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1 IntrodutionIn [6℄, Csisz�ar establishes the onept of generalized �xed-length oding uto� rates (forwardand reverse) for disrete memoryless soures (DMS's). More spei�ally, given � > 0, hede�nes the forward �-uto� rate for a soure fXig1i=1 as the number R0 that provides the bestpossible lower bound in the form �(R�R0) to the soure reliability funtion. This de�nitionimplies that the soure error probability is guaranteed to exponentially deay with a linearexponent of spei�ed slope � for R > R0. He also provides a similar de�nition for the reverse�-uto� rate (where � > 0) with respet to the soure unreliability funtion (the exponentof the vanishing probability of orret deoding). He then demonstrates that the forwardand reverse �-uto� rates are respetively given by H1=(1+�)(X1) and H1=(1��)(X1), whereH�(X1) denotes the R�enyi entropy of order � [15℄. This result provides a new operationalsigni�ane for R�enyi's entropy.Previous operational haraterizations of R�enyi's entropy were established by Arikan [1℄for the theory of guessing, by Jelinek [12℄ and others (e.g., [14℄) for the bu�er overow problemin lossless soure oding, and by Campbell [5℄ for the lossless variable-length oding problemwith an exponential ost onstraint for a DMS. Reently, Erez and Zamir [9℄ demonstratedthat for disrete memoryless modulo additive noise hannels with side information at thetransmitter, Gallager's random oding error exponent as well as the sphere-paking errorexponent an be written in terms of the R�enyi entropy. Finally, Campbell's work wasgeneralized in [16℄ for the lass of Markov soures of arbitrary order.In this work, we extend Csisz�ar's results [6℄ by investigating the �-uto� rate for arbitrary(not neessarily, stationary, ergodi, et.) disrete-time �nite-alphabet soures X 4= fXn =(X(n)1 ; : : : ; X(n)n )g1n=1. We demonstrate that the limsup and liminf R�enyi entropy rates providethe expressions for the forward and reverse �-uto� rates, respetively. These results alsoprovide simple, and in ertain ases, omputable lower bounds to the soure reliability andunreliability funtions. 1



The rest of this paper is organized as follows. In Setion 2, relevant previous results byHan on the reliability and unreliability funtions of arbitrary soures are briey reviewed.The general expression for the forward �-uto� rate and the reverse �-uto� rates are provedin Setions 3 and 4, respetively. Finally, onluding remarks are stated in Setion 5.2 Preliminaries: Soure Reliability and UnreliabilityFuntionsIn this setion, we briey review the previous results by Han [10, 11℄ on the general expres-sions for the reliability and unreliability funtions of arbitrary disrete-time �nite-alphabetsoures (for previous work on the soure oding error exponent, see [7℄, [13℄, [2℄, [8℄, [3℄ and[11℄).Consider a disrete-time soure X de�ned by a sequene of �nite dimensional distri-butions [10℄: X4= nXn = �X(n)1 ; : : : ; X(n)n �o1n=1. We assume that the soure alphabet X is�nite.De�nition 1 (Fixed-length soure ode) An (n;M) �xed-length soure ode for Xn isa olletion of M n-tuples C�n = fn1 ; : : : ; nMg. The error probability of the ode isPe( C�n)4=PXn [Xn 62 C�n℄ :De�nition 2 (Soure reliability funtion [10, De�nitions 1.12 and 1.13℄) Fix e > 0.R > 0 is e-ahievable for a soure X, if there exists a sequene of (n;Mn) �xed-length soureode C�n suh thatlim supn!1 1n logMn � R and lim infn!1 � 1n logPe( C�n) � e:The in�mum of all e-ahievable rates for soure X is denoted by R(ejX). The reliability2



