A lower bound on the probability of a finite union of events

H. Kuai, F. Alajaji ${ }^{*}$, G. Takahara
Department of Mathematics and Statistics, Queen's University, Kingston, Ont., Canada K7L 3N6
Received 18 March 1998; revised 25 January 1999; accepted 17 May 1999

Abstract

A new lower bound on the probability $P\left(A_{1} \cup \cdots \cup A_{N}\right)$ is established in terms of only the individual event probabilities $P\left(A_{i}\right)$'s and the pairwise event probabilities $P\left(A_{i} \cap A_{j}\right)$'s. This bound is shown to be always at least as good as two similar lower bounds: one by de Caen (1997) and the other by Dawson and Sankoff (1967). Numerical examples for the computation of this inequality are also provided. © 2000 Elsevier Science B.V. All rights reserved.

1. Main results

Consider a finite family of events $A_{1}, A_{2}, \ldots, A_{N}$ in a finite ${ }^{1}$ probability space (Ω, P), where N is a fixed positive integer. For each $x \in \Omega$, let $p(x) \triangleq P(\{x\})$, and let the degree of x - denoted by $\operatorname{deg}(x)$ - be the number of A_{i} 's that contain x. Define

$$
B_{i}(k) \triangleq\left\{x \in A_{i}: \operatorname{deg}(x)=k\right\}
$$

and

$$
a_{i}(k) \triangleq P\left(B_{i}(k)\right)
$$

where $i=1,2, \ldots, N$ and $k=1,2, \ldots, N$. We obtain the following lemma.

Lemma 1.

$$
P\left(\bigcup_{i=1}^{N} A_{i}\right)=\sum_{i=1}^{N} \sum_{k=1}^{N} \frac{a_{i}(k)}{k} .
$$

[^0]Proof. We know from [2] that

$$
P\left(\bigcup_{i=1}^{N} A_{i}\right)=\sum_{i=1}^{N} \sum_{x \in A_{i}} \frac{p(x)}{\operatorname{deg}(x)}
$$

But

$$
\begin{aligned}
\sum_{x \in A_{i}} \frac{p(x)}{\operatorname{deg}(x)} & =\sum_{k=1}^{N} \sum_{x \in A_{i}: \operatorname{deg}(x)=k} \frac{p(x)}{\operatorname{deg}(x)} \\
& =\sum_{k=1}^{N} \sum_{x \in A_{i}: \operatorname{deg}(x)=k} \frac{p(x)}{k} \\
& =\sum_{k=1}^{N} \frac{1}{k} \sum_{x \in B_{i}(k)} p(x)=\sum_{k=1}^{N} \frac{a_{i}(k)}{k}
\end{aligned}
$$

This completes the proof.
This brings us to our main result.
Theorem 1.

$$
\begin{align*}
P\left(\bigcup_{i=1}^{N} A_{i}\right) \geqslant & \sum_{i=1}^{N}\left(\frac{\theta_{i} P\left(A_{i}\right)^{2}}{\sum_{j=1}^{N} P\left(A_{i} \cap A_{j}\right)+\left(1-\theta_{i}\right) P\left(A_{i}\right)}\right. \\
& \left.+\frac{\left(1-\theta_{i}\right) P\left(A_{i}\right)^{2}}{\sum_{j=1}^{N} P\left(A_{i} \cap A_{j}\right)-\theta_{i} P\left(A_{i}\right)}\right) \tag{1}
\end{align*}
$$

where

$$
\begin{aligned}
& \theta_{i} \triangleq \frac{\beta_{i}}{\alpha_{i}}-\left\lfloor\frac{\beta_{i}}{\alpha_{i}}\right\rfloor \\
& \alpha_{i} \triangleq \sum_{k=1}^{N} a_{i}(k)=P\left(A_{i}\right)
\end{aligned}
$$

and

$$
\beta_{i} \triangleq \sum_{k=1}^{N}(k-1) a_{i}(k)=\sum_{j: j \neq i} P\left(A_{i} \cap A_{j}\right) .
$$

