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Abstrat

A model for a binary additive noise ommuniation hannel with memory is

introdued. The hannel noise proess, whih is generated aording to a ball

sampling mehanism involving a queue of �nite length M , is a stationary ergodi

M 'th order Markov soure. The hannel properties are analyzed and several of its

statistial and information theoretial quantities (e.g., blok transition distribution,

autoorrelation funtion, apaity) are derived in lose form. The apaity of the

queue-based hannel is also analytially and numerially ompared for a variety

of hannel onditions with the apaity of other binary models, suh as the �nite-

memory ontagion hannel, the Gilbert-Elliott hannel and the Frithman hannel.

Keywords: Binary hannels with memory, �nite-state hannels, additive bursty noise,

Markov soures, apaity, autoorrelation funtion, error statistis.

1 Introdution

Most real world ommuniation hannels are known to experiene fading and noise dis-

tortions in a bursty fashion. In order to design e�etive ommuniation systems for suh

hannels, it is ritial to fully understand their behavior. This is ahieved via hannel

modeling, where the primary objetive is to provide a model whose properties are both

omplex enough to losely apture the real hannel statistial harateristis, and simple

enough to allow mathematially tratable system analysis.

The most ommonly used models to represent the disretized version (under hard-

deision demodulation) of binary-input fading hannels with memory are the Gilbert-

Elliott hannel (GEC) [4, 2℄ and the Frithman hannel (FC) [3℄. These models, whih

have been partly adopted for historial reasons (as they were introdued in the 1960s),

are desribed by binary additive error soures generated via �nite-state hidden Markov

models (HMMs)

1

. Due to their HMM struture, suh hannels are often diÆult to

mathematially analyze (partiularly when inorporated within an overall soure and/or

hannel oded system) sine they do not admit exat losed-form expressions for their

�
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A desription of other lesser known, but related, �nite or in�nite state HMM based hannel models

is provided in [10℄.



blok transition distribution and apaity. In [1, Setion VI℄, Alajaji and Fuja proposed a

simple binary additive hannel with memory, referred to as the �nite memory ontagion

hannel (FMCC), where the noise proess is generated via a �nite-memory version of

Polya's ontagion urn sheme [9℄. The resulting hannel has a stationary ergodi M 'th

order Markov noise soure and is fully desribed by only three parameters. Furthermore,

unlike the GEC and FC models, it admits single-letter analytial expressions for its

blok transition distribution and apaity, whih is an attrative feature for mathematial

analysis. This model has reently been adopted in several joint soure-hannel oding

studies (e.g., [5, 11℄) where the hannel statistis are inorporated into the system design

in order to fully exploit the hannel apaity (whih is higher than the apaity of the

traditionally used equivalent memoryless hannel ahieved via ideal interleaving).

In this work, we introdue a new binary additive noise hannel with memory based

on a �nite queue of length M . The hannel model, of whih a simpli�ed version was

studied in [12℄, has also an M 'th order Markov noise soure that is fully haraterized

by four parameters, making it more sophistiated than the FMMC for hannel modeling

(as it has an additional degree of freedom) while remaining mathematially tratable.

Indeed, it an be shown that the FMMC is a speial ase of our proposed queue-based

hannel (QBC) under idential hannel onditions (see Setion 3). It is also important

to point out that in a reent work [7, 8℄, Pimentel et. al. showed (numerially) that the

lass of binary hannel models with additiveM 'th order Markov noise (to whih both the

QBC and FMMC models belong) is a good approximation

2

, in terms of autoorrelation

funtion and variational distane, to the family of hard-deision frequeny-shift keying

demodulated orrelated Rayleigh and Riian fading hannels for a broad range of fading

environments.

The rest of this paper is organized as follows. In Setion 2, we investigate the statis-

tial properties of the QBC model and derive its stationary distribution, blok transition

probability, apaity and autoorrelation funtion. In Setion 3, the QBC is ompared

analytially, in terms of apaity, with the FMCC and a partiular lass of the Frithman

hannel for the same bit error rate (BER), orrelation oeÆient and memory order M .

Finally, numerial results and disussions are presented in Setion 4.

2 Queue-Based Channel with Memory

We �rst present the QBC model desribed by: Y

n

= X

n

� E

n

, for n = 1; 2; 3; � � �, where

the random variables X

n

, E

n

, and Y

n

are, respetively, the nth input, noise, and output

of the hannel, and where � denotes addition modulo 2. It is assumed that the input

and error sequenes are independent from eah other. The noise proess is generated

aording to the following mehanism. Consider the following two parels.

