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Consensus Using a Network of
Finite Memory Pólya Urns

Somya Singh , Fady Alajaji , Senior Member, IEEE , and Bahman Gharesifard , Member, IEEE

Abstract—We introduce a finite memory interacting
Pólya urn process over a connected network which mod-
els consensus dynamics for interacting individuals. More
specifically, each urn (individual) in the network is initially
equipped with some red and black balls, with the fraction
corresponding to the individual’s opinion (or belief) on a
certain color. At each time instant and for each urn, a ball
is drawn from a “super-urn”, which consists of all balls
present in that urn and its neighboring urns; then reinforc-
ing balls of the color just drawn are added to the urn for a
limited period of M future time instants, where M denotes
the memory parameter. Additionally, and important for our
objective, as of time t = M + 1, we remove the balls which
were present in the urns initially. By examining the struc-
ture of the resulting underlying reducible Markov process,
we show that individuals eventually reach consensus in the
sense that they all achieve identical probabilities of drawing
a red ball. Moreover, when the network has homogeneous
reinforcement parameters, we construct a class of linear
dynamical systems with time delay whose trajectory gives
the probability of drawing a red ball for each node i at
a time instant t . We examine the asymptotic behavior of
such a network and exactly determine its consensus value.
Our simulation confirms our theoretical findings by demon-
strating the asymptotic behavior of draw variables of the
network in some case studies.

Index Terms—Opinion and consensus dynamics, multi-
agent systems, stochastic reinforcement processes with
finite memory, Pólya urn networks, absorbing Markov
chains.

I. INTRODUCTION

STOCHASTIC reinforcement processes, which include
Pólya urn processes, have been widely used in the

modeling and analysis of social networks [1]–[9], opinion
dynamics [10], [11] and epidemic spread [12], [13]. In
particular, Pólya urn models naturally exhibit “consensus like”
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properties due to their underlying reinforcement mechanism
and have been studied in the literature.

For example in [7], it is shown that a complete network of
interacting two-color Pólya urns with same reinforcement and
interaction parameters synchronize asymptotically. Unlike [7],
there are some consensus models in which instead of con-
sidering a network of Pólya urns, the opinions (or beliefs)
of agents in a network change in time using Pólya reinforce-
ment. One such example is [6] in which draw variables from
a single multi-color Pólya urn are used to update the opin-
ion of an agent (or individual) in a social network. In this
network, consensus is achieved due to the exchangeability
property of the draw variables of the Pólya process. Moreover,
Pólya urn reinforcement is analogous to preferential attach-
ment models in the sense that the probability of adding balls
of a certain color to a Pólya urn is larger if there are more
balls of the same color present in the urn (for preferential
attachment, the probability of adding an edge to a vertex is
larger, if its degree is higher, see [14]–[16]). The usage of
preferential attachment models to study consensus phenomena
in social networks (e.g., [17], [18]) makes Pólya processes a
good choice to model consensus problems. Consensus typi-
cally refers to agreement among a population. More precisely,
and presented here for the simplest possible setting, if V rep-
resents a group of agents who can access beliefs of a limited
number of agents in V , prescribed by a graph G with vertex
set V of size N, and xi(t) ∈ R represents the belief of agent
i ∈ V at time t, then consensus is achieved when

lim
t→∞ |xi(t) − xj(t)| = 0

for all i, j ∈ V .
One of the most commonly used consensus algorithms is

where each agent’s opinion or belief is set to be a weighted
average of the opinion of its neighbors. In other words, the
opinion of agents is governed by the linear dynamical system
x(k + 1) = Wx(k), where x(k) = (x1(k), x2(k), . . . , xN(k))T is
the column vector containing the opinion of all N agents at
time k and W is a fixed weighted adjacency matrix for the
underlying graph G, taken to be constant in time for the time
being (see [19] for an example). In more complex problems the
graph G itself can depend on the opinion of the agents; for
instance, in Hegselmann-Krause dynamics [20], [21] agents
update their state using the opinion of agents with similar
view points. An elementary calculation demonstrates that, in
this simple setting, network connectivity can fully characterize
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Fig. 1. Illustration of finite memory Pólya urn draws.

whether consensus is achieved, and the speed of convergence
is directly related to the spectral properties of the correspond-
ing adjacency matrix. Consensus dynamics is a well-studied
subject, with a large volume of literature devoted to it, e.g.,
see [5], [22], [23] and references within. Our objective herein
is not to provide sharper conditions for consensus, but to
develop and analyze alternative dynamics for this purpose via
a novel Pólya-based model with rich properties, in particular,
heterogeneity considerations.

