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Abstract

In this work, we examine the existence and
the computation of the Rényi divergence rate,
limy o0 2D (p™||¢'"™), 0 < a < 1 between two time-
invariant finite-alphabet Markov sources of arbitrary
order and arbitrary initial distributions described un-
der the probability distributions p(® and ¢(™), respec-
tively. This yields a generalization of the result of
Nemetz where he assumed that the initial probabili-
ties under p(™ and ¢(™ are strictly positive. The main
tools used to obtain the Rényi divergence rate result
are the theory of non-negative matrices and Perron-
Frobenius theory. We also investigate the limits of the
Rényi divergence rate as o =+ 1 and as a — 0.

Index Terms: Shannon theory, time-invariant
Markov sources, Rényi’s divergence rate, non-negative
matrices, Perron-Frobenius theory.

1. Introduction

Without loss of generality, we will deal with first-
order Markov sources since any k-th order Markov
source can be converted to a first-order Markov source
by k-step blocking it. Throughout, {X;, Xs,...} de-
notes a first-order time-invariant Markov source with
finite alphabet X = {1,...,M}. Consider the follow-
ing two different probability laws for this source. Under
the first law,

Pr{X, =i} =:p; and Pr{Xpp =j|Xp =1} =:p;j

where 7,7 € X, so that
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while under the second law the initial probabilities are
gi, the transition probabilities are ¢;;, and the n-tuple
probabilities are ¢(™. Let p = (p1,...,pp) and ¢ =
(¢1,--.,qm) denote the initial distributions under p(m)
and ¢(™ respectively.

The Rényi divergence [8] of order a between two
distributions p and ¢ defined on X is given by
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where 0 < a < 1. The base of the logarithm is arbi-
trary. As @ — 1, the Rényi divergence approaches the
Kullback-Leibler divergence (relative entropy) given by
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The Rényi divergence was originally introduced for
the analysis of memoryless sources. One natural direc-

tion for further studies is the investigation of the Rényi
divergence rate
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between two probability distributions p(™ and ¢(™ de-
fined on A", where
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for sources with memory, in particular, Markov
sources.  Nemetz addressed this problem in [3],
where he evaluated the Rényi divergence rate
limp 00 D4 (p'™||g'™) between two Markov sources
characterized by p(™ and ¢(™, respectively, under the
restriction that the initial probabilities p and ¢ are



strictly positive (i.e., all p;’s and ¢;’s are strictly posi-
tive).

In this work, we generalize the Nemetz result by
establishing a computable expression for the Rényi di-
vergence rate between Markov sources with arbitrary
initial distributions. We also investigate the questions
of whether the Rényi divergence rate reduces to the
Kullback-Leibler divergence rate as @« — 1 and the in-
terchangeability of limits between n and « as n — oo
and as a — 0. To the best of our knowledge, these
issues have not been addressed before. We provide suf-
ficient (but not necessary) conditions on the underly-
ing Markov source distributions p(™ and ¢(™ for which
the interchangeability of limits as n — oo and @ — 1
is valid. We also provide a counterexample where the
interchangeability of limits as n — oo and @ — 1 does
not hold. We also show that the interchangeability of
limits as n — oo and a — 0 always hold.

The Rényi divergence rate has played a significant
role in certain hypothesis testing questions [3, 5]. Be-
fore stating our main results, we recall some facts about
non-negative matrices which may be found in [9, Chap-
ter 1].

2. Non-negative matrices

Matrices and vectors are positive if all their com-
ponents are positive and non-negative if all their com-
ponents are non-negative. Let A denotes an M x M

non-negative matrix (4 > 0) with elements a;;. The
(m)

ij
We write i — j if al(-;n) > 0 for some positive in-

teger m, and we write ¢ 4 j if agn) = 0 for every

positive integer m. We say that ¢ and 7 communicate
and write i <» jifi > jand j —i. If i = j but j A i
for some index j, then the index i is called inessential
(transient). An index which leads to no index at all
(this arises when A has a row of zeros) is also called
inessential. Otherwise, the index ¢ is called essential
(recurrent). Thus if ¢ is essential, i — j implies i <> 7,
and there is at least one j such that ¢ — j.

With these definitions, it is possible to partition
the set of indices {1,2,..., M} into disjoint sets, called
classes. All essential indices (if any) can be subdivided
into essential classes in such a way that all the indices
belonging to one class communicate, but cannot lead
to an index outside the class. Moreover, all inessen-
tial indices (if any) may be divided into two types of
inessential classes: self-communicating classes and non
self-communicating classes. Each self-communicating
inessential class contains inessential indices which com-
municate with each other. A non self-communicating
inessential class is a singleton set whose element is an

ij-th element of A™ is denoted by a

index which does not communicate with any index (in-
cluding itself).

