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Abstract— We investigate the modeling of a family of hard-

decision frequency-shift keying demodulated correlated Rayleigh

fading channels using a recently introduced queue-based channel

(QBC) model for binary communication channels with memory.

The QBC parameters are estimated by minimizing the Kullback-

Leibler divergence rate between the distributions of error se-

quences generated by the QBC and the fading channels and

the modeling accuracy is evaluated in terms of autocorrelation

function and channel capacity. Numerical results indicate that the

QBC provides a very good approximation of the fading channels

for a wide range of channel conditions.

I. INTRODUCTION

It is well known that most real-world communication chan-

nels have memory and experience noise and fading distortions

in a bursty fashion [6]. Thus memory is exhibited by the

channels in terms of statistical dependence in their error

process. In order to design effective communication systems

for such channels, it is of paramount importance to fully

understand their behavior. This is accomplished via channel

modeling, where the primary objective is to provide a model

whose properties are both complex enough to closely capture

the real channel statistical characteristics, and simple enough

to allow mathematically tractable system analysis.

During the past several decades, a variety of channel models

have been proposed and studied for the modeling of wireless

channels (e.g., [9]). One of the earliest models for channels

with memory is the Gilbert-Elliott channel (GEC) [4], [2],

which belongs to the family of finite-state Markov channels

(FSMC’s) [3, pp. 97-111]. A common feature of FSMC’s is

that they are constructed based on a finite-state hidden Markov

chain [6]. However, due to their HMM structure, it is difficult

to obtain single-letter analytical expressions for their statistical

and information theoretical quantities (such as capacity and/or

block transition probability) in terms of the channel parame-

ters. Thus, they often do not allow mathematically tractable

analysis, particularly when incorporated within an overall

source and/or channel coded system. Indeed, to date, few

coding techniques have been successfully constructed for such

HMM based channel models and for channels with memory
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in general [7]. It is therefore vital to construct channel models

which can represent well the behavior of real-world channels

while remaining analytically tractable for design purposes.

The queue-based channel (QBC), recently introduced in

[11], is a binary additive noise channel with memory based

on a finite queue. It features a stationary ergodic M th order

Markov noise source and it is fully characterized by four

parameters (�, �, p and M ). The channel admits single-letter

expressions for its block transition distribution and capacity,

which is an attractive feature for mathematical analysis and

code design. It is also important to point out that Pimentel,

Falk and Lisbôa recently showed in a numerical study [10]

that the class of binary channel models with additive Kth order

Markov noise (to which the QBC belongs) is a good approx-

imation, in terms of the autocorrelation function (ACF) and

variational distance, to the family of hard-decision frequency-

shift keying demodulated correlated Rayleigh fading channels

for a good range of fading environments, particularly for

medium and fast fading rates. Note however, that the Kth

order Markov noise channels considered in [10] have a com-

plexity (number of parameters) that grows exponentially with

K, rendering it impractical for the modeling of channels with

large memory such as very slow Rayleigh fading channels

(e.g., see Fig. 3 or [10, Fig. 11]). The QBC model, on the

other hand, does not suffer from this limitation as it is fully

described by only four parameters and it can accommodate

very large values of the memory M . In a recent related work

[12], the problem of modeling the GEC using the QBC was

investigated, and it was shown (numerically) that the QBC

provides a good approximation of the GEC for various channel

conditions. We herein study the problem of approximating the

same class of Rayleigh fading channels studied in [10] via the

QBC.

The rest of this paper is organized as follows. Preliminaries

on the GEC and QBC channel models are presented in

Section II. In Section III, we investigate the modeling of hard-

decision demodulated correlated Rayleigh fading channels

[10] via the QBC. In Section IV, we provide the numerical

fitting results. For the sake of comparison, we also model the

fading channels via the GEC (which has the same number of

parameters as the QBC) using the parameterization method

of Pimentel et. al. in [10]. The accuracy of both methods is



evaluated in terms of ACF and capacity. In Section V, we

conclude with a summary along with a direction for future

work.