In our model, we equip each individual in the network with
a finite memory two-color Pólya urn (see [24]), where the two
colors represent two competing opinions or brands, and devise
a draw protocol which only uses local information and prov-
ably achieves consensus, where xi(t) represents the probability
of drawing a red ball at time t. The finite memory property
adds temporal lag in the consensus problem which we later
identify with dynamical systems with time-delay. The effect
of time delay in consensus problems has been widely studied,
e.g., see [25]–[27].

Let us now describe our Pólya-urn based process. As men-
tioned, given the network G, we equip each agent with an urn,
initially consisting of balls of two colors, red and black. The
“belief” of each urn (or individual) at a given time instant is
the probability that a red ball is chosen in the drawing process.
However, the draw process utilizes the spatial interconnections
in G; in particular, the urns (or individuals) interact through
what we call “super-urns”. A super-urn of urn i consists of all
the balls which are present in urn i and its neighboring urns;
see [28], [29] where this notion was first introduced. We addi-
tionally assume that the urns have finite memory, a concept
originally developed in [24] in the context of using a single
Pólya urn process to model burst noise propagation in com-
munication channels. In a finite memory Pólya urn, along with
addition of new reinforcing balls to the urn at each time step
t ≥ M +1, one removes the balls which were added to the urn
at time t − M, where M is the urn’s memory parameter, see
Fig. 1. Unlike the classical Pólya process, the drawing process
for a Pólya urn with memory M forms a Markov chain with
2M states. Other Markovian versions of the Pólya process are
studied in [30], [31].

Finite memory Pólya urn processes on a network were
already introduced in [32]. However, in this model, the ran-
dom vector of drawing variables forms an irreducible Markov
chain and hence there are no absorbing states for the Markov
process. In this letter, we modify this process in order to make
the Markov chain reducible. To wit, for a memory M network,
at time t = M + 1, we remove the balls which were present
in the urns at time t = 0, i.e., we remove the initial condi-
tions. The significance of removing initial conditions is that
the individuals forget about their inherent beliefs as of time

t ≥ M + 1. This modified version of the finite memory Pólya
network has two absorbing states which enables all the indi-
viduals to reach a consensus value, as long as the underlying
network is connected.

Organization: In Section II, we describe our network of
finite memory Pólya urns and show that for a memory M,
the vector of draw variables forms a time invariant Mth order
Markov chain. In Section III, we study the structure of this
Markov process and show that our network achieves con-
sensus. In Section IV, we present an alternate method to
show consensus for a homogeneous connected network. In this
method, we obtain a class of linear dynamical systems with
time delay which gives the probability of drawing a red ball
from the super-urns at any time t. We then obtain the consen-
sus value of this connected homogeneous network by studying
the asymptotic properties of these delayed linear dynamical
systems. Section V contains simulation studies. We conclude
this letter in Section VI.

II. THE MODEL

A finite memory Pólya urn is a modified version of classical
Pólya urn where at each time all reinforcing balls added to
the urn M time steps before are removed [24]. We consider
an undirected connected network GN consisting of N nodes,
each equipped with a finite memory Pólya urn (where each
urn represents an individual in the network) with memory M.
By connected here we mean that there exists a path between
urns i and j for all i, j ∈ {1, 2, . . . , N}. At time t = 0, urn i
contains Ri red balls and Bi black balls, i = 1, . . . , N. We let
Ti = Ri +Bi be the total number of balls in the ith urn at time
t = 0, and assume that no urn is empty at time t = 0, i.e.,
Ti > 0 for all i. We let Ui,t denote the ratio of red balls in
urn i at time t, with its initial value (at time t = 0) given by
Ui,0 = Ri/Ti. At each time t ≥ 1, we draw a ball from the
“super-urn” of every urn. If a red ball is drawn from the super-
urn of an urn i, we add �r,i red balls to the urn i; similarly, we
add �b,i black balls to urn i if a black ball is drawn from the
super-urn of urn i. �r,i and �b,i are called the reinforcement
parameters and the individuals in the network (represented by
urns) update their belief according to these parameters at every
time step.

