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Abstract— The performance of Reed-Solomon codes over the applied to characterize the fading arrival process andatim§
binary additive Markov noise channel (BAMNC) is analyzed. durations, and the PCE is expressed in terms of the probabili
A recursive expression for the probability of m error symbols distribution of the fading durations. In [5], the bit error

in a block of n symbols is derived using the generating series . L -
approach, thus facilitating the exact calculation of the poba- PrOC€SS resulting from the hard-decision demodulationiof b

bility of codeword error under bounded distance decoding. 4 hary frequency-shift keying modulated signals over cared
approximation to this probability is obtained, and it is shown Rician fading channels is modeled via a Fritchman channel.

to be tight when the noise correlation is not very large. In ths  Fyrthermore, an analytical method based on the generating
case, interleaving the channel at the symbol level can be aded.  gejeg approach for calculating the PCE of RS codes ove finit
Furthermore, a wide range of channel conditions, under whib . .
channel interleaving at the bit level can be avoided, is iddified. .State channels is presen.ted. In [6] EFBt.ate Markov chain
is proposed to characterize the correlation of symbol error
|. INTRODUCTION Imperfect (finite-length) symbol interleaving is also cinlesed
Burst-error correcting codes are of prime theoretical arid [4], [5], [8].
practical interest due to the bursty nature of real-worloleiss ~ The objective of this paper is to identify the range of
digital communication channels. An important class of norghannel parameters for which perfect interleaving of RSesod
binary burst-error correcting codes used widely in datagra (at either the bit or symbol level) does not yield improved
mission and storage systems is the family of Reed-Solomparformance. To make the analytical derivation simple, we
(RS) codes (e.g., [1], [2]). Conventional communicatios-sy consider the binary additive (first-order) Markov noise mhel
tems employing these codes are designed for memoryl€BAMNC), but this study can also be conducted for higher-
channels, which is not an accurate model for wireless fadiegder Markov models which can accurately model correlated
channels. As a consequence, interleaving is used to rent#sling channels [9]. Using the approach of [5], we first deriv
the channel memoryless; this introduces additional detay aa recursive expression for the probability «af error symbols
complexity to the system. Furthermore, such interleavesd syn a block ofn symbols and determine the exact PCE when
tem fails to exploit the benefits of the statistical memory dRS codes are sent over the BAMNC. Then we derive an
the channel noise. When non-binary codes are sent ovefpproximation to the PCE under the assumption that the noise
stationary binary additive noise channel with memory, tweithin a symbol is Markovian but is independent from symbol
interleaving strategies are worth considering: interdegwhe to symbol (i.e., the PCE under perfect symbol interleaving)
code (or channel) bits which reduces the channel to tNée show that the PCE under perfect symbol interleaving is
memoryless binary symmetric channel (BSC) (under perfectsuperior to that under perfect bit interleaving. We compare
infinite interleaving depth) and interleaving the code spiab the approximated PCE with the exact PCE numerically for
The performance of non-interleaved RS codes on corigur different RS codes to find channel conditions — desdribe
lated fading channels is analyzed in [3]-[6] using a twin terms of the channel bit error rate (CBER) and noise
step procedure. First, a channel model is introduced for teerrelation — for which the approximation is accurate. For
generation of the bit or symbol error process, and thensaich conditions, symbol interleaving can be discarded or
formula for the probability of codeword error (PCE) undegvoided. Finally, we compare the exact PCE for the BAMNC
bounded distance decoding is derived for the proposed modgith the exact PCE for the BSC (the BAMNC under perfect
In [3], the channel is modeled via the Gilbert-Elliott chahn bit interleaving) and determine a wider range of channel
[7] whose parameters are calculated using a simple thréshphrameters under which bit interleaving can be avoided.
model. An approximation to the PCE is derived under th_e Il. SYSTEM DESCRIPTION
assumption that the channel state does not change during
each symbol transmission. In [4], level crossing statisice A Channel Model
We consider a BAMNC whose output symbb} at time
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that the input and noise processes are independent of eatlsodeword error PCE are given by
other. Furthermore, we assume that the noise procgs$;° ,
is a stationary (first-order) Markov with transition proliléip

