
Soft-De
ision COVQ Based on Turbo Codes

Guang-Chong Zhu and Fady Alajaji

Queen's University, Kingston, Ontario, Canada, K7L 3N6

Tel: (613) 533-2423, Fax: (613) 533-2964

E-mail: fady�shannon.mast.queensu.
a

Abstra
t: A robust soft-de
ision 
hannel opti-

mized ve
tor quantization (COVQ) s
heme for Turbo-


oded AWGN 
hannels is proposed. The log-likelihood

ratio (LLR) generated by the Turbo de
oder is ex-

ploited in the COVQ design via the use of a q-bit

s
alar soft-de
ision demodulator. The 
on
atenation

of the Turbo en
oder, modulator, AWGN 
hannel,

Turbo de
oder, and q-bit soft-de
ision demodulator

is modeled as a 2

kr

-input, 2

qkr

-output dis
rete mem-

oryless 
hannel (DMC), or a binary-input, 2

q

-output

DMC used kr times. A low-
omplexity COVQ s
heme

for this expanded dis
rete 
hannel is then designed.

Numeri
al results indi
ate substantial performan
e

improvements over traditional tandem 
oding systems

and COVQ s
hemes designed for hard-de
ision de-

modulated Turbo-
oded 
hannels (q = 1).

Keywords: COVQ, Turbo 
odes, soft-de
ision

demodulator, joint sour
e-
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1. Introdu
tion

Conventionally, sour
e and 
hannel 
oding have

been designed separately (resulting in what we 
all a

tandem 
oding system). As proved by Shannon, this

separation of sour
e and 
hannel 
oding results in

no loss of optimality provided unlimited 
oding de-

lay and system 
omplexity are allowed [17℄. During

the past few de
ades, signi�
ant improvements have

been a
hieved in these two separate areas. One of the

most noti
eable te
hniques in �xed-rate sour
e 
od-

ing is sour
e-optimized ve
tor quantization (LBG-

VQ) [13℄, while in 
hannel 
oding, Turbo 
odes [5℄,

[6℄ have been widely re
ognized as a major break-

through due to their extraordinary performan
e.

However, in pra
ti
e, with 
onstraints on delay and


omplexity, joint sour
e-
hannel 
oding 
an signif-

i
antly outperform traditional tandem 
oding sys-

tems (e.g., [1℄ { [4℄, [9℄, [11℄, [12℄, [14℄ { [16℄, [18℄,

[19℄).

In this work, we design and implement a robust

soft-de
ision 
hannel-optimized ve
tor quantization

(COVQ) s
heme for Turbo-
oded 
hannels. More

spe
i�
ally, we employ the methods introdu
ed in [1℄,

[15℄ to design a COVQ system that improves the end-

to-end performan
e by exploiting the log likelihood

ratio (LLR) generated by the Turbo de
oder. This is
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Figure 1: Blo
k diagram of the system.

a
hieved via the use of a q-bit s
alar soft-de
ision de-

modulator at the output of the Turbo de
oder, and

by designing a COVQ s
heme for the resulting ex-

panded dis
rete 
hannel whi
h 
onsists of the 
on-


atenation of the Turbo en
oded and de
oded 
han-

nel with the soft-de
ision demodulator. Alternative

approa
hes for 
hannel-optimized quantization using

Turbo 
odes have been previously studied by Bakus

and Khandani for s
alar quantization [3℄, [4℄, and by

Ho for ve
tor quantization [11℄, where the entire (un-

quantized) soft-de
ision information provided by the

LLR of the Turbo de
oder is utilized. The perfor-

man
e of our s
heme is 
omparable to Ho's, while

the 
omplexity is lower.

2. System design

The proposed system is as follows (see Figure

1). The COVQ en
oder takes a k-dimensional real

ve
tor V as its input, operates at a rate of r bits

per sour
e sample, and generates kr bits as the out-

put U 2 f0; 1g

kr

. This output is then fed into a

Turbo 
ode en
oder, whi
h is of rate R




information

bits/
ode bit. From the Turbo en
oder, the output

X is binary phase-shift keying (BPSK) modulated as

W 2 f�1;+1g

kr=R




(assuming kr=R




is an integer).

The sequen
e fW

i

g is then transmitted through an

additive white Gaussian noise (AWGN) 
hannel a
-


ording to

Z

l

=W

l

+N

l

; l = 1; 2; 3; � � � ;

where fN

l

g is an i.i.d. Gaussian noise sour
e with

zero mean and varian
e N

0

=2.

At the re
eiver end, Turbo de
oding is used to



provide the LLR given by

�

l

= log

PrfU

l

= 1jZg

PrfU

l

= 0jZg

; l = 1; 2; 3; � � � ;

whi
h is then demodulated via a q-bit uniform s
alar

quantizer �(�) with quantization step �. The quan-

tizer is des
ribed by

�(�) = j if � 2 (T

j�1

; T

j

);

where j = 0; 1; � � � ; 2

q

� 1.