funtion for soure X, E(RjX) is the dual of R(ejX). More spei�ally,E(RjX)4=supfe > 0 : R is e-ahievable for Xg;and E(RjX) = 0 if the above set is empty.Note that sine the soure alphabet is �nite, R(ejX) � log jX j <1 for every e > 0; thisimplies that E(RjX) = 1 for R > log jX j. Furthermore, E(RjX) is non-dereasing in Rbut non-onvex in general.Theorem 1 ([10, Theorem 1.15℄) Fix e > 0. For any soure X,R(ejX) = supfR� �(R) : R 2 (0;1) and �(R) < eg;where �(R)4= lim infn!1 � 1n logPXn �� 1n logPXn(Xn) � R� :De�nition 3 (Soure unreliability funtion [10, De�nitions 1.14 and 1.15℄) Fixe > 0. R > 0 is reverse e-ahievable for soure X, if there exists a sequene of (n;Mn)�xed-length soure ode C�n suh thatlim supn!1 1n logMn � R and lim infn!1 � 1n log(1� Pe( C�n)) � e:The in�mum of all reverse e-ahievable rates for soure X is denoted by R�(ejX). Thereforefor any 0 < R < R�(ejX), every ode sequene C�n with lim supn!1(1=n) logMn � Rsatis�es Pe( C�n) > 1 � expf�neg for all suÆiently large n. This is a pessimisti viewpoint, sine we require that all ode sequenes are \bad" for all suÆiently large n1. Theunreliability funtion for soure X, E�(RjX) is the dual of R�(ejX). More spei�ally,1Note that this is onsistent with our terminology for R�(ejX) as an unreliability funtion. However,one ould also regard our de�nition from the optimisti point of view [10℄ if the quantity of interest is theprobability of orret deoding as opposed to the probability of error. In this ase, one would require \good"odes for in�nitely many n. 3



E�(RjX)4= inffe > 0 : R is reverse e-ahievable for Xg.Under slight modi�ation, the following result follows from [10, Theorem 1.16℄.Theorem 2 Fix e > 0. For any soure X,R�(ejX) = inffh > 0 : infR>0(�(R) + [R� �(R)� h℄+) � eg;where �(R)4= lim infn!1 � 1n logPXn �� 1n logPXn(Xn) < R� ;and [x℄+4=max(x; 0).3 Forward �-Cuto� RateDe�nition 4 (Forward �-uto� rate) Fix � > 0. R0 � 0 is a forward �-ahievable ratefor a soure X if E(RjX) � �(R� R0)for every R > 0, or equivalently, R(ejX) � 1� e+R0;for every e > 0. The forward �-uto� rate for X is de�ned as the in�mum of all forward�-ahievable rates, and is denoted by R(f)0 (�jX). A graphial illustration of R(f)0 (�jX) isprovided in Figure 1.It is important to remark that the above de�nition of the forward �-uto� rate is equiv-alent to the �rst part of Csisz�ar's de�nition (f. [6, De�nition 1℄).Before providing the general expression of the forward �-uto� rate, we prove the follow-ing lemma, whih is a onsequene of Theorem 1.4
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Figure 1: Forward �-uto� rate for an arbitrary soure X.Lemma 1 The following two onditions are equivalent.(8 R > 0) �(R) � �1 + � (R� R0) (3.1)and (8 e > 0) R(ejX) � 1� e+R0: (3.2)Proof:1. Forward part: (3.1))(3.2)For any e > 0, we obtain by Theorem 1 that(8 Æ > 0)(9 RÆ with �(RÆ) < e) R(ejX)� Æ � RÆ � �(RÆ):) R(ejX) � RÆ � �(RÆ) + Æ� RÆ � �1 + � (RÆ �R0) + Æ (3.3)5



= 11 + �RÆ + �1 + �R0 + Æ< 11 + �  1 + �� e +R0!+ �1 + �R0 + Æ (3.4)= 1� e+R0 + Æ;where (3.3) follows by (3.1), and (3.4) holds beausee > �(RÆ) � �1 + � (RÆ �R0):The proof is then ompleted by noting that Æ an be made arbitrarily small (indepen-dently of e).2. Converse part: (3.2) ) (3.1)(3.1) holds trivially for those R satisfying �(R) =1. For any R > 0 with �(R) <1,let eÆ4=�(R) + Æ for some Æ > 0. Then (by Theorem 1)R(eÆjX) � R � �(R):) �(R) � R� R(eÆjX)� R� 1� eÆ �R0 (3.5)= R� 1��(R)� Æ� � R0;where (3.5) follows by (3.2). Thus,�(R) � �1 + � (R�R0)� Æ1 + � :The proof is then ompleted by noting that Æ an be made arbitrarily small. 26



Remark: The above lemma atually identi�es the forward �-uto� rate R(f)0 (�jX) as theR-axis interept of the support line with slope �=(1 + �) to the large deviation spetrumurve �(R). We next establish an expression for R(f)0 (�jX) by showing that the limsupR�enyi entropy rate of order 1=(1 + �) is indeed the above interept.Theorem 3 (Forward �-uto� rate formula) Fix � > 0. For an arbitrary soure X ,R(f)0 (�jX) = lim supn!1 1nH1=(1+�)(Xn);where H�(Xn)4= 11� � log Xxn2Xn P �Xn(xn)is the (n-dimensional) R�enyi entropy of order �.Proof:1. Forward part: R(f)0 (�jX) � lim supn!1(1=n)H1=(1+�)(Xn)By the equivalene of onditions (3.1) and (3.2), it suÆes to show that(8 R � 0) �(R) � �1 + � �R� lim supn!1 1nH1=(1+�)(Xn)� :P r �� 1n logPXn(Xn) � R� = Pr he�t logPXn(Xn) � entRi ; for t > 0� e�ntR Xxn2Xn P 1�tXn (xn); for t > 0 (by Markov0s inequality)= exp��nt�R� 1nH1�t(Xn)�� ; for 0 < t < 1:) �(R) � t�R � lim supn!1 1nH1�t(Xn)� ; for 0 < t < 1= �1 + � �R� lim supn!1 1nH1=(1+�)(Xn)� ; for �4= t1� t > 0:7



