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Abstract—A discrete fading channel (DFC) consisting of a
binary modulated time-correlated Rayleigh fading channel used
in conjunction with coherent soft-decision demodulation of res-
olution q is considered. The capacity of the binary input 2q -ary
output DFC, which can be explicitly expressed in terms of a
non-binary noise discrete channel with stationary ergodic 2q -ary
noise, is evaluated in terms of q and the fading parameters. It
is observed that considerable capacity gains can be achieved due
to the channel’s statistical memory and the use of as few as
2 bits for soft-decision over interleaving the channel (to render
it memoryless) and hard-decision demodulation (q = 1). The
DFC is next fitted by a recently introduced analytically tractable
queue-based (QB) Markovian noise model. The QB parameters
are estimated via an iterative procedure that minimizes the
Kullback-Leibler divergence rate between the DFC and QB noise
sources. Modeling results, measured in terms of both channel
noise correlation function and capacity reveal a good agreement
between the two channels for a broad range of fading conditions.

I. INTRODUCTION

Binary finite-state Markov channels (FSMCs) have been
extensively used to model the correlation structure of the
error process of discrete time-correlated fading channels (from
the input to the binary modulator to the output of the hard-
quantized demodulator) [1]- [3]. An accurate FSMC provides
an analytical description of the communication channel with
memory that can be used to evaluate the performance of coded
systems over such channels [4] as well as to design decoding
strategies that exploit the channel statistical memory [5].

Motivated by well known results that soft-decision infor-
mation can increase the capacity of several classes of chan-
nels [6], [7], a discrete communication channel with binary
input and 2q-ary output was recently introduced in [8] in order
to capture both the statistical memory and the soft-decision
information of binary phase-shift keying (BPSK) modulated
time-correlated fading channels when they are coherently
demodulated via a q-bit scalar quantizer. This channel is
referred to as the non-binary noise discrete channel (NBNDC).
It is shown in [8] that the output process of this channel can
be expressed as an explicit simple function of the channel
binary input process and a 2q-ary noise process. A non-binary
Markovian stationary ergodic queue-based (QB) noise source
is also proposed and analyzed in [8] to model the noise process
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of the NBNDC. The resulting NBNDC with Markovian QB
noise is an FSMC fully described by 2q + 2 independent
parameters and generalizes the binary queue-based channel
(QBC) proposed in [9]. This QB noise model inherits nice
properties from the QBC such as a closed-form expression for
its block transition probability and capacity.

In [10], a numerical modeling study demonstrates that the
QBC provides a good approximation of binary input hard-
decision demodulated time-correlated Rayleigh and Rician
fading channels. The objective of this paper is to investigate
the appropriateness of the NBNDC with non-binary QB noise
in modeling a time-correlated discrete Rayleigh fading channel
with soft decision demodulation.

We consider a discrete fading channel (DFC) composed of a
binary BPSK modulator, a time-correlated flat Rayleigh fading
channel and a q-bit soft-quantized coherent demodulator. We
first evaluate numerically the effect of the quantizer resolution
and channel correlation parameters on the capacity of the DFC.
The capacity gains indicate that exploiting both the channel’s
memory and soft decision information is more worthwhile
than ignoring either of them using channel interleaving or hard
quantization. Next, we model the DFC via an NBNDC with
QB noise. The 2q+2 parameters of the NBNDC with QB noise
are selected to minimize the Kullback-Leibler divergence rate
between the DFC and the QB noise processes. The accuracy of
the QB noise model is then measured in terms of the channel
noise autocorrelation function and channel capacity. A good
fit is obtained for a wide choice of fading conditions.