Proof. From Lemma 1, we can write

$$
P\left(\bigcup_{i=1}^{N} A_{i}\right)=\sum_{i=1}^{N} \sum_{k=1}^{N} \frac{a_{i}(k)}{k}=\sum_{i=1}^{N} V_{i}
$$

where

$$
V_{i} \triangleq \sum_{k=1}^{N} \frac{a_{i}(k)}{k}
$$

To obtain a lower bound on $P\left(\bigcup_{i=1}^{N} A_{i}\right)$, we proceed by finding (for each i) the minimum of the linear expression

$$
\begin{equation*}
V_{i}=\sum_{k=1}^{N} \frac{a_{i}(k)}{k} \tag{2}
\end{equation*}
$$

subject to the constraints:

$$
\begin{align*}
& a_{i}(k) \geqslant 0, \quad k=1, \ldots, N, \tag{3}\\
& \sum_{k=1}^{N} a_{i}(k)=P\left(A_{i}\right) \triangleq \alpha_{i} \tag{4}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{N}(k-1) a_{i}(k)=\sum_{j: j \neq i} P\left(A_{i} \cap A_{j}\right) \triangleq \beta_{i} \tag{5}
\end{equation*}
$$

This constrained minimization problem is solved using the same methodology as proposed in [1].

Step 1: For $r \geqslant 2$, solving (4) for $a_{i}(r-1)$ gives

$$
a_{i}(r-1)=\alpha_{i}-\sum_{k: k \neq r-1} a_{i}(k) .
$$

Substituting the above expression of $a_{i}(r-1)$ in (5) yields

$$
(r-2)\left[\alpha_{i}-\sum_{k: k \neq r-1} a_{i}(k)\right]+\sum_{k: k \neq r-1}(k-1) a_{i}(k)=\beta_{i}
$$

or

$$
\sum_{k: k \neq r-1}[k-(r-1)] a_{i}(k)=\beta_{i}-(r-2) \alpha_{i} .
$$

Dividing by r, we get

$$
\begin{equation*}
\frac{1}{r} \sum_{k: k \neq r-1}[k-(r-1)] a_{i}(k)=\frac{1}{r}\left[\beta_{i}-(r-2) \alpha_{i}\right] . \tag{6}
\end{equation*}
$$

Step 2: Solving (5) for $a_{i}(r)$ gives

$$
a_{i}(r)=\frac{1}{r-1}\left[\beta_{i}-\sum_{k: k \neq r}(k-1) a_{i}(k)\right] .
$$

Substituting the expression for $a_{i}(r)$ in (4) yields

$$
\frac{1}{r-1}\left[\beta_{i}-\sum_{k: k \neq r}(k-1) a_{i}(k)\right]+\sum_{k: k \neq r} a_{i}(k)=\alpha_{i}
$$

or

$$
\begin{equation*}
\frac{1}{r-1} \sum_{k=1}^{N}(r-k) a_{i}(k)=\alpha_{i}-\frac{\beta_{i}}{r-1} \tag{7}
\end{equation*}
$$

Step 3: Solving (6) for $a_{i}(r)$ and solving (7) for $a_{i}(r-1)$, respectively, yield

$$
\frac{a_{i}(r)}{r}=\frac{\beta_{i}}{r}-\frac{(r-2) \alpha_{i}}{r}-\sum_{k: k \neq r} \frac{k-(r-1)}{r} a_{i}(k)
$$

and

$$
\frac{a_{i}(r-1)}{r-1}=\alpha_{i}-\frac{\beta_{i}}{r-1}-\sum_{k: k \neq r-1} \frac{r-k}{r-1} a_{i}(k)
$$