II. THE GEC AND QBC BINARY CHANNEL MODELS

Hereafter, a discrete-time binary additive noise communi-

cation channel refers to a channel with common input, noise

and output alphabet X = Z = Y = f0; 1g described by

Y

n

= X

n

�Z

n

, for n = 1; 2; 3; � � �, where � denotes addition

modulo 2, and where X

n

, Z
n

, and Y

n

denote, respectively,

the channel’s input, noise, and output at time n. Hence a

transmission error occurs at time n whenever Z
n

= 1. It is

assumed that the input and noise sequences are independent

of each other. In this work, a given noise process fZ
n

g

1

n=1

will be generated according to one of the GEC, the QBC and

the “discretized” Rayleigh fading channel.

A. Gilbert-Elliott Channel
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Fig. 1. The Gilbert-Elliott channel model

The GEC model is driven by an underlying stationary

ergodic Markov chain with two states: a good state and a bad

state, denoted by G (or state 0) and B (or state 1), see Fig. 1.

In a fixed state, the channel behaves like a binary symmetric

channel (BSC). The GEC is thus a time-varying BSC, where

p

G

and p
B

are the crossover probabilities in the good and bad

states, respectively (the Gilbert channel (GC) [4] is obtained

when p
G

= 0; i.e., it behaves like a noiseless BSC in the good

state). After every channel transmission, the chain makes a

state transition according to the transition probability matrix

P =

�

1� b b

g 1� g

�

;

where 0 < b < 1 and 0 < g < 1. A useful approach for

calculating the probability of an error or noise sequence for the

GEC is discussed in [9]. The probability of a noise sequence

of length n, zn = (z

1

; z

2

; � � � ; z

n

), can be expressed as

PGEC(z
n

) = �

T

 

n

Y

k=1

P (z

k

)

!

1; (1)

where P(0) and P(1) are each a 2� 2 matrix whose (i; j)th

entry is the probability that the output symbol is 0 and 1,

respectively, when the chain makes a transition from state

s

k�1

= i to s

k

= j. The vector � = [�

0

�

1

℄

T indicates

the stationary distribution vector of the underlying Markov

chain, and 1 is the 2-dimensional vector with all ones.

B. Queue-Based Channel with Memory

The additive noise process of the queue-based binary chan-

nel with memory [11] is generated according to a sampling

mechanism involving the following two parcels.

� Parcel 1 is a queue of length M as shown in Fig. 2, that

contains initially M balls, either red or black.

- z j z

� � �

j -

A

n1

A

n2

A

n3

A

nM

1 2 3

M

Fig. 2. A queue of length M .

The random variables A
nk

(n is a time index referring

to the nth experiment, n � 1; k represents the position

in the queue, k = 1; 2; � � � ;M ) are defined by:

A

nk

=

�

1; if the kth cell contains a red ball,

0; if the kth cell contains a black ball:

� Parcel 2 is an urn that contains a very large number of

balls where the proportion of black balls is 1�p and the

proportion of red balls is p, where p 2 (0; 1), p� 1=2.

We assume that the probability of selecting parcel 1 (the

queue) is ", while the probability of selecting parcel 2 (the

urn) is 1�" and " 2 [0; 1). Notice that the channel is actually

a BSC with crossover probability p when " = 0, in which case

we experiment on the urn only.

The noise process fZ

n

g

1

n=1

is generated according to

the following procedure. By flipping a biased coin (with

Pr(Head)="), we select one of the two parcels (select the

queue if Heads and the urn if Tails). If parcel 2 (the urn)

is selected, a pointer randomly points at a ball, and identifies

its color. If parcel 1 (the queue) is selected, the procedure is

determined by the length of the queue. If M � 2, a pointer

points at the ball in cell k with probability 1=(M � 1 + �),

for k = 1; 2; � � � ;M � 1 and � � 0, and points at the ball

in cell M with probability �=(M � 1 + �), and identifies its

color. If M = 1, a pointer points at the ball in the only cell of

the queue with probability 1; i.e., � = 1. If the selected ball

from either parcel is red (respectively black), we introduce a

red (respectively black) ball in cell 1 of the queue, pushing

the last ball in cell M out. The noise process fZ
n

g

1

n=1

is then

modeled as follows:

Z

n

=

�

1; if the nth experiment points at a red ball,

0; if the nth experiment points at a black ball:

By studying the channel state process fS

n

g

1

n=1

, where

S

n

4

=(A

n1

; A

n2

; � � � ; A

nM

), it can be shown that the channel

noise process fZ
n

g

1

n=1

is a stationary ergodic (irreducible)

M th order Markov process. As a result, various statistical

and information theoretic quantities of the QBC, such as the

channel block transition probability, capacity and ACF, can be

determined (in closed-form) in terms of M , p, ", and � (see

[11] for the detailed expressions). It should be also noted that

the finite-memory Polya contagion channel introduced in [1]

is a special case of the QBC (obtained by setting � = 1).