� Parel 1 is a queue of lengthM , that ontains initiallyM balls, as shown in Fig. 1.

-

A

n1

A

n2

A

n3

� � �

A

nM

-

Figure 1: A queue of length M .
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This lass of hannels is also shown to be a better approximation than the GEC model, partiularly

under Riian fading.



The random variables A

nk

(n is a time index referring to the nth experiment),

k = 1; 2; � � � ;M , represent the olor of the ball in the orresponding ell of the

queue at time n:

A

nk

=

�

1; if the kth ell ontains a red ball,

0; if the kth ell ontains a blak ball:

� Parel 2 is an urn that ontains a very large number of balls where the proportion

of blak balls is 1� p and the proportion of red balls is p, where p 2 (0; 1); usually

p� 1=2.

We assume that the probability of seleting parel 1 (the queue) is ", while the probability

of seleting parel 2 (the urn) is 1� " and " 2 (0; 1). The error proess fE

n

g

1

n=1

is gener-

ated aording to the following proedure. By ipping a biased oin (with Pr(Head)="),

we selet one of the two parels (selet the queue if Heads and the urn if Tails). If par-

el 2 (the urn) is seleted, a pointer randomly points at a ball, and identi�es its olor.

If parel 1 (the queue) is seleted, the proedure is determined by the length of the

queue. If M � 2, a pointer points at the ball in ell k with probability 1=(M � 1 + �),

for k = 1; 2; � � � ;M � 1 and � � 0, and points at the ball in ell M with probability

�=(M � 1+�), and identi�es its olor. If M = 1, a pointer points at the ball in the only

ell of the queue with probability 1; i.e., � = 1.

� If the seleted ball is red, we introdue a red ball in ell 1 of the queue, pushing

the last ball in ell M out.

� If the seleted ball is blak, we then introdue a blak ball in ell 1 of the queue,

pushing the last ball in ell M out.

The error proess fE

n

g

1

n=1

is then modeled as follows:

E

n

=

�

1; if the nth experiment points at a red ball,

0; if the nth experiment points at a blak ball:

We de�ne the state of the hannel to be S

n

4

=(A

n1

; A

n2

; � � � ; A

nM

); the binary M�tuple

in the queue after the nth experiment is ompleted. Note that, in terms of the error

proess, the hannel state at time n an be written as S

n

= (E

n

; E

n�1

; � � � ; E

n�M+1

), for

n �M .

2.1 Properties of the Noise Proess

We now investigate the properties of the binary error proess fE

n

g

1

n=1

. We �rst observe

that, for n �M + 1,

Pr

(M)

(E

n

= 1 j E

n�1

= e

n�1

; � � � ; E

1

= e

1

)

= "

�

e

n�1

M � 1 + �

+ � � �+

e

n�M+1

M � 1 + �

+

e

n�M

� �

M � 1 + �

�

+ (1� ")p

= Pr

(M)

(E

n

= 1 j E

n�1

= e

n�1

; � � � ; E

n�M

= e

n�M

); (1)

where e

l

2 f0; 1g, l = 1; � � � ; n� 1: Hene fE

n

g

1

n=1

is a homogeneous (or time-invariant)

Markov proess of order M .



Throughout this work, we onsider the ase where the initial distribution of the

Markov noise fE

n

g

1

n=1

is drawn aording to its stationary distribution; hene the error

proess fE

n

g

1

n=1

is stationary. We also obtain that fS

n

g

1

n=1

is a homogeneous Markov

proess with stationary distribution �

(M)

4

= (�

(M)

0

; �

(M)

1

; � � � ; �

(M)

i

; � � � ; �

(M)

2

M

�1

).

If p

(M)

ij

denotes the transition probability that S

n

goes from state i to state j, i; j =

0; 1; � � � ; 2

M

� 1, the transition matrix of the proess fS

n

g

1

n=1

an be written as

Q

(M)

QBC

=

h

p

(M)

ij

i

with

p

(M)

ij

=

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(M�!

(M)

i

�1+�)"

M�1+�

+ (1� ")(1� p); if j = b

i

2

, and i is even,

(M�!

(M)

i

)"

M�1+�

+ (1� ")(1� p); if j = b

i

2

, and i is odd,

!

(M)

i

"

M�1+�

+ (1� ")p; if j = b

i+2

M

2

, and i is even,

(!