The thresholds fT

j

g are uniformly spa
ed with

quantization step �; they satisfy

T

j

=

8

<

:

�1 ifj = �1;

(j + 1� 2

q�1

)�; ifj = 0; 1; � � � ; 2

q

� 2;

+1 ifj = 2

q

� 1:

Finally, these qkr bits are passed to the COVQ

de
oder, from whi
h

^

V, an estimation of V, is pro-

du
ed.

3. Expanded DMC model

As observed by Berrou et al. [5℄, [6℄ and Colavolpe

et al. [8℄, within a 
ertain region of 
hannel signal-to-

noise ratio (CSNR), and for large information blo
k

length N , the LLR generated by the Turbo de
oder

is approximately Gaussian with mean +M or �M ,

and varian
e �

2

�

. Therefore, the transition proba-

bility distribution for this equivalent 
hannel 
an be

approximated by

p(�

l

jU

l

= i) =

1

p

2��

2

�

e

�

(�

l

�(2i�1)M)

2

2�

2

�

;

i = 0; 1; l = 1; 2; � � � ; kr:

The values of M and �

2

�

depend on the stru
-

ture of the Turbo en
oder, the 
hannel statisti
s, as

well as the de
oding algorithm used in the Turbo de-


oder. While analyti
al expressions forM and �

2

�

are

intra
table, we obtain a reliable estimation of their

values by data training. We then model the 
on-


atenation of the Turbo en
oder, modulator, AWGN


hannel, Turbo de
oder, and q-bit soft-de
ision de-

modulator as a 2

kr

-input, 2

qkr

-output dis
rete mem-

oryless 
hannel (DMC), or a binary-input, 2

q

-output

DMC used kr times.

For this 
hannel model, if U = f0; 1g and Y =

f0; 1; 2; � � � ; 2

q

� 1g, then the transition probability

matrix � is given by

� = [�

ij

℄; i 2 U ; j 2 Y

where
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Figure 2: Expanded DMC model of our system.
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where erf
(x) =

2

p

�

R

1

x

e

�t

2

dt is the 
omplimen-

tary error fun
tion.

Hen
e, the 
hannel transition probability matrix

of our DMC model 
an be 
omputed in terms of

the quantization step �, the 
hannel noise varian
e,

and the 
omplementary error fun
tion. It 
an be ob-

served that this DMC is \weakly" symmetri
 in the

sense that its transition probability matrix � 
an be

partitioned (along its 
olumns) into symmetri
 ar-

rays { where a symmetri
 array is de�ned as an ar-

ray whose rows are permutations of ea
h other, and

whose 
olumns are permutations of ea
h other [10℄;

therefore, its 
apa
ity is a
hieved by a uniform in-

put distribution. For ea
h 
hannel noise varian
e,

the quantization step size � of the q-bit demodula-

tor is 
hosen su
h that the 
apa
ity of this DMC is

maximized.

Besides the DMCmodel above, we 
an also obtain

the transition probability matrix � via data training,

where the expanded 
hannel is regarded as a blo
k-

memoryless 
hannel (with 2

kr

inputs, and 2

qkr

out-

puts); i.e., we ignore the memory from blo
k-to-blo
k

and only 
onsider the memory within a blo
k (
f.

[15℄). This 
an be a
hieved by estimating the 2

kr

�

2

qkr

transition probability matrix � by using a long

training sequen
e, and then using Blahut's algorithm

[7℄ to 
al
ulate the 
hannel 
apa
ity. The quantiza-

tion step size � is 
hosen to maximize the 
hannel


apa
ity for ea
h 
hannel noise varian
e. This is a

more a

urate method sin
e it 
aptures the blo
k

memory in the expanded 
hannel. Also, as kr in-


reases, the model be
omes more a

urate.

4. COVQ design

We next design a COVQ for this 2

kr

-input, 2

qkr

-

output DMC using the iterative algorithm des
ribed

in [9℄. Consider the COVQ system in Figure 2, whi
h




onsists of an en
oder mapping 
 and a de
oder map-

ping �. The en
oder mapping is des
ribed by a par-

tition P = fS

u

� IR

k

: u 2 U

kr

g a

ording to 
(v) =

u if v 2 S

u

; u 2 U

kr

, where v = (v

1

; v

2

; � � � ; v

k

) is

a blo
k of k su

essive sour
e samples. The DMC

is des
ribed by its blo
k 
hannel transition matrix

P (yju), where u 2 U

kr

and y 2 Y

qkr

. Finally, the

de
oder mapping � is given by a 
odebook C = f


y

2

IR

k

: y 2 Y

kr

g a

ording to �(y) = 


y

;y 2 Y

kr

.

The average squared-error distortion per sample

is given by

D =

1

k

X

u

Z

S

u

f(v)

(

X

y

P (yju) k v � 


y

k

2

)

dv;

where f(v) is the k-dimensional pdf of the sour
e.

For a �xed k and r, and a given sour
e and 
hannel,

our goal is to minimize D by properly 
hoosing P

and C.

For a given C, the optimal partition P

�

= fS

�

u

g

is given by

S

�

u

=

(

v :

X

y

P (yju) k v � 


y

k

2

�

X

y

P (yj
~
u) k v � 


y

k

2

8
~
u 2 U

kr

)

;

u 2 U

kr

. On the other hand, for a given partition,

the optimal 
odebook C

�

= f


y

�

g is




y

�

=

P

u

P (yju)

R

S

u

vf(v)dv

P

u

P (yju)

R

S

u

f(v)dv

:

The 
odebook 
an be pre-
omputed o�-line.