III. FITTING RAYLEIGH FADING CHANNELS

We consider a discrete (binary-input, binary-output) com-

munication system, referred to as the discrete channel with

Clarke’s autocorrelation (DCCA) model, that employs binary

frequency-shift keying modulation, a time-correlated Rayleigh

flat-fading channel, and a hard quantized noncoherent demod-

ulation [10]. The combination of digital modulator, fading

channel, and digital demodulator yields the equivalent DCCA

model. The study and analysis of the statistical behavior of the

DCCA model is important since the design and construction

of effective error control schemes for this simplified (binary-

input, binary-output) model helps us better exploit the system

memory and achieve reliable communication over the under-

lying correlated fading channel.

The QBC [11] is next used to model the equivalent binary

error sequence of the DCCA, which represents the successes

and failures that result from the transmission of symbols over

the above fading channel.

A. QBC Parameter Estimation

For a given DCCA, we construct a QBC whose noise

or error process is statistically “close” in the Kullback-

Leibler sense to the noise process generated by the DCCA.

Specifically, given a DCCA with fixed average signal-to-

noise ratio (SNR) E
s

=N

0

, and normalized Doppler frequency

f

D

T resulting in bit error rate BERDCCA and correlation co-

efficient CorDCCA, we estimate the QBC parameters M , p, ",

and � that minimize the Kullback-Leibler divergence rate

(KLDR) lim

n!1

(1=n)D

n

(PDCCA k P
(M)

QBC ); subject to the

constraints BERQBC = BERDCCA and CorQBC = CorDCCA; where

(1=n)D

n

(PDCCA k P
(M)

QBC ) is the normalized Kullback-Leibler

divergence (NKLD) between the n-fold DCCA and QBC noise

distributions, PDCCA and P
(M)

QBC , respectively:

D

n

(PDCCA k P
(M)

QBC ) =

X

z

n

2f0;1g

n

PDCCA(z
n

) log

2

PDCCA(z
n

)

P
(M)

QBC (z

n

)

:

The expression for P
(M)

QBC is given in closed form in [11], while

the expression for PDCCA can be directly obtained from [10,

Eq. (3) with 
 = 1].

It can be shown (e.g., see [5]) that the KLDR between

the DCCA and QBC noise processes does exist and can be

expressed as

lim

n!1

1

n

D

n

(PDCCA k P
(M)

QBC )

= �HDCCA(Z)�EPDCCA
[log

2

P
(M)

QBC (Z

M+1

jZ

M

)℄; (2)

where P
(M)

QBC (z

M+1

jz

M

) is the QBC conditional error proba-

bility of symbol M + 1 given the previous M symbols and

H(�) denotes the entropy rate,

H(Z) = lim

n!1

1

n

H(Z

1

; Z

2

; � � �Z

n

):

Then the minimization reduces to maximizing the second

term in (2) (which is independent of n) over the QBC

parameters. Note that in our approximation, we match BER

and Cor of both channels to guarantee identical noise marginal

distributions and identical probabilities of two consecutive

errors (ones). Hence, given these constraints, the above op-

timization problem reduces to an optimization over only two

QBC parameters.

B. GEC Parameter Estimation

For a given DCCA, Pimentel et. al. provided a method to

estimate the GEC parameters in [10]. It is shown that the GEC

parameters can be calculated solving the linear and nonlinear

systems of the probability of a finite set of error sequences

generated by the DCCA with length no longer then 3 (see

[10]).