Substituting the above two expressions in (2) yields

$$
\begin{aligned}
V_{i} & -\frac{\beta_{i}}{r}+\frac{r-2}{r} \alpha_{i}+\sum_{k: k \neq r} \frac{k-(r-1)}{r} a_{i}(k)-\alpha_{i}+\frac{\beta_{i}}{r-1}+\sum_{k: k \neq r-1} \frac{r-k}{r-1} a_{i}(k) \\
& =\sum_{k: k \neq r-1, r} \frac{a_{i}(k)}{k}
\end{aligned}
$$

or

$$
V_{i}-\frac{2}{r} \alpha_{i}+\frac{1}{r(r-1)} \beta_{i}=\sum_{k=1}^{N} \frac{(r-k)(r-k-1)}{r(r-1)} \frac{a_{i}(k)}{k} \geqslant 0
$$

where $r \geqslant 2$.
Step 4: Define

$$
\begin{equation*}
f_{i}(r) \triangleq \frac{2}{r} \alpha_{i}-\frac{\beta_{i}}{r(r-1)} . \tag{8}
\end{equation*}
$$

We thus get that

$$
\begin{equation*}
V_{i} \geqslant f_{i}(r) \tag{9}
\end{equation*}
$$

where $r \geqslant 2$.
We want to maximize $f_{i}(r)$ over $r \geqslant 2$ in order to render (9) as tight as possible. Setting

$$
\begin{aligned}
& f_{i}(r)-f_{i}(r-1) \geqslant 0, \\
& f_{i}(r)-f_{i}(r+1) \geqslant 0,
\end{aligned}
$$

we get

$$
1+\frac{\beta_{i}}{\alpha_{i}} \leqslant r \leqslant 2+\frac{\beta_{i}}{\alpha_{i}} .
$$

Since r is an integer, we obtain

$$
1+\left\lfloor\frac{\beta_{i}}{\alpha_{i}}\right\rfloor \leqslant r \leqslant 2+\left\lfloor\frac{\beta_{i}}{\alpha_{i}}\right\rfloor .
$$

Let $r_{1}^{\prime} \triangleq 1+\left\lfloor\beta_{i} / \alpha_{i}\right\rfloor, r_{2}^{\prime} \triangleq 2+\left\lfloor\beta_{i} / \alpha_{i}\right\rfloor$ and $\theta_{i}=\beta_{i} / \alpha_{i}-\left\lfloor\beta_{i} / \alpha_{i}\right\rfloor$. So

$$
\begin{aligned}
f_{i}\left(r_{1}^{\prime}\right) & =\frac{\left(1+\theta_{i}\right) \alpha_{i}^{2}}{\beta_{i}+\left(1-\theta_{i}\right) \alpha_{i}}-\frac{\theta_{i} \alpha_{i}^{2}}{\beta_{i}-\theta_{i} \alpha_{i}}, \\
f_{i}\left(r_{2}^{\prime}\right) & =\frac{\theta_{i} \alpha_{i}^{2}}{\beta_{i}+\left(2-\theta_{i}\right) \alpha_{i}}+\frac{\left(1-\theta_{i}\right) \alpha_{i}^{2}}{\beta_{i}+\left(1-\theta_{i}\right) \alpha_{i}} .
\end{aligned}
$$

If r_{1}^{\prime} is valid - i.e., if $r_{1}^{\prime} \geqslant 2$ - it is easy to prove that $f_{i}\left(r_{1}^{\prime}\right) \leqslant f_{i}\left(r_{2}^{\prime}\right)$. This is verified as follows:

$$
\begin{aligned}
f_{i}\left(r_{2}^{\prime}\right)-f_{i}\left(r_{1}^{\prime}\right)= & \frac{\theta_{i} \alpha_{i}^{2}}{\beta_{i}+\left(2-\theta_{i}\right) \alpha_{i}}+\frac{\left(1-\theta_{i}\right) \alpha_{i}^{2}}{\beta_{i}+\left(1-\theta_{i}\right) \alpha_{i}} \\
& -\frac{\left(1+\theta_{i}\right) \alpha_{i}^{2}}{\beta_{i}+\left(1-\theta_{i}\right) \alpha_{i}}+\frac{\theta_{i} \alpha_{i}^{2}}{\beta_{i}-\theta_{i} \alpha_{i}} \\
= & \frac{2 \theta_{i}\left(\alpha_{i}\right)^{4}}{\left[\beta_{i}+\left(2-\theta_{i}\right) \alpha_{i}\right]\left[\beta_{i}+\left(1-\theta_{i}\right) \alpha_{i}\right]\left[\beta_{i}-\theta_{i} \alpha_{i}\right]} \\
\geqslant & 0 .
\end{aligned}
$$

Substituting $f_{i}\left(r_{2}^{\prime}\right)$ into (9) and summing over i yields (1).

2. Comparison with de Caen's bound

In a recent work [2], de Caen also presented a lower bound on $P\left(\bigcup_{i=1}^{N} A_{i}\right)$ in terms of the $P\left(A_{i}\right)$'s and the $P\left(A_{i} \cap A_{j}\right)$'s.

Lemma 2 (de Caen [2]). Let $A_{1}, A_{2}, \ldots, A_{N}$ be any finite family of events in a probability space (Ω, P). Then

$$
\begin{equation*}
P\left(\bigcup_{i=1}^{N} A_{i}\right) \geqslant \sum_{i=1}^{N} \frac{P\left(A_{i}\right)^{2}}{\sum_{j=1}^{N} P\left(A_{i} \cap A_{j}\right)} . \tag{10}
\end{equation*}
$$

We next demonstrate that our new bound is always at least as good as de Caen's bound. More specifically, we prove the following.

Lemma 3. Let $A_{1}, A_{2}, \ldots, A_{N}$ be any finite family of events in a probability space (Ω, P). Then

$$
\begin{aligned}
& \sum_{i=1}^{N}\left(\frac{\theta_{i} P\left(A_{i}\right)^{2}}{\sum_{j=1}^{N} P\left(A_{i} \cap A_{j}\right)+\left(1-\theta_{i}\right) P\left(A_{i}\right)}+\frac{\left(1-\theta_{i}\right) P\left(A_{i}\right)^{2}}{\sum_{j=1}^{N} P\left(A_{i} \cap A_{j}\right)-\theta_{i} P\left(A_{i}\right)}\right) \\
& \quad \geqslant \sum_{i=1}^{N} \frac{P\left(A_{i}\right)^{2}}{\sum_{j=1}^{N} P\left(A_{i} \cap A_{j}\right)},
\end{aligned}
$$

where

$$
\theta_{i} \triangleq \frac{\beta_{i}}{\alpha_{i}}-\left\lfloor\frac{\beta_{i}}{\alpha_{i}}\right\rfloor
$$

In order to prove Lemma 3, we need the following fact.
Lemma 4. Suppose $a>0, b \geqslant 0$, and $0 \leqslant x \leqslant 1$, then

$$
\frac{x a^{2}}{b+(2-x) a}+\frac{(1-x) a^{2}}{b+(1-x) a} \geqslant \frac{a^{2}}{b+a} .
$$

Proof. Let

$$
f(x)=\frac{a^{2} x}{b+(2-x) a}+\frac{a^{2}(1-x)}{b+(1-x) a} .
$$

- For $b=0$,

$$
f(x)=\frac{a^{2} x}{(2-x) a}+a \geqslant \frac{a^{2}}{b+a}=a .
$$

We are done.