II. DISCRETE FADING CHANNEL

A. DFC: Soft-Decision Demodulated Fading Channel

We define the input and output alphabets of the DFC by
X = {0, 1}, Y = {0, 1, · · · , 2q − 1}, respectively. Let {Xk},
where Xk ∈ X for k = 1, 2, · · · , be the DFC binary input
process. The coherently demodulated received channel symbol
at the kth signaling interval is given by

Rk =
√

EsAkSk + Nk, k = 1, 2, · · · ,

where Es is the energy of the transmitted signal, Sk = 2Xk−1
is the BPSK input symbol taking values in {−1,+1}, and
{Nk} is the noise process consisting of a sequence of inde-
pendent and identically distributed Gaussian random variables,
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each with zero-mean and variance N0/2. Furthermore, {Ak}
is the channel’s fading process with Ak = |Gk|, where {Gk}
is a time-correlated complex wide-sense stationary Gaussian
process with zero-mean and autocorrelation function given by
the Clarke’s fading model [11] R[k] = J0(2πfDT |k|), where
J0(x) is the zero-order Bessel function of the first kind, and
fDT is the maximum Doppler frequency normalized by the
signaling rate 1/T . As a result, each fading random variable
Ak is Rayleigh distributed with unit second moment. The
fading and noise processes are assumed to be independent of
each other and of the input process.

Each received symbol Rk is next softly quantized via a q-bit
scalar quantizer with normalized step-size δ yielding a DFC
output Yk ∈ Y according to the following operation

Yk = j, if Rk ∈ (Tj−1, Tj)

for j ∈ Y and the quantizer thresholds Tl satisfy [8]

Tl =






−∞, if l = −1
(l + 1 − 2q−1)δ, if l = 0, 1, · · · , 2q − 2
∞, if l = 2q − 1.

Let qi,j(ak) ! Pr(Yk = j | Xk = i, Ak = ak). Due to
the symmetry of the BPSK constellation and the quantizer
thresholds, we have that

qi,j(ak) = q
0, j−(2q−1)i

(−1)i
(ak).

The DFC with binary input process {Xk} and 2q-ary output
process {Yk} is thus specified by the following sequence of
n-fold (block) conditional probabilities for n ≥ 1:

P (n)
DFC (yn | xn) ! Pr(Y n = yn | Xn = xn)

= EA1...An

[
n∏

k=1

q
0,

yk−(2q−1)xk
(−1)xk

(Ak)

]
(1)

where yn = (y1, · · · , yn), xn = (x1, · · · , xn) and EX [·]
denotes expectation with respect to the random variable X .
For n = 1, a closed-form expression for P (1)

DFC (y|x), y ∈ Y
and x ∈ X , is given by [12]

P (1)
DFC (y|x) = m(−Tj−1) − m(−Tj) (2)

where j = y−(2q−1)x
(−1)x ∈ Y ,

m(Tj) = 1 − Q(Tj

√
2γ) −

[
1 − Q

(
Tj

√
2γ√

1
γ +1

)]
e
−

T2
j

( 1
γ +1)

√
1
γ + 1

and γ = Es/N0 is the signal-to-noise ratio (SNR) and Q(x) =
1/
√

2π
∫ ∞

x exp{−t2/2}dt is the Gaussian Q-function. The
expected value in (1) can only be calculated for small values
of n since the joint probability density function of arbitrarily
correlated Rayleigh random variables is only known for n ≤ 3
(e.g., see [13]), however the overall conditional probability in
(1) can be determined via simulations. Hence, it is important
to provide an effective model for P (n)

DFC (· | ·).

B. DFC as an Non-Binary Noise Discrete Channel

Consider a binary-input 2q-ary output channel, which we
refer to as the non-binary noise discrete channel (NBNDC),
where the output Yk ∈ Y is explicitly expressed in terms of
the input Xk ∈ X and a noise Zk ∈ Y via

Yk = (2q − 1)Xk + (−1)XkZk (3)

for k = 1, 2, · · · , where the noise process {Zk} is independent
of the input process {Xk} and is governed by the n-fold
distribution P (n)

NBNDC(zn) ! P (n)
NBNDC(Z1 = z1, · · · , Zn = zn)

for zt ∈ Y , t = 1, · · · , n. The channel n-fold conditional
probability is given for each n ≥ 1 by