t
P. = P(m, and PCE=1- P,
matrix given by Z (m,n)

m=0
P=[P]=|° +1(1 ~ Ei(l -p) N e)p respectively, wheré”(m, n) is the probability thatn symbol
(1-e)(1—p) et(l-e)p errors occur in a block ofn symbols. Given indetermi-

where P;; 2 Pr(Zy = j|Zx_1 = i), i,j € {0,1}. Here natess and z, define the formal power serie®(s,z) =
p=Pr(Z =1) is the CBER, and £ [Pr(Zx = 1, Zx_1 = om0 dum—o P(m,n) s™ 2". For a2’-ary code transmitted
1) — p%]/[p(1 — p)] is the correlation coefficient of the noiseOVer a binary finite-state channet(s, z) is given by [5]
process. We assume that< p < 1/2 and that0 < ¢ <

1, ensuring that the noise process is irreducible (it is also

general in the sense of being equivalent to all stationargyi wherel is the 2 x 2 identity matrix. ThusP(m,n) can be
Markov processes with nonnegative correlation coeffic)ienid(a’r:ived as the coefficient of"z" in P(s, z) abo;/e [5]

When ¢ = 0, the noise process becomes independent an . . .
identically distributed and the resulting channel reduocethe or the BAMNC’ it can be shown by induction (see [10])
that for any integen

memoryless BSC channel with crossover probabilityThe
state of the Markov channel at timieis denoted bysS;. and pn { "+ (1 —p)(1—em) p(1—em) }

P(s,2) 2 T [I — 2{P(0)* + s(P* ~P(0)")}] "1 ()

given by Sy, = Z. Forz € {0,1}, let P(z) be a2 x 2 matrix (1-p)(1—¢") "+ (1—¢")p
whoseijth entry is given byPr(Z; = z, S, = j|Sk—1 = 7).

Hence, It can also be shown by induction that for any integer
e+(1-¢)(1-p) 0} n { e+ @-p)(l-g)" 0]
PO) = P0)" = _ .
o = [T505 o) O =1 a0 -pE+ra-pl-m" o
P(1) = [ 8 (1 I e)p } ) Since P(s,z) in (1) is a ratio of two polynomials, a
et(-ep recursive expression foP(m,n) is obtained by examining
Note thatP(0) + P(1) = P. Let 2" = (21, 22,--- , 2,) be a the denominator polynomial, which is the determinant of the
binary noise sequence of length then matrix | — 2{P(0)* + s(P® — P(0)®)}. Specifically,
n _ _ _ )b _
PI‘(Z” — Zn) _ HT HP(Z’L) 1 P(m7n) - [5+ (1 E)(l p)] P(m’n 1)
=0 —[e+ 1 -e)1-p)’ =1 +e")P(m—1,n-1)
where the superscrigt]” indicates the transpose of a matrix, —[(c + (1 — ¢)(1 — p))*~*(c*(1 — p) + ep)|P(m — 1,n — 2)
- — T i istributi i
II =[1—p, p|' is the stationary distribution, antl is a [P — (P(1 = p) + pe)(e + (1 — &) (1 — p))t]

column matrix with all entries being 1. This channel model inP(m —2n—2)

a special case of the Gilbert-Elliott channel, realized é&tyisg L . . 2)
the cross-over probabilities of the “good” and “bad” chalnnefor n 2 2, with initial condl_tlons given by
. P(m,n) = 0 if mn<0orm<n
components [7] equal to zero and one, respectively. 0.0)
P(0,0) = 1