(M)

i

�1+�)"

M�1+�

+ (1� ")p; if j = b

i+2

M

2

, and i is odd,

0; otherwise;

(2)

where !

(M)

i

is the number of \ones" in the M -bit binary representation of the ith row in

Q

(M)

QBC

. We note that any state an reah any other state with positive probability in a

�nite number of steps; therefore the proess S

n

is irreduible (and hene ergodi [1℄).

It an be shown by solving �

(M)

= �

(M)

Q

(M)

QBC

via indution, that the stationary

distribution �

(M)

of the proess is

�

(M)

i

=

Q

M�!

(M)

i

�1

j=0

[j

Cor

1�Cor

+ (1� BER)℄

Q

!

(M)

i

�1

j=0

(j

Cor

1�Cor

+BER)

Q

M�1

j=0

(1 + j

Cor

1�Cor

)

; (3)

for i = 0; 1; 2; � � � ; 2

M

�1, where !

(M)

i

is the number of \ones" in the binary representation

of the deimal integer i when memory isM ,

Q

a

j=0

(�)

4

=1 if a < 0. Furthermore, the hannel

BER and orrelation oeÆient (Cor) are respetively given by

BER = Pr(E

i

= 1) = Pr(E

1

= 1) = p; (4)

and

Cor =

Cov(E

2

; E

1

)

V ar(E

1

)

=

"

M�1+�

1�

(M�2+�)"

M�1+�

: (5)

Lemma 1 The stationary distribution �

(M)

i

obey the following reursion:

�

(M)

i

= �

(M+1)

2i

+ �

(M+1)

2i+1

; for i = 0; 1; 2; � � � ; 2

M

� 1: (6)

2.2 Blok Transition Probability

For a given input blok X = [X

1

; � � � ; X

n

℄ and a given output blok Y = [Y

1

; � � � ; Y

n

℄,

where n is the bloklength, it an be shown using the Markovian property of the noise

and state soures that the blok transition probability of the resulting binary hannel is

as follows.



� For bloklength n �M ,

Pr

(M)

(E = e) =

Q

n�d

n

1

�1

j=0

[j

Cor

1�Cor

+ (1� BER)℄

Q

d

n

1

�1

j=0

[j

Cor

1�Cor

+BER℄

Q

n�1

j=0

[1 + j

Cor

1�Cor

℄

; (7)

where d

n

1

= e

n

+ � � �+ e

1

, and

Q

a

j=0

(�)

4

=1 if a < 0.

� For bloklength n �M + 1,

Pr

(M)

(E = e) = L

(M)

n

Y

i=M+1

n

(

d

i�1

i�M+1

+�e

i�M

)

Cor

1�Cor

+BER

1 + (M � 1 + �)

Cor

1�Cor

o

e

i

n

(

M�1�d

i�1

i�M+1

+�(1�e

i�M

)

)

Cor

1�Cor

+ (1�BER)

1 + (M � 1 + �)

Cor

1�Cor

o

1�e

i

; (8)

where

L

(M)

=

Q

M�1�d

M

1

j=0

[j

Cor

1�Cor

+ (1� BER)℄

Q

d

M

1

�1

j=0

(j

Cor

1�Cor

+BER)

Q

M�1

j=0

(1 + j

Cor

1�Cor

)

;

Q

a

j=0

(�)

4

=1 if a < 0, d

M

1

= e

M

+ � � �+ e

1

, d

i�1

i�M+1

= e

i�1

+ � � � + e

i�M+1

(d

b

a

= 0 if

a > b), e

i�M

= x

i�M

� y

i�M

, and e

i

= x

i

� y

i

for i =M + 1; � � � ; n.

2.3 Channel Capaity

The QBC is a hannel with stationary ergodi Markov additive noise of memoryM . The

apaity C

(M)

QBC

of the hannel is positive sine the noise entropy rate is bounded above

by 1 for �xed M , ", p and �. C

(M)

QBC

is given by,

C

(M)

QBC

= lim

n!1

sup

X

1

n

I(X;Y )

= 1�H

(M)

(E

M+1

j E

M

; E

M�1

; � � � ; E

1

)

= 1�

M�1

X

!=0

�

M � 1

!

�

L

(M)

!

h

b

h

!

Cor

1�Cor

+BER

1 + (M � 1 + �)

Cor

1�Cor

i

�

M

X

!=1

�

M � 1

! � 1

�

L

(M)

!

h

b

h

(! � 1 + �)

Cor

1�Cor

+BER

1 + (M � 1 + �)

Cor

1�Cor

i

; (9)

where

Q

a

j=0

(�)

4

=1, if a < 0, h

b

(�) is the binary entropy funtion, and

L

(M)

!