- For $b>0, f(x)$ is continuous for all $x \in[0,1]$.

$$
f^{\prime}(x)=\frac{a^{2} b+2 a^{3}}{[b+(2-x) a]^{2}}-\frac{a^{2} b}{[b+(1-x) a]^{2}}
$$

Let $x_{0} \in[0,1]$ such that $f^{\prime}\left(x_{0}\right)=0$. Then we get a unique solution

$$
x_{0}=\frac{2 a+b-\sqrt{2 a b+b^{2}}}{2 a} \in[0,1]
$$

and

$$
\begin{aligned}
f\left(x_{0}\right) & =\frac{x_{0} a^{2}}{b+\left(2-x_{0}\right) a}+\frac{\left(1-x_{0}\right) a^{2}}{b+\left(1-x_{0}\right) a} \\
& =2 a+2 b-2 \sqrt{2 a b+b^{2}}
\end{aligned}
$$

It is easy to prove that

$$
2 a+2 b-2 \sqrt{2 a b+b^{2}}>\frac{a^{2}}{b+a}
$$

Therefore

$$
\begin{aligned}
\min _{x \in[0,1]} f(x) & =\min \left\{f(0), f(1), f\left(x_{0}\right)\right\} \\
& =\min \left\{\frac{a^{2}}{b+a}, 2 a+2 b-2 \sqrt{2 a b+b^{2}}\right\}=\frac{a^{2}}{a+b},
\end{aligned}
$$

thus,

$$
\frac{x a^{2}}{b+(2-x) a}+\frac{(1-x) a^{2}}{b+(1-x) a} \geqslant \frac{a^{2}}{b+a}
$$

for all $x \in[0,1]$.
Proof of Lemma 3. Letting

$$
a=P\left(A_{i}\right), \quad b=\sum_{j: j \neq i} P\left(A_{i} \cap A_{j}\right), \quad x=\theta_{i}=\frac{b}{a}-\left\lfloor\frac{b}{a}\right\rfloor
$$

in Lemma 4 gives

$$
\begin{aligned}
& \frac{\theta_{i} P\left(A_{i}\right)^{2}}{\sum_{j: j \neq i} P\left(A_{i} \cap A_{j}\right)+\left(2-\theta_{i}\right) P\left(A_{i}\right)}+\frac{\left(1-\theta_{i}\right) P\left(A_{i}\right)^{2}}{\sum_{j: j \neq i} P\left(A_{i} \cap A_{j}\right)+\left(1-\theta_{i}\right) P\left(A_{i}\right)} \\
& \geqslant \frac{P\left(A_{i}\right)^{2}}{\sum_{j: j \neq i} P\left(A_{i} \cap A_{j}\right)+P\left(A_{i}\right)}=\frac{P\left(A_{i}\right)^{2}}{\sum_{j=1}^{N} P\left(A_{i} \cap A_{j}\right)} .
\end{aligned}
$$

Therefore, (1) is always stronger than (10); i.e.,

$$
\begin{aligned}
& \sum_{i=1}^{N}\left(\frac{\theta_{i} P\left(A_{i}\right)^{2}}{\sum_{j=1}^{N} P\left(A_{i} \cap A_{j}\right)+\left(1-\theta_{i}\right) P\left(A_{i}\right)}+\frac{\left(1-\theta_{i}\right) P\left(A_{i}\right)^{2}}{\sum_{j=1}^{N} P\left(A_{i} \cap A_{j}\right)-\theta_{i} P\left(A_{i}\right)}\right) \\
& \quad \geqslant \sum_{i=1}^{N} \frac{P\left(A_{i}\right)^{2}}{\sum_{j: j \neq i} P\left(A_{i} \cap A_{j}\right)+P\left(A_{i}\right)}
\end{aligned}
$$

Note: de Caen's bound is tight (i.e. (10) is an equality) if and only if the degrees $\operatorname{deg}(x)$ are constant on each A_{i} [2]. Since (1) is stronger than (10), we conclude that the above condition is only a sufficient (but not necessary, cf. Example 1 in Section 4) condition for the tightness of (1).

Observation 1. If $\theta_{i}=0 \forall i$, then our bound reduces to de Caen's lower bound. This leads us to also conclude that de Caen's bound is a special case of our bound.

3. Comparison with the Dawson-Sankoff bound

We next prove that our bound is also always at least as good as the Dawson-Sankoff bound $[1,3]$.