2. Converse part: R(f)0 (�jX) � lim supn!1(1=n)H1=(1+�)(Xn)The onverse part holds trivially if lim supn!1(1=n)H1=(1+�)(Xn) = 0. Without lossof generality, we assume that lim supn!1(1=n)H1=(1+�)(Xn) > 0.By the equivalene of onditions (3.1) and (3.2), it suÆes to show that for any Æ > 0arbitrarily small, there exists R = R(Æ) > 0 suh that�(R) � �1 + � �R� lim supn!1 1nH1=(1+�)(Xn) + 3Æ� :Consider the tilted distribution (e.g., [4, 3℄) with parameter t of the random variable� logPXn(Xn), de�ned asP (t)Xn(xn) 4= et(� logPXn(xn))PXn(xn)Xx̂n2Xn et(� logPXn(x̂n))PXn(x̂n)= P 1�tXn (xn)Xx̂n2Xn P 1�tXn (x̂n) = P 1�tXn (xn)expftH1�t(Xn)g= expf�t[logPXn(xn) +H1�t(Xn)℄gPXn(xn); (3.6)where t = �=(1 + �). By de�nition of limsup, there exists an inreasing sequene ofpositive integers J 4=fnjgj�1 satisfyinglimn!1; n2J 1nH1=(1+�)(Xn)4= limj!1 1njH1=(1+�)(Xnj) = lim supn!1 1nH1=(1+�)(Xn):Also de�ne �4= inf nR 2 [0;1) : �(t)J (R) > 0o ; (3.7)where2 �(t)J (R)4= lim infn!1; n2J � 1n logP (t)Xn �xn 2 X n : � 1n logPXn(xn) � R� :2Reall that for any sequene fang,lim infn!1; n2J an4=lim infj!1 anj = limj!1 infk�j ank :8



In Appendix A (f. Lemmas 4 and 5), we show that for 0 < t < 1,� � 11� t log jX j;and limn!1; n2J 1nH1=(1+�)(Xn) > 0 ) � � limn!1; n2J 1nH1=(1+�)(Xn) > 0:Hene, we an hoose a �xed Æ 2 (0; � ℄ suh that�(t)J (� + Æ) = lim infn!1; n2J � 1n logP (t)Xn �xn 2 X n : � 1n logPXn(xn) � � + Æ� > 0:The above inequality implies the existene of  > 0 suh that� 1n logP (t)Xn �xn 2 X n : � 1n logPXn(xn) � � + Æ� > for all n 2 J suÆiently large. Thus, for those n satisfying the above inequality,P (t)Xn �xn 2 X n : � 1n logPXn(xn) < � + Æ� > 1� e�n:Let Ik4=[bk�1; bk) for 1 � k � K4= d(� + Æ)=(2Æ)e ;where (8 1 � k < K) bk = 2kÆ; and bK = � + Æ:Note that bk � bk�1 = 2Æ for every 1 � k < K and 0 < bK � bK�1 � 2Æ. Sine� logPXn(Xn) � 0 with probability 1, thenP (t)Xn �xn : � 1n logPXn(xn) < � + Æ� = KXk=1P (t)Xn �xn : � 1n logPXn(xn) 2 Ik�> 1� e�n for all n 2 J suÆiently large:Hene, there exists k(n) 2 [1; K℄ for all suÆiently large n 2 J suh thatP (t)Xn �xn : � 1n logPXn(xn) 2 Ik(n)� � 1� e�nK : (3.8)9