=

Q

M�1�!

j=0

[j

Cor

1�Cor

+ (1� BER)℄

Q

!�1

j=0

(j

Cor

1�Cor

+BER)

Q

M�1

j=0

(1 + j

Cor

1�Cor

)

; (10)

whih is not a funtion of � .

Theorem 1 The apaity C

(M)

QBC

of the QBC inreases as the parameter � inreases for

�xed M , BER and Cor, and onverges to 1 as � approahes to in�nity for all M , BER

and Cor 6= 0.



2.4 Autoorrelation Funtion

The autoorrelation funtion (ACF) of a binary stationary proess fE

n

g

1

n=1

is given by:

R[m℄ = EfE

i

E

i+m

g = Pr(E

i

= 1; E

i+m

= 1)

=

1

X

e

i+1

=0

� � �

1

X

e

i+m�1

=0

Pr(E

i

= 1; E

i+1

= e

i+1

; � � � ; E

i+m�1

= e

i+m�1

; E

i+m

= 1);

where EfXg denotes the expeted value of the random variable X. Using (7) and (8),

the ACF of the QBC is expressed as follows.

� If m �M � 1,

R[m℄ = BER[Cor +BER(1� Cor)℄: (11)

� If m �M , the ACF of the QBC an be obtained by the following reursion.

R[m℄ =

1� Cor

1 + (M � 2 + �)Cor

BER

2

+

Cor

1 + (M � 2 + �)Cor

 

m�1

X

i=m�M+1

R[i℄ + �R[m�M ℄

!

: (12)

2.5 Uniform Queue-Based Channel with Memory

The uniform queue-based hannel (UQBC) was investigated in [12℄. Atually, it is a

speial ase of the QBC by �xing � = 1; i.e., the experiment operates on the ells of the

queue with equal probability 1=M . The blok transition distribution and apaity of the

UQBC an be obtained by setting � = 1 in (7), (8), and (9) (see also [12℄).

Lemma 2 The UQBC with memoryM and the QBC with memoryM+1 and � = 0 have

idential blok transition probability for �xed BER and Cor; therefore the two hannels

have idential apaity under the above onditions.

Theorem 2 The apaity C

(M)

QBC

of the QBC is non-dereasing in M for �xed BER,

Cor and 0 � � � 1.

Proof For �xed BER and Cor, the apaity of the QBC is a funtion of the memory

order M and parameter �. Let C

(M)

QBC

(�) denote the apaity of the QBC. Thus, for

0 < � < 1, we have

C

(M)

QBC

(�) < C

(M)

QBC

(1) (by Theorem 1)

= C

(M+1)

QBC

(0) (by Lemma 2)

< C

(M+1)

QBC

(�) (by Theorem 1):

�

3 Comparisons with Other Channels with Memory

In this setion, we ompare in terms of apaity the QBC with the FMCC [1℄ and a par-

tiular symmetri lass of the Frithman hannel [3℄ under idential hannel parameters.



3.1 Comparison with the Finite-Memory Contagion Channel

By omparing the UQBC with the FMCC [1℄ in terms of blok transition probability,

the following theorem is obtained [12℄.

Theorem 3 The UQBC and the FMCC are statistially idential; i.e., they have the

same blok transition probability for the same memory M , BER and Cor. Therefore the

two hannels have idential apaity under the above onditions.

Using Theorem 3 and the results in [1℄, the following asymptoti expression for C

(M)

UQBC

an be established as M approahes in�nity:

lim

M!1

C

(M)

UQBC

= 1�

Z

1

0

h

b

(z)f

Z

(z)dz; (13)

where h

b

(�) is the binary entropy funtion and f

Z

(z) is the beta probability density

funtion with parameters BER(1 � Cor)=Cor and (1� BER)(1 � Cor)=Cor (denoted

by u and v respetively), i.e.,

f

Z

(z) = �

u;v

(z) =

� (u+ v)

� (u) � (v)

(1� z)

(u�1)

z

(v�1)

; z 2 (0; 1);

where �(�) is the gamma funtion: �(x) =

R

1

0

t

x�1

e

�t

dt for x > 0. We also obtain by

Theorem 2 that (13) is an upper bound to the apaity of the UQBC for a given M .