Lemma 5 (Dawson-Sankoff [1]). Let $A_{1}, A_{2}, \ldots, A_{N}$ be any finite family of events in a probability space (Ω, P). Then

$$
\begin{equation*}
P\left(\bigcup_{i=1}^{N} A_{i}\right) \geqslant \frac{\theta S_{1}^{2}}{(2-\theta) S_{1}+2 S_{2}}+\frac{(1-\theta) S_{1}^{2}}{(1-\theta) S_{1}+2 S_{2}} \tag{11}
\end{equation*}
$$

where

$$
\begin{aligned}
& S_{1} \triangleq \sum_{i=1}^{N} P\left(A_{i}\right), \\
& S_{2} \triangleq \sum_{i=1}^{N} \sum_{j=1}^{i-1} P\left(A_{i} \cap A_{j}\right),
\end{aligned}
$$

and

$$
\theta \triangleq \frac{2 S_{2}}{S_{1}}-\left\lfloor\frac{2 S_{2}}{S_{1}}\right\rfloor
$$

Lemma 6. Let $A_{1}, A_{2}, \ldots, A_{N}$ be any finite family of events in a probability space (Ω, P). Then (1) is always sharper than (11); i.e.,

$$
\begin{aligned}
& \sum_{i=1}^{N}\left(\frac{\theta_{i} P\left(A_{i}\right)^{2}}{\sum_{j=1}^{N} P\left(A_{i} \cap A_{j}\right)+\left(1-\theta_{i}\right) P\left(A_{i}\right)}+\frac{\left(1-\theta_{i}\right) P\left(A_{i}\right)^{2}}{\sum_{j=1}^{N} P\left(A_{i} \cap A_{j}\right)-\theta_{i} P\left(A_{i}\right)}\right) \\
& \quad \geqslant \frac{\theta S_{1}^{2}}{(2-\theta) S_{1}+2 S_{2}}+\frac{(1-\theta) S_{1}^{2}}{(1-\theta) S_{1}+2 S_{2}}
\end{aligned}
$$

Proof. From the proof of Theorem 1, we know that

$$
f_{i}\left(2+\left\lfloor\frac{\beta_{i}}{\alpha_{i}}\right\rfloor\right) \geqslant f_{i}(r), \quad \forall r \geqslant 2
$$

where the function $f_{i}(\cdot)$ is described in (8). In particular, we have that

$$
f_{i}\left(2+\left\lfloor\frac{\beta_{i}}{\alpha_{i}}\right\rfloor\right) \geqslant f_{i}\left(2+\left\lfloor\frac{\beta}{S_{1}}\right\rfloor\right),
$$

where

$$
\beta \triangleq \sum_{i=1}^{N} \sum_{j: j \neq i} P\left(A_{i} \cap A_{j}\right)=\sum_{i=1}^{N} \beta_{i}
$$

and

$$
S_{1} \triangleq \sum_{i=1}^{N} \alpha_{i}
$$

It can be easily verified that $\beta=2 S_{2}$, where S_{2} is defined in Lemma 5.
Noting that $\sum_{i} f_{i}\left(2+\left\lfloor\beta_{i} / \alpha_{i}\right\rfloor\right)$ yields our bound (the right-hand side of (1)), and letting $s=2+\left\lfloor\beta / S_{1}\right\rfloor$ we get

$$
\begin{aligned}
\sum_{i=1}^{N} f_{i}\left(2+\left\lfloor\frac{\beta_{i}}{\alpha_{i}}\right\rfloor\right) & \geqslant \sum_{i=1}^{N} f_{i}\left(2+\left\lfloor\frac{\beta}{S_{1}}\right\rfloor\right) \\
& =\frac{2}{s} \sum_{i=1}^{N} \alpha_{i}-\frac{1}{s(s-1)} \sum_{i=1}^{N} \beta_{i}
\end{aligned}
$$

$$
\begin{align*}
& =\frac{2 S_{1}}{s}-\frac{1}{s(s-1)} \beta \\
& =\frac{2 S_{1}}{s}-\frac{2 S_{2}}{s(s-1)} \tag{12}
\end{align*}
$$

The proof is completed by observing that the right-hand side of (12) is indeed equal to the Dawson-Sankoff bound given in (11).