P (n)
NBNDC(yn | xn) = P (n)

NBNDC(zn)

where
zt =

yt − (2q − 1)xt

(−1)xt
, t = 1, · · · , n. (4)

Now given xn ∈ Xn and yn ∈ Yn, whenever P (n)
NBNDC(zn) is

set to equal to (1) for each n ≥ 1 with each zt as given by
(4), we obtain that P (n)

DFC (yn | xn) = P (n)
NBNDC(yn | xn) for each

n ≥ 1. Thus the NBNDC provides an alternative description
of the DFC.1 In Sections IV and V, we use this fact to fit
the DFC given by (1) via an NBNDC whose noise process
{Zk} is an M th order Markov source generated via a non-
binary queue of length M . In the next section, we conduct a
numerical capacity study of the DFC to determine the optimal
values for the channel q-bit quantizer step-size δ and illustrate
the potential gains in capacity due to the DFC’s statistical
memory and the use of soft-decision output quantization.

III. DFC CAPACITY NUMERICAL STUDY

We herein examine the behavior of the capacity of the DFC
in terms of the quantizer parameters (q and δ), the SNR (γ) and
the normalized Doppler frequency (fDT ). As shown above,
the DFC is an NBNDC described by (3) with a stationary
ergodic 2q-ary noise {Zk} whose n-fold distribution is given
by (1) for each n. An expression for the capacity of this
channel is derived in [8] in terms of the entropy rates of the
noise process {Zk} and a related process {Wk} with alphabet
W = {0, 1, · · · 2q−1 − 1} defined by

Wk ! min{Zk, 2q − 1 − Zk}, k = 1, 2, · · · , (5)

with resulting n-fold distribution

Pr(Wn = wn) =
∑

xn∈Xn

Pr
(

Zn =
wn − (2q − 1)xn

(−1)xn

)

where Zn = (wn − (2q − 1)xn)/(−1)xn
denotes the n-tuple

obtained from component-wise operations, i.e., (Z1 = (w1 −
(2q − 1)x1)/(−1)x1 , · · · ,Zn = wn − (2q − 1)xn)/(−1)xn).
The capacity C of the NBNDC is given by [8]

C = lim
n→∞

C(n) = sup
n

C(n)

1Note that the resulting NBNDC noise {Zk} is stationary and ergodic since
the underlying fading process {Ak} is stationary ergodic.



where
C(n) = 1 +

1
n

[H(Wn) − H(Zn)] (6)

where H(·) denotes entropy. Thus

C = 1 + lim
n→∞

1
n

[H(Wn) − H(Zn)] = 1 + H(W ) −H(Z)

in bits/channel use, where H(W ) ! limn→∞(1/n)H(Wn)
and H(Z) ! limn→∞(1/n)H(Zn) denote the entropy rates of
{Wn} and {Zn}, respectively. Since C(n) ≤ C and H(Zn)/n
is decreasing in n for a stationary process {Zn}, we obtain
the following upper and lower bounds on C

C(n) ≤ C ≤ min
{

1, 1 +
1
n

H(Wn) −H(Z)
}

.

As (1) cannot be determined for n > 3, we generate a realiza-
tion of the noise process {Zk} via computer simulations for
fixed DFC parameters (γ, fDT , q, δ) and calculate {Wk} using
(5). The correlated Rayleigh fading samples are generated
according to the method proposed in [14]. We then evaluate
Pr(Zn) and Pr(Wn) numerically for several values of n and
compute the lower bound on the capacity C(n) using (6).