Let R 4= lim infn!1; n2J bk(n)�1 � Æ (here, we assume that by hoosing Æ > 0 smallenough, we an make R > 0. We will substantiate this assumption later). Then bynoting that R < bk(n)�1 for all suÆiently large n 2 J , we obtain thatPXn �xn : � 1n logPXn(xn) � R� � PXn �xn : � 1n logPXn(xn) 2 Ik(n)�for all n 2 J suÆiently large. But,PXn �xn : � 1n logPXn(xn) 2 Ik(n)�= X[xn:�(1=n) logPXn(xn)2Ik(n)℄PXn(xn)= X[xn:�(1=n) logPXn(xn)2Ik(n)℄ expft[logPXn(xn) +H1�t(Xn)℄gP (t)Xn(xn) (by (3:6))� expf�ntbk(n) + tH1�t(Xn)g X[xn:�(1=n) logPXn(xn)2Ik(n)℄P (t)Xn(xn)= exp��nt�bk(n) � 1nH1�t(Xn)��P (t)Xn �xn : � 1n logPXn(xn) 2 Ik(n)�� 1� e�nK exp��nt�bk(n) � 1nH1�t(Xn)�� 8 n 2 J suÆiently large; (3.9)where the last inequality follows from (3.8). Consequently,�(R) = lim infn!1 � 1n logPr �� 1n logPXn(Xn) � R�� lim infn!1; n2J � 1n logPr �� 1n logPXn(Xn) � R�� t� lim infn!1; n2J bk(n) � limn!1; n2J 1nH1�t(Xn)�� t� lim infn!1; n2J bk(n)�1 + 2Æ � lim supn!1 1nH1�t(Xn)�= t�R� lim supn!1 1nH1�t(Xn) + 3Æ� : (3.10)Now it remains to validate the laim on R that it an be made positive by hoosing Æsmall enough. We prove this assumption by ontradition. Suppose that R annot be10



made positive for any Æ > 0; i.e., lim infn!1;n2J bk(n)�1 = 0 for arbitrarily small Æ > 0.Then by following a similar proedure as in (3.9) and (3.10), we obtain0 � lim infn!1 � 1n logPr �� 1n logPXn(Xn) � 0�� lim infn!1; n2J � 1n logPr �� 1n logPXn(Xn) � 0�� t�2Æ � limn!1; n2J 1nH1�t(Xn)�= t�2Æ � lim supn!1 1nH1�t(Xn)� ;whih implies that lim supn!1 1nH1�t(Xn) = 0sine Æ an be made arbitrarily small, thus ontraditing the positivity assumption onlim supn!1 1nH1�t(Xn). The proof is therefore ompleted. 2Observation:It is important to point out that the proofs of the forward and onverse parts do notdiretly depend on Theorem 1 or on soure oding onepts. While the proof of the forwardpart is straightforward, the proof of the onverse is more involved. More spei�ally, theobjetive of the onverse part is to demonstrate that if lim supn!1(1=n)H1�t(Xn) is slightlynudged to the left (by a fator of 3Æ), then there exists a oordinate R on the R-axis suhthat a straight line of slope �=(1 + �) given byy = �1 + � �R� �lim supn!1 1nH1�t(Xn)� 3Æ��lies above the urve of �(R) at R = R, thus violating its status of support line for �(R).This proof is established by observing that the desired oordinate R lies in a smallneighborhood of � , where � is the largest point for whih the spetrum �(t)J (R) of the tilteddistribution with parameter t for the random variable � logPXn(Xn) vanishes. A key point11



is to hoose the tilted parameter t to be equal to �=(1+�) whih is the slope of the supportline to �(R). We graphially illustrate this observation (based on a true example) in Figure 2.
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Figure 2: Funtions �(R), �(t)J (R) and [�=(1 + �)℄(R � lim supn!1(1=n)H1=(1+�)(Xn)) foran i.i.d. binary soure with PX(0) = 1� PX(1) = 1=4 and � = 9 (or equivalently, t = 0:9).When R > log(4), �(R) = �(t)J (R) =1.
4 Reverse �-uto� rateDe�nition 5 (Reverse �-uto� rate) Fix � > 0. R0 � 0 is a reverse �-ahievable ratefor a soure X if E�(RjX) � ��(R �R0)for every R > 0, or equivalently, R�(ejX) � � 1� e+R0;12



for every e > 0. The reverse �-uto� rate for X is de�ned as the supremum of all reverse�-ahievable rates, and is denoted by R(r)0 (�jX). A graphial illustration of R(r)0 (�jX) isprovided in Figure 3.
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Figure 3: Reverse �-uto� rate for an arbitrary soure X.We observe that the above de�nition of �-uto� rate is equivalent to Csisz�ar's de�nitionof largest ~�-unahievable rate in [6, De�nition 1℄, where ~� = ��.We �rst prove the following two lemmas.Lemma 2 Consider �(R) de�ned in Theorem 2. Then the following properties hold.1. For any R > 0 satisfying �(R) > R, �(R) =1.2. If �(R) > 0 for some R > 0, thenR14=sup fR � 0 : �(R) > Rg > 0; (4.11)13