Therefore, the COVQ de
oding is implemented sim-

ply by a table-lookup with no extra 
omputation.

However, the memory for storing the 
odebook is

high.

5. Numeri
al results and dis
ussion

In Table 1, we present numeri
al results for the

quantization of a Gauss-Markov sour
e with 
orre-

lation 
oeÆ
ient � = 0:9 over a BPSK-modulated

AWGN 
hannel used with Turbo 
odes. 80,000 train-

ing sour
e ve
tors are used. The Turbo 
ode is a rate-

1/2, 16-state 
ode with generator (37,21) and blo
k

length N = 65536 bits. A pseudo-random interleaver

is used [6℄ and the number of de
oding iterations

is 10. The dimension of the COVQ sour
e input is

k = 4, the quantization rate is r = 1 bit/sour
e sym-

bol; therefore, with the rate R




= 1=2 Turbo 
ode,

the overall rate is r=R




= 2 
hannel symbols/sour
e

symbol. The 
hannel signal-to-noise ratio (CSNR) is

de�ned as

CSNR =

E

s

N

0

=2

=

1

N

0

=2

;

where E

s

is the symbol energy, and E

s

= R




E

b

,

where E

b

is the bit energy. When R




= 1=2,

CSNR =

R




E

b

N

0

=2

=

E

b

N

0

:

In 
omparison with a COVQ of rate r = 2 with-

out using Turbo 
ode, the performan
e of our s
heme

at CSNR = 0:5 dB is slightly worse than the COVQ

s
heme that does not employ Turbo 
odes (i.e., the

s
heme assigning all the available rate for sour
e 
od-

ing), sin
e at this point the Turbo 
ode bit error rate

(BER) is high (above the 10

�2

level). When CSNR is

greater than 0.6 dB, our s
heme with q = 1 (COVQ

designed for the equivalent BSC model) o�ers su-

perior performan
e over the COVQ s
heme without

Turbo 
odes; a slight in
rement of CSNR results in

a drasti
 improvement of the performan
e. This is


onsistent with the fa
t that the BER performan
e


urve of Turbo 
odes drops qui
kly around 0.7 dB.

At 1.0 dB and above, the performan
e is very 
lose

to the theoreti
al limit.

Figure 3 shows the 
omparison of the performan
e

generated by our s
heme and other proposed s
hemes

[11℄. Our s
heme o�ers 
omparable performan
e to

Ho's system; however, the 
omplexity of our s
heme

is lower. In 
omparison with the traditional tan-

dem s
heme (whi
h 
onsists of a noiseless LBG-VQ

followed by a regular Turbo 
ode), at CSNR = 0

dB, our s
heme with q = 4 
an a
hieve a gain of

about 3 dB in signal-to-distortion ratio (SDR); at

CSNR = 0:6 dB, the gain is about 3.5 dB. The

performan
e is improved when q in
reases. For low

CSNRs, the gain from q = 1 to q = 4 is as big as 1

dB. However, the most signi�
ant gain is a
hieved at

q = 2. For high CSNRs, the gain due to in
reasing q

is less obvious, sin
e the performan
e is already very


lose to the theoreti
al limit.

6. Summary

In this work, we designed and implemented a

COVQ s
heme based on Turbo 
odes. The relia-

bility information produ
ed by the Turbo de
oder

was utilized via a q-bit s
alar soft-de
ision demodu-

lator. Within a 
ertain region of the 
hannel SNR,

and with large blo
k length N , the 
on
atenation of

the Turbo en
oder, BPSK modulator, AWGN 
han-

nel, Turbo de
oder, and q-bit soft-de
ision demod-

ulator was approximately modeled as a 2

kr

-input,

2

qkr

-output DMC. The COVQ s
heme was designed

for this expanded DMC. Signi�
ant improvements

over the traditional tandem s
heme was demonstrated.

In 
omparison with the work by Ho [11℄, our s
heme



Channel With TC Without TC

SNR q = 1 q = 1 q = 4

0.5 3.10 3.97 5.16

0.6 4.95 4.03 5.25

0.7 7.57 4.09 5.33

0.8 7.79 4.16 5.41

0.9 7.83 4.22 5.49

1.0 7.85 4.28 5.57

1.1 7.86 4.34 5.66

1.2 7.87 4.41 5.74

1 7.91 13.52 13.52

Table 1: SDR (in dB) performan
es of COVQ

based on Turbo 
odes, (COVQ rate r=1 bit/sample,

Turbo 
ode rate R




=1/2), 
ompared with that of

COVQ without Turbo 
odes, (COVQ rate r=2

bits/sample). Both use dimension k=2 Gauss-

Markov Sour
e (�=0.9), AWGN 
hannel.
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Figure 3: SDR as a fun
tion of 
hannel SNR, k=4,

r=1.

o�ered 
omparable performan
e, while the 
omplex-

ity was lower.
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