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I. Introdution

We onsider a ommuniation system whih employs L

T

transmit and L

R

reeive antennas. The hannel is assumed to

be quasi-stati Rayleigh at fading. It is assumed that only

the reeiver has knowledge of the path gains. The additive

noise at reeiver j at symbol interval t, N

j

t

, is assumed to be

omplex Gaussian with i.i.d. real and imaginary parts. Linear

propagation is assumed, so that for a CSNR of 

s

at eah

reeive antenna, the signal at reeive antenna j an be written

as R

j

t

=

q



s

L
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P

L
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H

ji

s

i

t

+ N

j

t

, where

q



s

L

T

s

i

t

is the signal

sent from antenna i. H is the L

R

� L

T

path gains matrix.

In the following, we onsider the pairwise error probability

(PEP) of spae-time orthogonal blok (STOB) odes, and then

generalize the solution to spae-time trellis (STT) odes, linear

dispersion (LD) odes, and BLAST with ML deoding.

II. Exat PEP of STOB Codes

Using the properties of the Laplae transform, we derive

the following expression for the exat PEP of ML deoded

STOB odes:
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where n = L

t

L

R

and Æ

ij

=

q

g

s

2L
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� 

j

j (g is the inverse of

the ode rate). The above equation an also be derived using

the error analysis results of MRC systems, as notied in [1℄.

III. Exat PEP of STT Codes

Let S and

^

S be two paths on the trellis of a STT ode.

Also, de�ne d

i;t

= s

i

t

� ŝ

i

t

and matrix U with elements

u

k;i
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P

t

d
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d
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. Let us assume that U has K distint

non-zero eigenvalues �

k

eah with multipliity n

k
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i;k

, we get the pairwise error probabil-

ity of STT odes as
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where �

i;k

= Æ

2i

k

�

i;k

. Sine the hannel is quasi-stati, the

same expression an be used for any other spae-time odes

(suh as LD odes and V-BLAST). Considering error paths of

length 2, a simple expression in the form of the union bound

is used to approximate the system bit error rate (BER). This

is plotted in Figure 1 for the �rst 4-state Q-PSK STT ode.
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IV. Error Rate Bounds of STOB Codes

The exat PEP expression and the method used for its

derivation an be used to obtain very tight Bonferonni-type

upper and lower bounds [2℄ on the symbol error rate (SER)

and BER for STOB odes. Numerial results, suh as Fig-

ure 2, show that the bounds provide very good estimates on

the system performane. In many ases, the upper and lower

bounds oinide even at low hannel signal to noise ratios and

large onstellations.
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Figure 1: Results for the 4-state Q-PSK STTC.
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Figure 2: Error rates of STOB odes, L

T

= 2, L

R

= 1,

and 16-PSK onstellation.


