstract —  The Csiszar forward [-cutoff rate
(B < 0) for hypothesis testing is defined as the largest
rate Ry > 0 such that for all rates 0 < E < Ry, the
smallest probability of type 1 error of sample size-
n tests with probability of type 2 error < e "F is
asymptotically vanishing as e "#(P~F0)_ It was shown
by Csiszar that the forward 3-cutoff rate for testing
between a null hypothesis X against an alternative
hypothesis X based on independent and identically
distributed samples, is given by Rényi’s a-divergence
D.(X|X), where a = 1/(1 — ).

In this work, we show that the forward (-cutoff rate
for the general hypothesis testing problem is given by
the liminf a-divergence rate. The result holds for
an arbitrary abstract alphabet (not necessarily count-
able).

I. INTRODUCTION

In [2], Csiszar establishes the concept of forward S-cutoff
rate for the hypothesis testing problem based on independent
and identically (i.i.d.) observations. He then demonstrates
that the forward B-cutoff rate is given by Di,—g)(X|[|X),
where D, (X||X) denotes the Rényi [4] a-divergence, a > 0,
a # 1. This result provides a new operational significance for
the a-divergence.

In this work, we extend Csiszar’s result [2] by investigat-
ing the forward [-cutoff rate for the hypothesis testing be-
tween two arbitrary (not necessarily stationary, ergodic, etc.)
sources with a general alphabet. We demonstrate that the lim-
inf a-divergence rate provides the expression for the forward
(B-cutoff rate.

II. PRELIMINARIES
Given two arbitrary sources X and X taking values in the
same source alphabet {X"}52; [3], we may define the general
hypothesis testing problem with X as the null hypothesis and
X as the alternative hypothesis. Let A, be any subset of
X", n = 1,2,... that we call the acceptance region of the
hypothesis testing, and define g, = Pr{X" ¢ A.} and A\, =
Pr{X" € A,} where i, A, are called type 1 error probability

and type 2 error probability, respectively.

Definition 1 Fix r > 0. A rate E is called r-achievable if
there exists an acceptance region A, such that

lim inf —— log pn > 1 and

n— o0

llmlnf—— log A, > E.
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Definition 2 The supremum of all r-achievable rates is de-
noted by B.(r|X||X):

B.(r|X]|X) £ sup{E > 0 : E is r-achievable}.
The dual of this function is defined as:

D.(E|X||X) 2 sup{r > 0 : E is r-achievable}.

III. FORWARD B-CUTOFF RATE

Definition 3 Fix 8 < 0. Ry > 0 is a forward f-achievable
rate for the general hypothesis testing problem if

D.(E|X||X) > B(E — Ro)

for every E > 0. The forward S-cutoff rate is defined as the
su(premum of all forward B-achievable rates, and is denoted by
1) (B]X|IX). Our main result is the followmg

Theorem 1 (Forward B-cutoff rate formula). Fix 8 < 0.
For the general hypothesis testing problem,

) Ty _pioioe 1 n) n
Ry (BIXIIX)—hnHyoganﬁ(X 1X™),

where

Da(x"|xm) 2
—

7 log ( H;H[PX" (@")]"[Pxn (w")ll_“)

is the n-dimensional a-divergence.

The techniques used in our proof are a mixture of the tech-
niques used in [1] for deriving the forward and reverse S-cutoff
rates for source coding. However, some new techniques are
also needed to obtain the result.
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