IV. MODELING RESULTS AND DISCUSSIONS

We evaluate how well the QBC model fits or approximates

the DCCA according to two criteria: channel capacity and

ACF. The QBC ACF and capacity expressions are provided

in [11]. The ACF of the DCCA can be obtained directly from

[10, Eq. (3)]:

RDCCA[m℄ =

1

�

2 +

E

s

N

0

�

2

�

�

E

s

N

0

�(m)

�

2

where

�(m) = J

0

(2�mf

D

T );

and J

0

(x) =

P

1

k=0

(�1)

k

(

x

k

2

k

k!

)

2 is the zero-order Bessel

function of the first kind.

It can be shown that the capacity of the DCCA is given by

CDCCA = 1�HDCCA(Z):

The entropy rate of the DCCA error process is not known in

closed form. However, we can approximate it by computing

(1=n)H(Z

n

) for large values of n and thus obtain a lower

bound on CDCCA, given by

CDCCA;n

4

=1�

1

n

HDCCA(Z
n

):

In our calculations, we use values of n as large as 21.

For the sake of comparison, we also present modeling

results via the GEC using the method of Pimentel et. al. in

[10]. As noted in Section I, in [10], the authors also employ

arbitrary Kth order Markov noise models to approximate the

fading channels. However, unlike our QBC model which has

only four parameters (as the GEC) and allows large values for

its memory order M (since its noise is a specially structured

M th order Markov process generated by our queue scheme),

the Kth order Markov models of [10] are unstructured and

hence suffer from the limitation of having a number of

parameters that grows exponentially1 with K. Therefore, with

the exception of the comparison with the Markov models of

1As a result, only models with memory order up to 6 are studied in [10].
Such models are shown to approximate well channels with fast and medium
fading rates (f

D

T > 0:02); but they are inadequate for slow fading rates. As
we later show in this section, the QBC model can accommodate large values
of the memory order; thus, it can provide a good approximation of channels
with slow fading (f

D

T < 0:02) in addition to medium and fast fading.



[10] made in Fig. 3, we herein mainly compare our QBC-based

modeling method with the GEC-based modeling method of

[10] since both channels have identical number of parameters,

hence identical degrees of freedom and complexity.

The GEC capacity is obtained via the algorithm in [7]. The

ACF of the GEC can also be obtained directly from (1):

RGEC[m℄ = �

T

P (1)

 

m�1

Y

k=1

P

!

P (1)1; (3)

where �, P (1), and P are defined in Section II-A.

A wide range of DCCA channel parameters is investigated

with SNR = 15 dB and 25 dB, f
D

T = 0:001, 0.005, 0.01

and 0.1. The SNR and f
D

T values (except for f
D

T = 0:005)

were chosen to match the conditions of the correlated Rayleigh

fading channels studied in [10].

Typical modeling results in terms of the ACF for the DCCA,

its QBC approximation and its GEC approximation are shown

in Figs. 3-7. We observe a strong ACF agreement between

the QBC and the DCCA in these figures (this behavior was

indeed observed for all computations, especially for f
D

T =

0:1 (Fig. 7) where the ACF curve of the DCCA and its QBC

approximation are identical). For very slow and slow fading

(Figs. 3-5), the ACF curve for the GEC takes a longer span of

m before eventually converging, which indicates that the GEC

(as fitted in [10]) might not be adequate for modeling slow

Rayleigh fading (f
D

T = 0:001 and 0.005). We also observe

that the QBC has better performance than the Markov models

in [10] (see Fig. 3), but with significantly smaller complexity

since it is fully described by four parameters.

Note that since the QBC noise is a homogeneous Markov

process, the KLDR between the DCCA and the QBC error

processes exists and admits a simple expression. Hence, it is

practical to minimize this KLDR by maximizing the expected

value in (2) over the QBC parameters which is independent

of n (see Section III-A). However, this approach is not easily

applicable to the GEC since the KLDR between the DCCA and

the GEC noise processes does not admit a simple expression in

general (as the GEC noise is hidden Markovian). The method

of parameterization of the GEC in [10] is simple, but it only

takes into account error sequences no longer than 3, which

implies that this method is not appropriate for approximating

slow fading.