Fig. 1 presents C(n) versus the quantization step δ for
several values of n for a DFC with parameters γ = 10 dB,
fDT = 0.005 and q = 2. One objective is to determine the
optimal value of δ (in the sense of maximizing the channel
capacity). We observe that for n ≥ 5, C(n) is maximized for
approximately δ = 0.2. The curve C(1) corresponds to the
capacity of a memoryless DFC (the channel resulting when
perfect interleaving is employed on the DFC). In this case,
the optimal value of δ is 0.27. We may also obtain values of
the capacity for channels with hard quantization (q = 1), as
this channel is equivalent to a DFC with δ = 0. For example,
the capacity of this DFC with hard-quantized and perfectly
interleaved (obtained from the curve C(1) with δ = 0) is
0.846. We also remark that increasing n further than 7 does
not improve accuracy. We denote this maximum value by n".
Table I summarizes the values of C(n") for q = 1, 2 (obtained
for the optimal δ shown in the table) for selected values of
n" and γ. Note that the optimal values of δ provided in the
table for q > 1 are different from those calculated in [6]
for the memoryless DFC. We finally observe capacity gains
due to the channel’s memory and soft-decision quantization
(q > 1) relative to hard-quantization (q = 1) and ideal
channel interleaving (i.e., ignoring the channel’s memory). For
example, for γ = 5 dB, the capacity gain of C(10) (q = 2)
over C(10) (q = 1) is 13 %, whereas it is 19 % when compared
to the hard-quantized memoryless channel (with C = 0.656).
For γ = 2 dB, the gains are 18.5% and 25.5%, respectively (in
this case the capacity of the memoryless channel is C = 0.51).

IV. NON-BINARY QUEUE-BASED MARKOVIAN NOISE

We next describe a non-binary queue-based (QB) noise
model for the NBNDC which is a generalization of the binary
queue noise source proposed in [9]. We briefly describe the
generation of the noise symbol Zk (a detailed description
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Fig. 1. C(n) versus the quantization step δ for different values of n; DFC
with q = 2, fDT = 0.005, γ = 10 dB.

TABLE I
LOWER BOUND ON CHANNEL CAPACITY, C(n) , IN (BITS/CHANNEL USE)

FOR DFCS WITH fDT = 0.005.

γ n! q = 1 q = 2
C(n") C(n") optimal δ

2 dB 11 0.54 0.64 0.5
5 dB 10 0.689 0.78 0.4
10 dB 7 0.86 0.915 0.2
15 dB 3 0.939 0.969 0.12

is provided in [9]). First, one of two parcels (an urn and
a queue of size M ) is selected with probability distribution
{ε, 1 − ε}. The urn contains balls labeled with symbols in Y
satisfying the probability distribution ρ = (ρ0, ρ1, · · · , ρ2q−1).
If the urn is selected, a noise symbol Zk = i is selected
with probability ρi, i ∈ Y . If the queue is selected, a
noise symbol is selected with a probability distribution that
depends on M and a bias parameter α. The resulting QB
noise process {Zk}∞k=1 is an M th-order stationary ergodic
Markov source with 2q + 2 independent parameters: the size
of the queue, M , the probability distribution of the balls in
the urn ρ, and the parameters ε and α, where 0 ≤ ε < 1,
α ≥ 0. The state process {Sk}∞k=1 of the QB noise, defined
by Sk ! (Zk, Zk−1, · · · , Zk−M+1), is a homogeneous first-
order Markov process with state stationary distribution column
vector Π = [πzM ], zM ∈ YM , given by [8, Eq.(16)]. Several
closed-form expressions for the statistical quantities of the QB
noise model are herein summarized.

The QB noise n-fold distribution P (n)
QB (zn) ! Pr(Zn = zn)

is given by

P (n)
QB (zn) =

2q−1∏

#=0

ξ′
#−1∏

m=0

(
(1 − ε)ρ# + m

ε

M − 1 + α

)

n−1∏

k=0

(
(1 − ε) + k

ε

M − 1 + α

) (7)

for blocklength n ≤ M , where ξ′# =
∑n

k=1 δzk,# and δi,j is



the Kronecker delta function. For blocklength n ≥ M + 1,

P (n)
QB (zn) =

n∏

i=M+1

[(
i−1∑

#=i−M+1

δzi,z# + αδzi,zi−M

)

