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Abstract — We study the analytical computation of
Csiszár’s [2] random-coding lower bound and sphere-
packing upper bound for the lossless joint source-
channel (JSC) error exponent, EJ (Q, W ), for a dis-
crete memoryless source (DMS) Q and a discrete
memoryless channel (DMC) W . We provide equiva-
lent expressions for these bounds, which can be read-
ily calculated for arbitrary (Q, W ) pairs. We also es-
tablish explicit conditions under which the bounds co-
incide, thereby exactly determining EJ (Q, W ).

I. Csiszár’s Upper and Lower Bounds

Definition 1 A JSC code with blocklength n for a DMS with
finite alphabet S and distribution Q, and a DMC with finite
input alphabet X , finite output alphabet Y and transition
probability W ! PY |X is a pair of mappings fn : Sn −→ Xn

and ϕn : Yn −→ Sn. The code’s average error probability is

P (n)
e (Q, W ) !

∑

{(sn,yn):ϕn(yn) ̸=sn}

Q(sn)PY |X(yn | fn(sn)).

Definition 2 The JSC error exponent EJ(Q, W ) for source
{Q : S} and channel {W : X → Y} is defined as the largest
number E for which there exists a sequence of JSC codes
(fn, ϕn) with E ≤ lim infn→∞ − 1

n log P (n)
e (Q, W ).

Proposition 1 [2] The JSC error exponent EJ(Q, W ) satis-
fies minR[e(R, Q)+Er(R, W )] ≤ EJ(Q, W ) ≤ minR[e(R, Q)+
Esp(R, W )], where e(R, Q) is the source error exponent, and
Er(R, W ) and Esp(R, W ) are the random-coding lower bound
and the sphere-packing upper bound for the channel error ex-
ponent, respectively.2

II. Main Results

Theorem 1 The JSC random-coding and sphere-packing
bounds of Proposition 1 can be written as3

max
0≤ρ≤1

[Eo(ρ)−Es(ρ)] ≤ EJ(Q, W ) ≤ max
ρ≥0

[Eo(ρ)−Es(ρ)], (1)

where Eo(ρ) is Gallager’s channel function

Eo(ρ) ! max
PX

[
− log

∑

y∈Y

(
∑

x∈X

PX(x)P
1

1+ρ

Y |X (y | x)

)1+ρ]
,

and Es(ρ) is Gallager’s source function

Es(ρ) ! (1 + ρ) log
∑

s∈S

Q(s)
1

1+ρ .

From Theorem 1, we first note that Csiszar’s JSC random cod-
ing lower bound, minR[e(R, Q)+Er(R, W )], is indeed identical
to Gallager’s lower bound established in [4, Problem 5.16] – as
the latter bound is exactly the left-hand side bound in (1). We

1This work was supported in part by NSERC and PREA.
2We thus call the lower bound the “JSC random-coding bound”

and the upper bound the “JSC sphere-packing bound.”
3We assume that H(Q) < C, since otherwise EJ (Q, W ) = 0.

also remark that the minimizations in Proposition 1 are equiv-
alent to more concrete maximizations of E(ρ) ! Eo(ρ)−Es(ρ),
which boil down to determining Eo(ρ). Although Eo(ρ) does
not admit an analytical expression for arbitrary DMCs,4 it
can be obtained numerically via Arimoto’s algorithm in [1].
Therefore, we can always numerically determine the upper
and lower bounds for EJ(Q, W ).

Lemma 1 If we denote ρ̂ ! arg maxρ≥0 E(ρ), then the JSC
sphere-packing bound of Proposition 1 is attained for rate
R̂m = H(Q(ρ̂)), where distribution Q(α), α ≥ 0, is defined by

Q(α)(s) ! Q
1

1+α (s)/(
∑

s′∈S Q
1

1+α (s′)), s ∈ S. Furthermore,

if we let ρ̃ ! min(ρ̂, 1), then the JSC random-coding bound of

Proposition 1 is attained for rate R̃m = H(Q(ρ̃)), s ∈ S.

We know that if the lower (or upper) bound in Proposition 1
is attained for rate R′ no less than Rcr, where Rcr is the
channel critical rate, then EJ(Q, W ) is determined exactly
[2]. In light of this fact, Theorem 1 and Lemma 1, we obtain
the following explicit (computable) conditions.

Lemma 2 Define distribution Q∗ by Q∗(s) ! Q(1)(s), s ∈ S.
Then the following hold.

• H(Q∗) ≥ Rcr ⇐⇒ ρ̂ ≤ 1 ⇐⇒ R̂m = R̃m ≥ Rcr. Thus,
EJ(Q, W ) = E(ρ̂).

• H(Q∗) < Rcr ⇐⇒ ρ̂ > 1 ⇐⇒ R̂m > R̃m = H(Q∗).
Thus, E(1) ≤ EJ(Q, W ) ≤ E(ρ̂).

We also have examined Csiszár’s JSC expurgated lower bound
using a similar approach, and we have partially addressed the
computation of Csiszár’s bounds for the (lossy) JSC exponent
with distortion threshold [3]. Finally, in [5], we provide a sys-
tematic comparison of EJ(Q, W ) and the tandem exponent
ET (Q, W ), the exponent resulting from concatenating opti-
mal source and channel codes. Sufficient conditions for which
EJ(Q, W ) > ET (Q, W ) are also established.
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4Note that for symmetric DMCs (in the Gallager sense [4]),
Eo(ρ) can be analytically solved, hence yielding closed-form para-
metric expressions for the bounds in (1).