Corollary 1 For the same M , BER and Cor,

C

(M)

QBC

< C

(M)

FMCC

(when 0 � � < 1); (14)

and

C

(M)

QBC

> C

(M)

FMCC

(when � > 1); (15)

3.2 Comparison with the Symmetri Frithman Channel

We de�ne the symmetri Frithman hannel with K good states and one bad state ((K,

1)SFC) by the following transition matrix on its states

P

(K,1)SFC

=

2

6

6

6

6

6

4

p

00

(1� p

00

)=K � � � (1� p

00

)=K

(1� p

00

)=K p

00

� � � (1� p

00

)=K

.

.

.

(1� p

00

)=K � � � p

00

(1� p

00

)=K

(1� p

11

)=K � � � (1� p

11

)=K p

11

3

7

7

7

7

7

5

; (16)

where p

ii

is the blok transition probability staying in state i, i = 0; 1.

By omparing the UQBC with M = 1 with the (K, 1)SFC in terms of the probability

of an arbitrary error sequene, we obtain the following theorem.

Theorem 4 For the same BER and Cor, and for any K = 1; 2; � � �, the (K, 1)SFC is

statistially idential to the UQBC with memory M = 1. Hene C

(K, 1)SFC

= C

(M=1)

UQBC

�

C

(M)

UQBC

� C

(M)

QBC

; 8 M � 1 and � � 1:

We an explain this result by observing that the good states have the same stationary

distribution

(1�BER)

K

and they have the same transition pattern. Hene the good states

an be ombined into one big good state with stationary distribution (1 � BER); this

makes (K, 1)SFC behave like the (1, 1)FC (or UQBC with memory 1).



4 Numerial Results and Disussion

We next numerially evaluate the apaity of the QBC, GEC and FC models in terms

of BER and Cor. We alulate the apaities of the QBC for memory order M = 2

and � = 10 using (9). We also ompute the apaity of the UQBC for memory order

M = 1; 2; 5; 10, and its asymptoti upper bound (as M !1) (see (13)).

Sine the GEC is desribed by four parameters, we �x p

G

= 0:00002 and p

B

= 0:92

(whih make our target Cor range from 0.1 to 0.9 well de�ned) and alulate the apaity

in terms of BER and Cor using the algorithm of [6℄.

In [3℄, an expliit expression for the apaity of the FC hannel with a single-error

state and K good states ((K, 1)FC) is provided (an expliit formula for FC hannels

with more than a single error state is not known in general). We employ this expression

to ompute the apaity of the (2, 1)FC with the transition probability matrix

P

(2, 1)FC

=

2

4

p

00

(1� p

00

)=2 (1� p

00

)=2

0:1 0:5 0:4

(1� p

11

)=2 (1� p

11

)=2 p

11

3

5

:

where p

00

and p

11

vary as BER and Cor vary.

10
−3

10
−2

10
−1
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Figure 2: Capaity vs � for QBC.

Numerial apaity results for the above three hannels are presented in Figs. 2 - 5.

The e�et of the ell parameter � on the apaity of the QBC is shown in Fig. 2; we note

that for the same BER, Cor and memory order M , the apaity inreases with � as

predited in Theorem 1. Furthermore, Fig. 2 illustrates Theorem 2 in the range � � 1.

The results of Theorem 3, Corollary 1 and Theorem 4 are numerially illustrated in

Figs. 3 - 5. We also note from the �gures that the apaity of all hannel models inreases

with dereasing BER and inreasing Cor (as expeted). We furthermore observe that, for

the onsidered parameters, the QBC with M = 2 and � = 10 has the biggest apaity,

whereas the UQBC with M = 1 (or (1, 1)FC) provides the smallest apaity. When

Cor = 0:1, the GEC and the UQBC with M = 1 have nearly equal apaities. For the

same BER, the apaity of the QBC an be either smaller or bigger than that of the

GEC and (2, 1)FC, depending on the values of Cor, M and � (see Fig. 5).
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Figure 3: Capaity vs BER for Cor=0.1; p

G

= 0:00002 and p

B

= 0:92 (for GEC).
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Figure 4: Capaity vs BER for Cor=0.9; p

G

= 0:00002 and p

B

= 0:92 (for GEC).

In onlusion, we point out that our QBC models enjoy the important feature of being

able to haraterize a wide lass of binary ommuniation hannels with �nite Markovian

memory, while remaining mathematially simple and exible (even for large values of the

memory M). They hene provide an interesting and less omplex alternative to the

traditional GEC and Frithman models.
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