Our results show that the largest Markovian memory M

for the QBC model that best fits the DCCA is 20, while the

largest Markovian memory K for the general Markov noise

channel model considered in [10] is 6 (higher order Markov

models could not be obtained in [10] due to their prohibitive

exponential complexity). This explains why the QBC is more

suitable for fitting slow fading with large memory than the

Markov noise model considered in [10].

Modeling results in terms of capacity are shown in Fig. 8,

where the lower bound for the capacity of the DCCA and the

capacities of the QBC approximation and the GEC approxi-

mation are shown for different SNR values and f

D

T values.

We clearly observe from the figures that the capacity curves

of the QBC and the lower bound curves for the capacity of

the DCCA match quite well, and the capacities for f
D

T = 0:1

are almost identical. The last observation can be explained by

the fact that the DCCA has low memory at f
D

T = 0:1 (fast

fading); hence the lower bound for its capacity is tight (since
1

n

H(Z

n

) = H(Z

1

) if Zn is memoryless). Overall, we observe

a strong match in capacity between the DCCA and its QBC

approximation. In terms of capacity, the GEC has nearly as

good a performance as the QBC in fitting the DCCA.

V. SUMMARY

In this work, we approximate hard-decision demodulated

correlated Rayleigh fading channels (represented by the

DCCA) via the QBC model. Numerical results show a strong

agreement between the ACF and capacity curves of the QBC

and the DCCA. This leads us to conclude that the QBC

provides a very good approximation of the DCCA under a

variety of channel conditions. The QBC provides a much better

performance in terms of fitting the DCCA than the GEC and

the Markov models of [10] for the range of slow and very

slow fading. An important feature of this queue-based channel

model is that it is valuable for characterizing a wide class

of communication channels with memory, while remaining

mathematically simple and flexible.

One possible direction for future work is the design, con-

struction and analysis of powerful channel codes for the QBC.

One important objective in this problem is the judicious design

of the channel codes in order to fully exploit the channel

memory. Some results in this direction involving low density

parity check (LDPC) codes are reported in [8].
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Fig. 3. DCCA fitting via the QBC: Autocorrelation function vs m for
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Fig. 4. DCCA fitting via the QBC: Autocorrelation function vs m for
Rayleigh fading channel: SNR = 15 dB and normalized Doppler frequency
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Fig. 7. DCCA fitting via the QBC: Autocorrelation function vs m for
Rayleigh fading channel: SNR = 25 dB and normalized Doppler frequency
f
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QBC: M = 20, ε = 0.8593,  

p = 0.0297, α = 0.8959;     

GEC: b = 0.0000339, g = 0.000479,
p

B
 = 0.3393, p

G
 = 0.00783.     

QBC: M = 11, ε = 0.7602, 

p = 0.0297, α = 0.3828;    

GEC: b = 0.000841, g = 0.0118,  
p

B
 = 0.3393, p

G
 = 0.00766.    

QBC: M = 7, ε = 0.6556, 

p = 0.0297, α = 0.3387;   

GEC: b = 0.00329, g = 0.045,   
p

B
 = 0.3395, p

G
 = 0.00713.   

QBC: M = 2, ε = 0.0893, 

p = 0.0297, α = 0.131;    

GEC: b = 0.0324, g = 0.7466,   
p

B
 = 0.5199, p

G
 = 0.00849.   

QBC: M = 18, ε = 0.8506, 

p = 0.00314, α = 0.2607;   

GEC: b = 0.0000333, g = 0.00466,
p

B
 = 0.3339, p

G
 = 0.000783.   

QBC: M = 6, ε = 0.6226,   

p = 0.00314, α = 0.2525;    

GEC:    b = 0.000773, g = 0.1014,
p

B
 = 0.334, p

G
 = 0.000622.     

QBC: M = 4, ε = 0.4666, 

p = 0.00314, α = 0.2019;  

GEC: b = 0.0025, g = 0.2887,   
p

B
 = 0.3343, p

G
 = 0.000279.  

QBC: M = 2, ε = 0.0145, 

p = 0.00314, α = 0.1054;  

GEC: b = 0.00103, g = 0.8338,  
p

B
 = 0.4523, p

G
 = 0.00259.   

Fig. 8. DCCA fitting via the QBC: Capacity vs normalized Doppler frequency
f

D

T for Rayleigh fading channel.