Observation 2. If $\beta_{i} / \alpha_{i}=C \forall i$, where C is a constant, then $\theta_{i}=\theta \forall i$ and our lower bound reduces to the Dawson-Sankoff lower bound. Thus, Dawson-Sankoff's lower bound is a special case of our bound.

4. Numerical examples

Example 1. We first give an example in which our proposed bound is tight. Let $3 \mid n$ (n is a multiple of 3) and

$$
A_{i}= \begin{cases}\left\{\frac{3 i-1}{2}, \frac{3 i+1}{2}\right\} & \text { if } i \text { is odd } \\ \left\{\frac{3 i}{2}-1, \frac{3 i}{2}\right\} & \text { if } i \text { is even }\end{cases}
$$

where $1 \leqslant i \leqslant 2 n / 3$. Then $A_{i} \cap A_{j} \neq \emptyset$ if and only if $\lceil i / 2\rceil=\lceil j / 2\rceil$. If the points are uniformly distributed with probability $1 / n$, then

$$
\begin{aligned}
& P\left(A_{i}\right)=\frac{2}{n} \\
& \sum_{j: j \neq i} P\left(A_{i} \cap A_{j}\right)=\sum_{j \neq i:\lceil i / 2\rceil=\lceil j / 2\rceil} P\left(A_{i} \cap A_{j}\right)=\frac{1}{n}
\end{aligned}
$$

and

$$
\theta_{i}=\frac{1}{2}
$$

Clearly

$$
P\left(\bigcup_{i=1}^{2 n / 3} A_{i}\right)=1 .
$$

(1) gives

$$
\sum_{i=1}^{2 n / 3}\left(\frac{\frac{1}{2}(2 / n)^{2}}{3 / n+\frac{1}{2} 2 / n}+\frac{\frac{1}{2}(2 / n)^{2}}{3 / n-\frac{1}{2} 2 / n}\right)=\sum_{i=1}^{2 n / 3} \frac{3}{2 n}=1 .
$$

However (10) gives

$$
\sum_{i=1}^{2 n / 3} \frac{(2 / n)^{2}}{3 / n}=\sum_{i=1}^{2 n / 3} \frac{4}{3 n}=\frac{8}{9}
$$

Thus, in this case, (1) is stronger than (10).

Table 1
Description of System I with $N=6$ and $\left|\bigcup_{i=1}^{N} A_{i}\right|=15 .(\times)$ in the (i, j) th entry indicates that outcome $x_{i} \in A_{j}$

Outcomes x	$p(x)$	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	A_{6}
x_{0}	0.012	\times		\times		\times	
x_{1}	0.022		\times		\times		\times
x_{2}	0.023	\times		\times		\times	
x_{3}	0.033		\times				
x_{4}	0.034	\times				\times	\times
x_{5}	0.044		\times	\times		\times	
x_{6}	0.045		\times			\times	\times
x_{7}	0.055		\times	\times	\times		\times
x_{8}	0.056	\times		\times			
x_{9}	0.066				\times	\times	
x_{10}	0.067		\times		\times	\times	
x_{11}	0.077		\times		\times		
x_{12}	0.078	\times			\times		\times
x_{13}	0.088		\times				
x_{14}	0.089	\times		\times		\times	\times

Table 2
Description of System II with $N=6$ and $\left|\bigcup_{i=1}^{N} A_{i}\right|=15$. (\times) in the (i, j) th entry indicates that outcome $x_{i} \in A_{j}$