× ε

M − 1 + α
+ (1 − ε)ρzi

]
π(z1,··· ,zM ) (8)

where π(z1,··· ,zM ) is the stationary distribution given in [8,
Eq.(16)]. We conclude from (7) that the one-dimensional
distribution for Zk is Pr(Zk = z) = ρz for z ∈ Y . The
correlation coefficient for the QB noise is a non-negative
quantity given by

CorQB =
E[ZkZk+1] − E[Zk]2

Var(Zk)
=

ε
M−1+α

1 − (M−2+α)ε
M−1+α

(9)

where Var(Zk) denotes the variance of Zk. The autocorrelation
function (ACF), defined as R[m] = E[ZkZk+m], satisfies the
formula at the top of the next page. Finally, the entropy rate
of the QB noise is established in closed-form in [8].

V. DFC MODELING VIA THE NBNDC WITH QB NOISE

In the following, we fit the DFC using the NBNDC with QB
noise. For this purpose, given a DFC with fixed parameters,
we estimate the 2q+2 independent parameters of the QB noise
process such that the QB noise block probability approximates
well the DFC channel block probability of (1). Specifically,
we select the parameters of the QB noise that minimize the
Kullback-Leibler divergence rate (KLDR) between the QB and
the DFC noise processes defined as

D(P (n)
DFC ||P (n)

QB ) ! lim
n→∞

1
n

∑

zn∈Yn

P (n)
DFC (zn) log2

P (n)
DFC (zn)

P (n)
QB (zn)

for identical one-dimensional probability distributions and
noise correlation coefficients (we match the lower order statis-
tics for both processes). Closed-form expressions for P (n)

QB (zn)
are given in (7) and (8), while PDFC(zn) of (1) is calculated
via computer simulations for n > 1. The minimization of
the asymptotic KLDR quantity assures that both processes are
statistically close for large blocklengths. Since the DFC noise
process is stationary and the QB noise process is M ’th order
Markovian, the minimization of the KLDR over the QB noise
parameters reduces to minimizing [10]

DM
2 ! −

∑

zM+1

P (M+1)
DFC (zM+1) log2 PQB(zM+1 | zM ) (10)

where PQB(zM+1 | zM ) is the QB conditional probability of
the noise symbol zM+1 given the previous M symbols, which
is evaluated using the QB noise block probability (8) and is
given by

PQB(zM+1 | zM )=

(
α δzM+1,z1 +

M∑

#=2

δZM+1,z#

)
ε

M − 1 + α

+ (1 − ε)ρzM+1 . (11)

We match the one-dimensional probability distribution by
setting ρj = P (1)

DFC (j), j = 0, · · · , 2q − 1, where P (1)
DFC (j)

is given by (2) in terms of the quantization parameters (δ
and q) and γ. The remaining parameters (M , ε, α) are
estimated as follows. We compute CorDFC and match the noise
correlation coefficient CorQB = CorDFC. From (9) we can write
the parameter α as

α =
ε + CorDFC(1 − M) + CorDFC(M − 2)ε

CorDFC(1 − ε)
. (12)

For fixed DFC parameters, we substitute (12) into (11) and
the result into (10) and find the value of ε that minimizes
(10) for each value of M . For that purpose, we apply the
Newton-Raphson’s method to the derivative of (10), resulting
in the following iterative procedure for estimating ε. Given an
iteration point εn, the next iteration point is

εn+1 = εn +

∑

zM+1

PDFC(zM+1)
AzM+1

AzM+1εn + BzM+1

∑

zM+1

PDFC(zM+1)
A2

zM+1

(AzM+1εn + BzM+1)2

where

AzM+1 = [1 + CorDFC(M − 2)]δzM+1,z1

−
(

M∑

#=2

δzM+1,z#

)
CorDFC − (1 − CorDFC)ρzM+1

and

BzM+1 =

(
δzM+1,z1(1 − M) +

M∑

#=2

δzM+1,z#

)
CorDFC

+ (1 − CorDFC)ρzM+1 .

