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Abstract | A formula for the optimistic capacity of

arbitrary channels is established. It is shown to equal

the supremum, over all input processes, of the input-

output zero-sup-information rate. A general expres-

sion for optimistic "-capacity is also provided.

I. Overview

The conventional de�nition of channel capacity C [1] requires

the existence of reliable block codes for all su�ciently large

blocklengths. Alternatively, if it is required that reliable codes

exist for in�nitely many blocklengths, a new, more optimistic

de�nition of capacity is obtained [1]. This concept of opti-

mistic capacity (denoted by

�

C) has recently been investigated

by Verd�u et.al for arbitrary single-user channels [1, 2]. More

speci�cally, they provide an (additional) operational signi�-

cance for the optimistic capacity by demonstrating that for

a given channel, the classical statement of the source-channel

separation theorem holds for every source if and only if C =

�

C

[2]. They also conjecture that a simple expression for

�

C does

not exist.

In this paper, we answer the latter point by demonstrat-

ing that

�

C does indeed have a general formula. The key to

showing this result is the application of the generalized sup-

information rate introduced in [3] to the existing proofs by

Verd�u and Han [1] of the direct and converse parts of the

conventional coding theorem. A general expression for the

optimistic "-capacity is also established.

II. "-Inf/Sup-Information Rates

Consider an input process X
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[1]. Denote by Y
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the cor-

responding output process induced by X via the channel

W

4

=fW

n

= P

Y

n

jX

n

: X

n

! Y

n

g

1

n=1

. In [4, 1], Han and

Verd�u introduce the notions of inf/sup-information/entropy

rates and illustrate the key role these measures play in prov-

ing general traditional source/channel coding theorems. The

inf-information rate I(X;Y ) (resp. sup-information rate

�

I(X;Y )) between processes X and Y is de�ned in [4] as the

liminf in probability (resp. limsup in prob.) of the sequence of

normalized information densities
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De�nition 1 ("-inf/sup-information rates [3])

The "-inf-information rate I

"

(X;Y ) and "-sup-information

rate

�

I

"

(X;Y ) between X and Y are de�ned by

I

"

(X ;Y )
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Note that Han and Verd�u's inf/sup information rates are spe-

cial cases of the above quantities: I(X;Y ) = I

0

(X;Y ) and

�

I(X;Y ) =

�

I

1

�

(X;Y ).

III. Main Results

De�nition 2 Given 0 < " < 1, an (n;M; ") code for channel

W has blocklength n, M codewords, and average error prob-

ability not larger than ". R � 0 is an optimistic "-achievable

rate if, for every � > 0, there exist, for in�nitely many n,

(n;M; ") codes with rate

logM

n

> R��: The supremum of opti-

mistic "-achievable rates is called the optimistic "-capacity,

�

C

"

.

The optimistic channel capacity

�

C is de�ned as the supremum

of the rates that are optimistic "-achievable for all 0 < " < 1.

Theorem 1 (Optimistic channel coding theorem)

�

C = sup

X

�

I

0

(X;Y ):

Theorem 2 (Optimistic "-capacity) For 0 < " < 1, the

optimistic "-capacity

�

C

"

satis�es

sup

X

�

I

"

�

(X;Y ) �

�

C

"

� sup

X

�

I

"

(X;Y ):

Observations

� Recall that the general formula for the (pessimistic) ca-

pacity is C = sup

X

I(X;Y ) [1]. It is known that for

a DMC, C =

�

C. However, in general,

�

C � C since

�

I

0

(X;Y ) � I(X;Y ) [3].

� A simple example of a channel for which

�

C > C is as

follows. Consider a nonstationary channelW such that

at odd time instances n = 1; 3; � � �, W

n

is the transition

distribution of a BSC with crossover probability 1/2;

and at even time instances n = 2; 4; 6; � � �, W

n

is the

distribution of a BSC with crossover probability 1/4.

Then C = 0 and

�

C = 1� h

b

(1=4) > 0.

� In [5], we further illustrate the application of the gen-

eralized information measures of [3] by proving an op-

timistic general source coding theorem.
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