Since, the urns in our network have a finite memory M,
after adding reinforcing balls at time t ≥ M + 1, we remove
the reinforcing balls which were added to the urns at time
t − M. Furthermore, at time t = M + 1, we remove the balls
which were present in the urn at time t = 0, i.e., after M
draws, we permanently remove the initial Ti balls from urn i.
Let Zi,t be the indicator function of the ball drawn from the
super-urn of urn i at time t ≥ 1, i.e.,

Zi,t =

⎧
⎪⎪⎨

⎪⎪⎩

1 if a red ball is drawn from the super-urn
of urn i at time t,

0 if a black ball is drawn from the super-urn
of urn i at time t.

(1)

Since the drawing mechanism is applied simultaneously to all
super-urns, the draw variables Zi,t and Zi′,t are conditionally
independent given all past draws in the network for any two
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urns i �= i′, i.e., at any time t,

P
(

Z1,t, . . . , ZN,t|{Z1,k}t−1
k=1, . . . , {ZN,k}t−1

k=1

)

=
N∏

i=1

P
(

Zi,t|{Z1,k}t−1
k=1, . . . , {ZN,k}t−1

k=1

)
. (2)

The ratio of red balls in urn i for time t ≤ M is given by

Ui,t = Ui,0 + ∑t−1
n=1 �r,iZi,n

1 + ∑t−1
n=1 �r,iZi,n + ∑t−1

n=1(1 − �b,i)Zi,n
, (3)

and for t ≥ M + 1 is given by

Ui,t =
∑t−1

n=t−M �r,iZi,n
∑t−1

n=t−M �r,iZi,n + ∑t−1
n=t−M �b,i(1 − Zi,n)

. (4)

Defining Zt = (Z1,t, Z2,t, . . . , ZN,t) as the network wide
draw tuple, we arrive at the following result.

Lemma 1: The stochastic process {Zt}∞t=1 is a time invariant
Mth order Markov chain.

Proof: Let at = (a1,t, . . . , aN,t) ∈ {0, 1}N . Using (4) and
by virtue of the conditional independence stated in (2), for
t ≥ M + 1 we have that

P[Zt+1 = at+1|Zt = at, . . . , Z1 = a1]

=
N∏

i=1

⎛

⎝
ai,t+1

(∑
j∈N ′

i

∑t
n=t−M+1 �r,jaj,n

)

∑
j∈N ′

i

∑t
n=t−M+1(�r,jaj,n + �b,j(1 − aj,n))

+
(1 − ai,t+1)

(∑
j∈N ′

i

∑t
n=t−M+1 �b,j(1 − aj,n)

)

∑
j∈N ′

i

∑t
n=t−M+1(�r,jaj,n + �b,j(1 − aj,n))

⎞

⎠, (5)

where N ′
i is the set of all neighbors of urn i and the urn i

itself. As a result, we have that for all t ≥ M + 1,

P[Zt+1 = at+1|Zt = at, . . . , Z1 = a1]

= P[Zt+1 = at+1|Zt = at, . . . , Zt−M+1 = at−M+1]

= P[ZM+1 = at+1|ZM = at, . . . , Z1 = at−M+1]. (6)

Hence the process {Zt}∞t=1 is a time invariant Mth order Markov
chain.

III. CONSENSUS IN GENERAL NETWORKS

We next study the structure of this Markov process with
memory M. Setting Wt := (Zt, Zt+1, . . . , Zt+M−1), Lemma 1
states that {Wt}∞t=1 is a Markov chain of order one. Note
that for a network of size N and memory M, the Markov
chain {Wt}∞t=1 has 2MN states. Before stating the next theo-
rem, we define the following: Recall that N ′

i is the set of all
neighbors of urn i and the urn i itself. We define

N (�)
i :=

⋃

k∈N (�−1)
i

N (�−1)
k ,

where � ≥ 1, and N (0)
k := N ′

k. Note that in a connected
network of urns GN , for every urn i ∈ {1, 2, . . . , N}, there
exists n ≥ 1 such that

N ′
i ∪ N (1)

i ∪ N (2)
i ∪ · · · ∪ N (n)

i = G. (7)

We now use (7) to classify the states of the Markov chain
{Wt}∞t=1 as either absorbing or transient.

Theorem 1: The Markov chain {Wt}∞t=1 has two absorbing
states which are state 0 with all entries zero and state 1 with
all entries one. The remaining states are transient, i.e., {Wt}∞t=1
is an absorbing Markov chain.