From the constraint that α ≥ 0, we have from (12) that

CorDFC(M − 1)
1 + CorDFC(M − 2)

≤ ε < 1.

In the algorithm, we used an empirically established estimate
for the initial point ε0 within this interval and observed con-
vergence for all considered DFC parameters. We repeated this
procedure for increasing values of M and chose a triplet (M ,
ε, α) to represent a specific DFC whenever DM

2 converges.
The optimization procedure was carried out for DFCs with
q = 2, four values of γ, and two values of fDT for each
γ. We did not observe an important variation in the optimal
value of δ for the considered fDT values, so we used the
values provided in Table I. The vectors ρ calculated from (2)
are ρ = (0.7067, 0.2016, 0.0762, 0.0155) for γ = 2 dB and
δ = 0.5, ρ = (0.8027, 0.1537, 0.0398, 0.0038) for γ = 5 dB
and δ = 0.4, ρ = (0.9239, 0.0528, 0.0187, 0.0046) for γ = 10
dB and δ = 0.2, and ρ = (0.9722, 0.02, 0.0064, 0.0014) for
γ = 15 dB and δ = 0.12. Table II provides the remaining
parameters of the QB noise process that fits a specific DFC.

We next use channel noise ACF and channel capacity as
metrics for measuring the accuracy of the NBNDC with QB
noise models of Table II in approximating the DFC. Fig. 2
compares the ACFs of the DFC and the QB noise processes
for several values of M , for a DFC with q = 2, fDT = 0.005,



RQB[m] =






E[Z2
k ], if m = 0

1
1− (M−2+α)ε

M−1+α

[
ε

M−1+αE[Z2
k ] + (1 − ε)E[Zk]2

]
, if 1 ≤ m ≤ M − 1

(1 − ε)E[Zk]2 + ε
M−1+α

[
M−1∑

i=1

RQB[m − 1] + αRQB[m − M ]

]
, if m ≥ M.

TABLE II
QB PARAMETERS FOR FITTING THE RAYLEIGH DFC WITH q = 2.

γ fDT = 0.005 fDT = 0.01
M = 11 M = 8

2 dB ε = 0.7537 ε = 0.6846
(δ = 0.5) α = 0.6362 α = 0.5313

M = 10 M = 7
5 dB ε = 0.7967 ε = 0.7260

(δ = 0.4) α = 0.6318 α = 0.5286
M = 7 M = 5

10 dB ε = 0.7563 ε = 0.6765
(δ = 0.2) α = 0.5932 α = 0.4818

M = 5 M = 4
15 dB ε = 0.7076 ε = 0.6371

(δ = 0.12) α = 0.5511 α = 0.399
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Fig. 2. Comparison of ACFs: DFC (with fDT = 0.005, q = 2, γ = 10
dB and δ = 0.2) vs NBNDC with QB noise.

γ = 10 dB, and δ = 0.2. The figure shows a good agreement
between the ACF of the DFC and that of the QB noise model
with M = 7 described in Table II. A similar behavior is
also observed for all QB models listed in this table (curves
not shown), thus indicating that QB models satisfactorily
approximate the ACF of the DFC process. Fig. 3 assesses the
lower bound on the capacity of the DFC with that of the fitting
QB noise model, where the DFC values of n" and δ given in
Table I for each SNR γ and the values of the QB noise are
given in Table II. We observe a relatively close match in the
capacity curves of both channels.

VI. CONCLUSION

The modeling results indicate that the DFC can be well
approximated via the NBNDC with Markovian QB noise for a
wide range of fading conditions. Given that the NBNDC with
QB noise model is analytically tractable and offers closed-
form expressions for its statistical and information-theoretic
quantities, it provides an effective discrete model for which
powerful coding schemes can be constructed to judiciously
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Fig. 3. Comparison of capacity lower bounds: DFC (with fDT = 0.005
and q = 2) vs NBNDC with QB noise.

exploit channel memory and soft-decision information. This
constitutes an interesting direction for future work.
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