A matrix is @rreducible if its indices form a single
essential class; i.e., if every index communicates with
every other index.

Proposition 1 By renumbering the indices (i.e., by
performing row and column permutations), it is pos-
sible to put a non-negative matrix A in the canonical
form

A 0 0 0 0
0 0 0 . 0 0
o Ll A, o 0 o
Apt11 - Argln Ah41 0 0
Agy Agp Agpy1 Ag 0
Agtir oo Agtin Aggintr - Agtig ° °
Ann Alh Alh+1 e Alg Alg+1r O
where A;,i =1,...,g, are irreducible square matrices,
and in each row i = h+ 1,...,g at least one of the
matrices Aj1, Ajo, ..., A1 is not zero. The matrix A;
corresponds to the essential class C;, i = 1,..., h, while

the matrix A; correspond to the inessential class Cj,
t =h+1,...,g. The other diagonal block sub-matrices
which correspond to non self-communicating classes C;,

1=g+1,...,l, are 1 X 1 zero matrices. In every row
it =g+ 1,...,[ any of the matrices A;;,...,A;;_1 may
be zero.

A class C} is reachable from another class C; if A;; # 0,
or if for some 7:1, - .,ic, Aii1 75 O,Ai”’Z ;é 0,. - ;Aic,j 75
0, where ¢ is at most [ — 1 (since there are [ classes).
Thus, ¢ can be viewed as the number of steps needed to
reach class C; starting from class C;. Note that from
the canonical form of A, the class C; is reachable from
class C; if AE]C-) # 0 for somec=1,...,l—1, where AE]C-)
is the ij-th submatrix of A°.

Proposition 2 If a non-negative matrix A is irre-
ducible, then A has a real positive eigenvalue A that
is greater than or equal to the magnitude of each other
eigenvalue. There is a positive left (right) eigenvector,
a (b), corresponding to A, where a is a row vector and
b is a column vector.

3. Main results
Define a new matrix R = (T'ij) by
rig =p5ah % hi=1,..., M.

Also, define two new 1 x M vectors s = (s1,...,5m)
and 1 by

a l—a

Si =D; q; ’ 1:(1;---71)'



Then clearly D, (p'™|g"™) can be written as

1
a—1

Do (p™]l¢™) = logsR"'1¢, (1)

where 1¢ denotes the transpose of the vector 1. With-
out loss of generality, we will herein assume that there
exists at least one i € {1,...,M} for which s; > 0,
because otherwise, Dy (p(™]|¢™) is infinite. We have
the following lemma.

Lemma 1 If the matrix R is irreducible, then the
Rényi divergence rate between p(™ and ¢(™ is given
by
1 1
lim — D, (p™|g"™) =

n—oo N a—1

log A,
where X is the largest positive real eigenvalue of R.

Proof: By Proposition 2, let A be the largest posi-
tive real eigenvalue of R with associated positive right
eigenvector b > 0. Then

R" 'b=A""1b. (2)

Let R = (r"™") and bt = (by,bs,...,ba). Also,
let bL = minlgiSM(bi) and bU = maxlgiSM(bi). Thus
0 < by <b; <by Vi. Let R* 11! = y* where y =
(y1,---,ym)- Then, by (2)

M M
A= e ey < 3 by = by,

j=1 j=1
Similarly, it can be shown that A" ~'b; > bry;, Vi =
1,..., M. Therefore

S
S
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Since sR" 11t = "M s,4;, it follows directly from (3)
that
Zi sib; < sRn—11t < Zz Sibi7
by - Al = br,
or
1 Z sib; 1 sRn—11t
~1 i < Zlog (2
n0g< bu ) - n0g< An—1
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| =
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Note that s;, b;, by, by, do not depend on n. Therefore,

1 nfllt
lim —log <L> =0,

n—oo 1 An—1

since it is sandwiched between two expressions that ap-
proaches 0 as n — oo. Hence

1 1
lim —log (sR"'1") = lim —logA" "

n—oo N n—oo M
i 11 SRn—l lt
a8 e
= logA,
and thus
1 1 R 11!
Tim D™ ¢™) = lim Og(si_)
n n—0o0 ’I'L(CM ].)
1
= log .
a—1 o8

Using Lemma 1 and Proposition 1, we obtain the fol-
lowing general result.