Proof: We denote a state of the Markov chain {Wt}∞t=1 by
the following length-NM tuple

a := ((a11, a21, . . . , aN1), . . . , (a1M, a2M, . . . , aNM))

where a ∈ {0, 1}NM . Let 0 (resp., 1) be the state for which aij =
0 (resp., aij = 1) for all i ∈ {1, . . . , N} and j ∈ {1, 2, . . . , M}.
Using (5), we obtain that

P(Wt+1 = 0|Wt = 0) =
N∏

i=1

P(Zi,t+1 = 0|Wt = 0) = 1.

Similarly, P(Wt+1 = 1|Wt = 1) = 1. Hence 0 and 1 are both
absorbing states of the Markov chain {Wt}∞t=1. We now show
that the remaining states of Wt are transient. It is enough to
show that for any state b /∈ {0, 1}, there exists a time tb such
that

P(Wtb = 0|W1 = b) > 0. (8)

To show this, we construct a finite length path from state b to
state 0 which occurs with positive probability.

• Suppose the Markov chain is in state Wt = b at time t,
with

b := ((b11, b21, . . . , bN1), . . . , (b1M, b2M, . . . , bNM)).

Note that there exists a component bij = 0 for some
i ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . , M}.

• Let

b′ := (
(b′

11, b′
21, . . . , b′

N1), . . . , (b
′
1M, b′

2M, . . . , b′
NM)

)

be a state of the Markov chain {Wt}∞t=0 with b′
kj = bkj

for all k ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . , M − 1}. Also,
b′

kM = 0 for all k ∈ N ′
i and b′

kM = bkM for all k /∈ N ′
i .

We will now show that we can go from state b to b′ in a
single time step, i.e.,

P(Wt+1 = b′|Wt = b) > 0.

Note that

P(Wt+1 = b′|Wt = b)

= P
(
Zt+M = (b′

1M, b′
2M, . . . , b′

NM)|Wt = b
)

=
N∏

k=1

P(Zk,t+M = b′
k,M|Wt = b). (9)

At time t+M−1, after making the draws and adding and
removing corresponding balls, the super urn of k ∈ N ′

i
contains a black ball because Zi,t+j−1 = bi,j = 0 for some
j ∈ {1, 2, . . . , M}. At time t + M, it is possible to draw a
black ball from the super urn of k with probability

P(Zk,t+M = b′
KM = 0|Wt = b) > 0.
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For the super urn of k /∈ N ′
i , at time t + M, it is possible

to draw a ball which was added to the urn k at time
t + M − 1, i.e.,

P(Zk,t+M = b′
KM = bKM|Wt = b) > 0.

Hence each term of the product in (9) is strictly positive.
• If b′ = 0, then we are done. Otherwise, at the next time

step, i.e., at time t + M + 1, we draw a black ball from
super urns of j ∈ N (1)

i (it is possible to draw a black
ball from such a super urn because Zk,t+M = 0 for all
k ∈ N ′

i ). For super urns of j /∈ N (1)
i , it is possible to

draw a ball which was added to the urn j at time t + M.
• Repeating the above procedure, by the virtue of (7), we

will eventually hit (with positive probability) the state 0
at some time.

Using this structure of the Markov chain {Wt}∞t=1, we now
obtain the consensus result for our connected network GN of
finite memory Pólya urns.

Theorem 2: For a general connected network GN ,

lim
t→∞ P(Zi,t = 1) = lim

t→∞ P(Zj,t = 1)

for all i, j ∈ {1, 2, . . . , N}.
Proof: We denote the limiting distributions of the Markov

chain {Wt}∞t=1 by �, where the entries of � are denoted
by πk1k2···kM with kj = (k1j, k2j, . . . , kNj) ∈ {0, 1}N for
j ∈ {1, 2, . . . , M}. The subscript k1k2 · · · kM denotes the state
of the Markov chain. By Theorem 1, the limiting distribution
of {Wt}∞t=1 is given by � = (1 − π, 0, . . . , 0, π), 0 ≤ π ≤ 1,
where first and the last states of the Markov chain are the
absorbing states (corresponding to states 0 and 1, respectively).
Since {Wt}∞t=1 is a reducible Markov chain, there is no unique
limiting distribution. Also, the limiting distribution can vary
depending on W1, i.e., the initial state of the Markov chain.
The marginal limiting distribution for an urn i is given by:

lim
t→∞ P(Zi,t = 1) =

∑

kij=1
j∈{1,2,...,M}

πk1k2···kM

= π + 0 = π. (10)

Hence,

lim
t→∞ P(Zi,t = 1) = π = lim

t→∞ P(Zj,t = 1)

for i, j ∈ {1, . . . , N}, proving the claim.
In the proof of Theorem 2, we observe that the consensus

value is given by π which is the asymptotic belief of each
individual in the network GN ; however it is hard to analytically
solve for π in terms of the initial state for a general network.