Outcomes x	$p(x)$	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	A_{6}
x_{0}	0.023	\times		\times		\times	
x_{1}	0.034		\times		\times		
x_{2}	0.045	\times		\times		\times	
x_{3}	0.056		\times				
x_{4}	0.067	\times				\times	\times
x_{5}	0.078		\times	\times		\times	
x_{6}	0.067		\times			\times	
x_{7}	0.056			\times	\times		\times
x_{8}	0.045	\times		\times			
x_{9}	0.038				\times	\times	
x_{10}	0.011		\times		\times	\times	
x_{11}	0.022		\times				
x_{12}	0.033	\times				\times	
x_{13}	0.044		\times				
x_{14}	0.055	\times					

Example 2. We next consider several systems and compare our bound to the de Caen and Dawson-Sankoff bounds. The different systems are described in Tables 1-4. The lower bounds for each system are computed in Table 5.

It can be clearly observed from the above table that the new bound is sharper than the de Caen and the Dawson-Sankoff bounds.

Table 3
Description of System III with $N=6$ and $\left|\bigcup_{i=1}^{N} A_{i}\right|=15 .(\times)$ in the (i, j) th entry indicates that outcome $x_{i} \in A_{j}$

Outcomes x	$p(x)$	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	A_{6}
x_{0}	0.012	\times		\times		\times	
x_{1}	0.022		\times		\times		
x_{2}	0.023	\times		\times		\times	
x_{3}	0.033		\times				
x_{4}	0.034	\times				\times	\times
x_{5}	0.044		\times	\times		\times	
x_{6}	0.045		\times			\times	\times
x_{7}	0.055			\times	\times		\times
x_{8}	0.056	\times		\times			
x_{9}	0.066				\times	\times	
x_{10}	0.067		\times		\times	\times	
x_{11}	0.077		\times				
x_{12}	0.078	\times			\times		\times
x_{13}	0.088		\times				
x_{14}	0.089	\times		\times		\times	\times

Table 4
Description of System IV with $N=7$ and $\left|\bigcup_{i=1}^{N} A_{i}\right|=15$. (\times) in the (i, j) th entry indicates that outcome $x_{i} \in A_{j}$

Outcomes x	$p(x)$	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	A_{6}	A_{7}
x_{0}	0.0329			\times				
x_{1}	0.1076	\times	\times	\times				\times
x_{2}	0.0599					\times		
x_{3}	0.1108			\times		\times		
x_{4}	0.0420		\times					
x_{5}	0.0055		\times	\times				\times
x_{6}	0.0508					\times	\times	\times
x_{7}	0.1142	\times				\times		
x_{8}	0.0480						\times	\times
x_{9}	0.0235						\times	\times
x_{10}	0.0676	\times	\times					\times
x_{11}	0.0295		\times		\times			
x_{12}	0.0441	\times		\times			\times	
x_{13}	0.1265	\times			\times		\times	
x_{14}	0.1058				\times	\times		\times

Table 5

System	$P\left(\cup_{i} A_{i}\right)$	de Caen (10)	Dawson (11)	New bound (1)
I	0.7890	0.7087	0.7007	0.7247
II	0.6740	0.6154	0.6150	0.6227
III	0.7890	0.7048	0.6933	0.7222
IV	0.9689	0.8759	0.8881	0.8911

References

[1] D.A. Dawson, D. Sankoff, An inequality for probabilities, Proc. Amer. Math. Soc. 18 (1967) 504-507.
[2] D. de Caen, A lower bound on the probability of a union, Discrete Math. 169 (1997) 217-220.
[3] J. Galambos, I. Simonelli, Bonferroni-type Inequalities with Applications, Springer, Berlin, 1996.

[^0]: ${ }^{2}$ This work was supported in part by NSERC and TRIO of Canada.

 * Corresponding author.

 E-mail address: fady@polya.mast.queensu.ca (F. Alajaji)
 ${ }^{1}$ For a general probability space, the problem can be directly reduced to the finite case since there are only finitely many Boolean atoms specified by the A_{i} 's [2].