B. Reed-Solomon Codes _

An (n,k) RS code over the Galois field GF) is a non POY = (-pe+ - -p)""

n - _
’ P(L1) = 1-(1=p)e+1—e)(1-p)" "

binary linear block code whose codewords are of length
n = 2 — 1 symbols. Each codeword contaifsinformation |f ; = 1, then we have binary codes, and for this special case
symbols, the rate of the code 8 = k/n and the code can p(;, n) reduces to

correct up tot = [”T*’“J symbols (under bounded distance

decoding). Each symbol in G#) can be mapped one-to-one ~ P(m,n) = (¢ + (1 —&)(1 — p))P(m,n — 1)+

to a binaryb-tuple. As a result, the non-binary codewords are (e+(1—e)p)Pm—1,n—1)—eP(m—1,n—2).

sent over the BAMNC by transmitting the equivalent binar* o ) ) ) _
representation for each codeword. A transmitted symbol [41iS iS & simpler expression than the one derived in [10] for
received correctly if the noise corrupting it is a sequendB® Same binary system as it contains one less term.

of zeros of lengthb. Otherwise, the transmitted symbol is ) o

received incorrectly. B. Approximate Probability of Codeword Error

We herein assume that the binary noise process is only
Ill. PERFORMANCEANALYSIS Markovian within each symbol (of lengthh bits), and it
A. Exact Probability of Codeword Error is independent between symbols. Obviously, this assumptio
_ . . (which can be realized via perfect symbol interleaving) gloe
For at-error correcting code using bounded distance decofbt hold when RS codes are directly sent over the BAMNC.
ing, the probability of correct decoding. and the probability Thus, the correspondinB(m, n) for this new system, denoted



by P’(m,n), will approximate the actudP(m, n) givenin (2). IV. RESULTS
We obtain We consider four RS codes given in Table I. First, we vali-
P'(m,n) =" ) Pr(1 symbol erroj™ Pr(No symbol errgy"~™  date our analytical derivation @(m, ) in (2) by comparing

m the PCE calculated using’(m,n) with the PCE obtained

. via simulations (implemented using the Berlekamp-Massey

= (”) [1 —(1-ple+Q—-e)(1~— p)]bil} decoding algorithm). The results, shown in Fig. 1 for cate
m ande = 0.1,0.9, indicate a complete agreement between the

[(1 e+ (1—e)(1— p)]bfl} (n=m) . (3) simulations and the numerical calculations (a similar bedra

is observed for the other codes). Thus (2) provides an éffect
In this case, the probability of correct decoding forta tool for determining PCE without the need for simulations
error correcting RS code i, = an:o P’(m,n), while the which can be complex and long for low PCE values.
probability of codeword error for this code (under bounded . )
distance decoding) is simply(FE’ = 1 — P’. Note that when A \When Can Symbol Interleaving Be Avoided ?
the channel is a BSC (i.e., when= 0), this approximation  Equipped with (2) and (3), we determine the regions of
is exact as the channel becomes memoryless. ¢ and p for which our approximation is accurate (within an
absolute relative error less than or equalota) for the four
codes of Table I. In Table Il, thép, ¢) values for which our
approximation is accurate are given in the fobre € < €44

C. Symboal Interleaving is Always Better than Bit Interleaving
For0 <z <n, let

fl@) 2 [1-(1-ple+1—e)(1—p) " for values ofp chosen so that PCE is betwetim > and10~*.
< [(L=p)(e + (1)1 _p))b_l}n—m’ Thu.s for these values ofp, €), symbol interleaving can be
N s avoided.
gl@) & [1-(1-p)"]" [(1-p)']

i ) B. When Can Bit Interleaving Be Avoided ?
We notice that ife # 0 andb > 1, f(0) > ¢(0) and

: ; We evaluate the RS codes of Table | on the BAMNC
f(n) < g(n). Also, g(x) is monotone decreasing, constant ' i ; . X
or monotone increasing with depending on whethéi — p)® using (2) to systematically identify thi, €) values for which

is larger than, equal to, or less than 1/2, respectivelyrailar € codes performance without interleaving (with> 0) is

behavior is observed fof () depending on howl — p)[e + superior to that with perfect bit interleaving (with= 0). The