Theorem 1 Let R;, i = 1,...,g, be the irreducible
matrices along the diagonal of the canonical form of
the matrix R as shown in Proposition 1. Write the
vector s as

s = (51;"';Sh;8h+17"'7Sgasg+1;"'7sl)7
where the vector §; corresponds to R;, ¢ = 1,...,9.
The scalars sy41,...,5 correspond to non self-

communicating classes.

e Let A\, be the largest positive real eigenvalue of
Ry, for which the corresponding vector § is dif-
ferent from the zero vector, ¥ = 1,...,g. Let
A* be the maximum over these A;’s. If 5§, = 0,
Vk=1,...,g, then let A* = 0.

e For each inessential class C; with corresponding
vector §; # 0, i = h+ 1,...,g or correspond-
ing scalar s; #0, ¢ =g+ 1,...,1, let A\; be the
largest positive real eigenvalue of R; if class Cj is
reachable from class C;. Let At be the maximum
over these A;’s. If 5; = 0 and s; = O for every
inessential class C;, then let AT = 0.

Let A = max{\*,A\T}. Then the Rényi divergence rate

is given by

1 o 1
lim —D,(p™ g™ =

n—oo M a—1

log A.

Proof: Cf. [6].

Remark: In [5], Nemetz showed that the Rényi diver-
gence rate between two time-invariant Markov sources
with strictly positive initial distributions is given by



— 1 log A where A is the largest positive real eigen-
value of R. Nemetz also pointed out that this assump-
tion could be replaced by other conditions, although
he did not provide them. Note that by Theorem 1,
the Rényi divergence rate between two-time invariant
Markov sources with arbitrary initial distributions is
not necessarily equal to ﬁ log A, where ) is the largest
positive real eigenvalue of R. However, if the initial dis-
tributions are strictly positive, which implies directly
that s > 0, then Theorem 1 reduces to the Nemetz re-
sult. This follows directly from the fact that, in this
case, \* = max{Az}, k=1,...,¢, and the fact that the
determinant of a block lower triangular matrix is equal
to the product of the determinants of the sub-matrices
along the diagonal.

We also have the following results about the inter-
changeability of limits as @ — 1 and as a — 0.

Theorem 2 [6] Let P and () be the probability tran-
sition matrices on X associated with p(™ and ¢(™ re-
spectively. If the matrix P is irreducible, the matrix
is positive, and the initial distribution ¢ under ¢(™ is
positive, then

lim lim D (™ ||g™

a—1 n—oo

/)= lim lim D " lg™),

n—oo a—r

and therefore, the Rényi divergence rate reduces to the
Kullback-Leibler divergence rate as a — 1.

In the following example, we show that the interchange-
ability of limits does not necessarily hold if the condi-
tions of the theorem are not satisfied.

Example: Let P and @ be the following;:

1/4 3/4 0 3/4 1/4 0
P=13/4 174 0|, Q= 1/4 3/4 0
0 0 1 0 0 1

Suppose that p(™ is stationary with stationary distri-
bution (b/2,b/2,1 —b), where 0 < b < 1 is arbitrary.
Also, suppose that the initial distribution under ¢(")
is positive. A simple computation [2, p. 40] yields
that the Kullback-Leibler divergence rate is given by
(blog3)/2.

The eigenvalues of R are: A\; = (3% +3179)/4, Ay =
(317> —3%)/4, and A3 = 1. Note that s > 0 and that,
since 0 < a < 1, max;<j<3{A\;} = 1. By Theorem 1,
the Rényi divergence rate is 0.

Therefore, the interchangeability of limits is not
valid, i.e.,

lim lim 1D o (p™[g™

a—1 n—oo

1
im lim = ()]|g(™)
)7 oy PP

The reason behind this inequality is that max; <;<3{A;}
is not differentiable at a« = 1 [4, p. 371] because, at
a =1, A =1is a double eigenvalue.

Theorem 3 [6] The interchangeability of limits as
n — oo and as a — 0 is always valid; i.e.,

1
(n)) = lim lim —Da(p(”)llq(”))

n—oo a—0 N

lim lim D( "lq

a—0n—oo n

4, Concluding remarks

In this work, we derived a formula for the Rényi di-
vergence rate between two time-invariant finite alpha-
bet Markov sources of arbitrary order and arbitrary
initial distributions. We also investigated the limits of
the Rényi divergence rate as @« — 1 and as a — 0.
Numerical examples were {)resented. Finally, we would
like to point out that if ¢'™ is stationary memoryless
with uniform marginal distribution then for any a > 0,

a#1,

Da(p™lg™) = nlog M — Ha(p™).

Hence, the existence and the computation of the Rényi

entropy rate follows directly from Theorem 1. An im-
portant application of this result is the extension of the
variable-length source coding theorem in [1] and [7] to
time-invariant Markov sources.
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