IV. CONSENSUS IN HOMOGENEOUS NETWORKS

In this section, we present an alternate approach to show
consensus for homogeneous connected networks by construct-
ing a class of linear dynamical systems with time delay. We
further derive the exact consensus value obtained in such
networks by examining the asymptotic behavior of these
dynamical systems. By homogeneous here, we mean that all
reinforcement parameters are identical, i.e., �r,i = �b,i = �

for all i ∈ {1, 2, . . . , N}. However we allow the initial com-
position (i.e., Ui,0) to be different among the urns (i.e., Even
though the individuals update their beliefs with the same rein-
forcement parameters, their initial beliefs can be different).
Rewriting (5) with the homogeneous conditions, we obtain
that for t ≥ M + 1,

P[Zi,t = 1|Zt−1, Zt−2, . . . , Zt−M+1]

=
∑

j∈N ′
i

∑t−1
n=t−M Zj,n

(1 + di)M
. (11)

where di is the degree of urn i in the network GN . Now, taking
expectation of both sides with respect to the random variables
Zt−1, Zt−2, · · · , Zt−M+1 in (11), we obtain

P(Zi,t = 1) =
∑

j∈N ′
i

∑t−1
n=t−M P(Zj,n = 1)

(1 + di)M
. (12)

We further define P(Zi,t = 1) := Pi(t), to write (12) as a
discrete time linear dynamical system given by

Pi(t) =
∑

j∈N ′
i

∑t−1
n=t−M Pj(n)

(1 + di)M
. (13)

In (13), Pi(t) depends on Pi(t − 1), . . . , Pi(t − M) in a linear
fashion, and therefore, in the homogeneous case, we obtain a
linear dynamical system with time delay. We next write the
dynamical system (13) in matrix form. Define

P(t) := (P1(t), . . . , PN(t))T and

Xt,M := (P(t), . . . , P(t − M + 1))T .

Let

BN,M = 1

M
(IN + D)−1(IN + A),

where IN is the identity matrix of size N, D is a diagonal matrix
for which ith diagonal entry is di, and A is the adjacency matrix
of the connected network GN . We hence have the following
linear dynamical system:

Xt,M = JN,MXt−1,M (14)

where

JN,M =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

BN,M BN,M BN,M · · · BN,M

IN 0N 0N · · · 0N

0N IN 0N · · · 0N
...

...
...

...
...

0N 0N · · · IN 0N

⎤

⎥
⎥
⎥
⎥
⎥
⎦

is a stochastic block matrix of size NM×NM. It has M2 blocks
each of which is a square matrix of size N. In the matrix JN,M ,
IN is identity matrix of size N and 0N is a square matrix of
size N with all entries 0.

We next establish the asymptotic behavior of the linear
dynamical system with time delay in (14).

Theorem 3: If GN is a connected homogeneous network
with memory M, then we have that

lim
t→∞ Xt,M(i) = π for i ∈ {1, 2, . . . , NM}, (15)
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where

π =
M∑

j=1

(M − j + 1)

M

N∑

i=1

v1,iXM,M(i),

Xt,M(i) is the ith entry of the column vector Xt,M , and

v̄ = ((v1,1, . . . , v1,N), . . . , (vM,1, . . . , vM,N))

is the l1-normalized left eigenvector of the matrix JN,M in (14)
corresponding to eigenvalue λ = 1. Moreover, (v1,1, . . . , v1,N)

is a left eigenvector of BN,1 also corresponding to eigenvalue
λ = 1.

Proof: Since GN is connected, BN,M is a primitive matrix.
Since all the entries of JN,M are non-negative and all the blocks
in the first row of JN,M are primitive, for some positive integer
k > 0, all the blocks of Jk

N,M will be sum of positive powers
of BN,M . Since, BN,M is a primitive matrix, there exists h >

k such that Jh
N,M has all positive entries. Hence JN,M is a

primitive matrix. Since JN,M is a stochastic and a primitive
matrix, it is a transition probability matrix for an irreducible
Markov chain and the normalized left eigenvector of the matrix
JN,M , which we denote by

v̄ = ((v1,1, . . . , v1,N), . . . , (vM,1, . . . , vM,N)),

is the unique stationary distribution for this Markov chain. We
can write (14) as

Xt,M = Jt−M
N,M XM,M

Taking t → ∞ in the above equation, we obtain

lim
t→∞ Xt,M = VNMXM,M (16)

where the limit in Xt,M is taken entry wise and VNM is a square
matrix of size NM with each row given by v̄.