(1—¢)(1—p)]*~! compares withl /2. Therefore, ifs # 0 and results, withe shown in the forme,,;, < e < €paq for p
b>1,(1—p)P < (1-p)e+(1—e)l—p)]" and there given, are summarized in Tables IlI-VI (the dash symbols in

the tables indicate that perfect bit interleaving yieldstdre
performance for the specifiedvalue). Thus for such channel
conditions, not only can one forgo additional delay and com-

exists a unique value of, sayz,, such thatf(z¢) = g(zo).
Specifically,zq is given byzy = n (In A/ In B), where

A 4 1-p)° ’ plexity by avoiding bit interleaving, but improved perfoamce
(1-p)e+(1—-g)1—p)>! can also be achieved as illustrated in Fig. 2.
g & [M-(0-pE+-e0-p)i-p" V. CONCLUSIONS
(1 =p)(e+ 1 =&)L =p)* L = (1 =p)’] The performance of non-interleaved RS codes over a simple

For example, ifp = 0.01 ande = 0.3, thenuo = 17.93 for  pinary channel with memory, the BAMNC, was analyzed and
b=8andzo = 7.49 for b = 7. Now letting¢ be an integer eyajuated. It was shown that for any given RS code using

less than or equal tz] yields standard encoding/decoding procedures (that do not éxploi
t /n t /n the channel memory), there is a (sometimes wide) range of

> (Z.)f(i) >) (i)g(i)- (4)  channel conditions for which the code is well matched to the

i=0 i=0 channel in such way that the code provides the best perfor-

The right-hand side of (4) is the probability of correct déit@  mance when no (symbol or bit) interleaving is employed. The

for a t-error correcting RS code over GF') when sent over design of an RS decoding technique that exploits the channel
the BSC, while the left-hand side & . Furthermore, ift is  memory can lead to further performance improvements and is
larger than|zo], then f(x) < g(z) for t +1 <z <n. Then  an interesting topic for future work.
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TABLE |
PARAMETERS OF THE CONSIDEREIRS CODES

code| n k t R

C1 255 | 221 | 17 | 0.867

Co 255 | 129 | 63 | 0.506

C3 127 | 111 8 0.874

Cy 127 65 31 | 0.511
TABLE I

(p, E) INTERVALS FOR WHICH TO AVOID SYMBOL INTERLEAVING.

code P Emax
7x 1073 0.2
Cy 5x10=3 0.1
4x 1073 0.06
4x 1072 0.3
Co 3x 1072 0.13
2.3 x 1072 0.06
1x 1072 0.38
Cs3 5x 10—3 0.12
4x 1073 0.08
4x 1072 0.26
Cy 3x 1072 0.13
2x 103 0.04
TABLE Il
(p, €) VALUES FOR WHICH TO AVOID BIT INTERLEAVING FOR CODEC .
p Emin Emax
>3x 1072 0 1
3x 1073 0 0.9
2% 1073 0 0.83
1x10~3 0.14 0.62
<9x107% - -
TABLE IV
(p, €) VALUES FOR WHICH TO AVOID BIT INTERLEAVING FOR CODEC’.
p Emin Emazx
>5x 1072 0 1
1x 1072 0 0.87
5x 1073 0 0.73
4x1073 0 0.64
3.8 x 1073 0.11 0.61
3.6 x 1073 0.33 0.54
<35x1073 - -

TABLE V
(p, €) VALUES FOR WHICH TO AVOID BIT INTERLEAVING FOR CODEC3.

p Emin Emazx
>5x 1073 0 1
3 x 1073 0 0.87
2x 1073 0 0.78
1.5 x 103 0 0.69
1.2x 1073 | 0.29 | 0.53
<1x1073 - -
TABLE VI
(p, €) VALUES FOR WHICH TO AVOID BIT INTERLEAVING FOR CODECY.
p Emin Emazx
>5x 1072 0 1
1x 1072 0 0.82
7x 1073 0 0.73
5x 1073 0.05 0.58
<45x1073 - -
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PCE for code”y: simulation (sim.) vs analytical (calc.) results.