The symmetry in the structure of the block matrix JN,M

makes it possible to find a useful relationship between the
entries of the left eigenvector of JN,M corresponding to eigen-
value λ = 1 in terms of the memory parameter M and the
matrix BN1. The equation v̄JN,M = v̄ yields the following
recursive relations:

vj,i = (M − j + 1)

M
v1,i, j = 1, . . . , M, i = 1, . . . , N. (17)

We obtain (15) by substituting (17) in (16).

V. SIMULATION RESULTS

In this section, we present simulations to illustrate the
consensus behavior of our network of urns (For a com-
plete list of parameters used for generating all figures, refer
to the link: https://www.dropbox.com/sh/ojvmeo79wbbdv3g/
AAA5onqqo0TrCU7I0iteuzRGa?dl=0). In Fig. 2, we define
the empirical sum of urn i at time t as

It(i) = 1

t

t∑

n=1

Zi,n (18)

For each time instant t, the empirical sum It(i) for node i
(i.e., urn or agent/individual i) is computed 100 times and the
arithmetic mean value is plotted against time.

Fig. 2. Empirical sum for first seven urns in a network with 10 urns with
memory M = 1. Initial ratio of red balls, �r ’s and �b ’s are all taken to
be different. We observe that asymptotically the empirical sum of all the
network urns approach a consensus value.

Fig. 3. A 15-node connected homogeneous network of finite memory
Pólya urns. We have � = 5 and even through the network is homoge-
neous, the initial ratio of red balls (Ui,0 for urn i) are different for all the
urns.

We observe in Fig. 2 that our network exhibits a consensus
behavior with the empirical sum for all the urns eventually
reaching the same value (we plot the empirical sums for only
7 urns in Fig. 2 for better visibility of the curves). In this
figure, the values of the �r’s and �b’s are taken to be in the
range 5 to 15. We indeed remark that in the long run, the
empirical beliefs of the urns (agents) about the red colored
balls align to a value of about 20%; i.e., the agents eventually
gravitate towards favoring the viewpoint represented by the
black colored balls.

In Fig. 3, we plot the trajectory of the delayed linear
dynamical systems obtained in (13) for different values of the
memory parameter M which illustrates the variation of the
consensus value with memory for a connected homogeneous
network. As seen in Section IV, we can verify the consensus
value of a homogeneous connected network using Theorem 3
by computing the fixed points using (15). As an illustration, in
the 15-node network of Fig. 3, we used the following vector
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of initial ratio of red balls

ρ = (
U1,0, U2,0 . . . , U15,0

)

= (0.16, 0.08, 0.12, 0.04, 0.04, 0.04, 0.24, 0.04,

0.16, 0.12, 0.24, 0.08, 0.16, 0.2, 0.12).

Also for M = 1, letting v denote the normalized left eigen-
vector of the matrix B15,1 corresponding to eigenvalue 1, we
obtain (via computations carried up to the nearest two digits)
that

v = (0.04, 0.04, 0.06, 0.06, 0.13, 0.1, 0.07, 0.06,

0.06, 0.04, 0.04, 0.04, 0.07, 0.04, 0.04).

Then, using (15), the fixed point is given by 〈ρ, v〉 = 0.0988
(where 〈·, ·〉 is the standard inner product). This fixed point is
the same as shown by the light blue curve for M = 1 in Fig. 3
(the same behavior is observed for M = 2, 5 and 10); hence,
these simulations indeed verify Theorem 3.

VI. CONCLUSION

In this letter, we demonstrated that a connected network
of finite memory Pólya urns can be used to model opin-
ion dynamics in a social network. Using the properties of
the underlying Markov process, we proposed a provably cor-
rect consensus dynamics using this model. For the case with
homogeneous reinforcement parameters across individuals, we
provided a delayed dynamical system that can be used alter-
natively to study the asymptotic properties of this model and
determine explicitly the consensus value. Future work includes
exploring extensions of our proposed finite memory Pólya
system to model more complex dynamics for social networks,
including self-appraisal models, game-theoretic settings and
comparisons to other classical consensus models such as the
DeGroot model [22].
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