and for very 0 < R < R1,�����xn 2 X n : � 1n logPXn(xn) < R����� = 0 for all suÆiently large n: (4.12)Proof :1. Let us prove this property by ontradition. Suppose there exists R > 0 suh that�(R) > R, and that there exists L <1 with�(R) = lim infn!1 � 1n logPr �� 1n logPXn(Xn) < R� < L:Then Pr �� 1n logPXn(Xn) < R� � e�nL > 0 in�nitely often in n:) �����xn 2 X n : � 1n logPXn(xn) < R����� � 1 in�nitely often in n:On the other hand, �(R) > R implies the existene of Æ > 0 with �(R) > R+ Æ, whihimplies that for all suÆiently large nPr �� 1n logPXn(Xn) < R� � e�n(R+Æ):Consequently, for in�nitely many n,1 � �����xn 2 X n : � 1n logPXn(xn) < R������ enRPr �� 1n logPXn(Xn) < R�� enRe�n(R+Æ) = e�nÆ < 1:Hene, the desired ontradition is obtained.2. (4.11) is an immediate onsequene of the non-inreasing property of �(R). We nextprove (4.12) by ontradition. We know that for every 0 < R < R1, �(R) =1. Nowsuppose that�����xn 2 X n : � 1n logPXn(xn) < R����� � 1 in�nitely often in n:14



Then for in�nitely many n,Pr�� 1n logPXn(Xn) < R� � e�nR �����xn 2 X n : � 1n logPXn(xn) < R������ enR:Thus �(R) = lim infn!1 � 1n logPr �� 1n logPXn(Xn) < R� � R;whih ontradits the fat that �(R) =1. 2Lemma 3 The following two onditions are equivalent.(8 R > 0) �(R) � � �1� � (R�R0) (4.13)and (8 e > 0) R�(ejX) � � 1� e +R0; (4.14)under � 2 (0; 1).Proof:1. Forward part: (4.13) ) (4.14)For any e > 0, we obtain from Theorem 2 that (8 Æ > 0)(9 hÆ > 0)infR>0f�(R) + [R� �(R)� hÆ℄+g � e and R�(ejX) + Æ � hÆ;whih in turn implies the existene of RÆ satisfyinginfR>0f�(R) + [R � �(R)� hÆ℄+g+ Æ � �(RÆ) + [RÆ � �(RÆ)� hÆ℄+= maxf�(RÆ); RÆ � hÆg:Thus e+ Æ � �(RÆ) and e+ Æ � RÆ � hÆ:15



) R�(ejX) � hÆ � Æ� (RÆ � e� Æ)� Æ� "�1� �� �(RÆ) +R0#� e� 2Æ� �1� �� (e + Æ) +R0 � e� 2Æ= � 1� e+R0 � 1 + �� Æ:The proof is then ompleted by noting that Æ an be made arbitrarily small.2. Converse part: (4.14) ) (4.13)The laim holds trivially when R < �(R) sine it implies by Lemma 2 that �(R) =1.It remains to prove the laim under R � �(R). LethR4=R� �(R) and eR4=�(R):) infa>0 ��(a) + [a� �(a)� hR℄+� � �(R) + [R � �(R)� hR℄+ = �(R) = eR:) R�(eRjX) � hR:Therefore, � 1��(R) +R0 = � 1� eR +R0 � R�(eRjX) � hR = R� �(R):Hene, �(R) � � �1� � (R� R0): 2Theorem 4 (Reverse �-uto� rate formula) Fix 0 < � < 1. For any soure X,R(r)0 (�jX) = lim infn!1 1nH1=(1��)(Xn): (4.15)16



Proof: The theorem holds if �(R) = 0 for all R > 0, in whih ase both the reverse �-uto�rate and the liminf R�enyi entropy rate are zero3. Without loss of generality, we assume that�(R) > 0 for some R > 0.1. Forward part: R(r)0 (�jX) � lim infn!1(1=n)H1=(1��)(Xn)By (4.13), it suÆes to show that(8 R > 0) �(R) � � �1� � �R � lim infn!1 1nH1=(1��)(Xn)� :P r �� 1n logPXn(Xn) < R� = Pr hP tXn(Xn) > e�ntRi ; for t > 0� entR Xxn2Xn P 1+tXn (xn); for t > 0 (by Markov0s inequality)= exp�nt�R� 1nH1+t(Xn)�� ; for t > 0:) �(R) = lim infn!1 � 1n logPr �� 1n logPXn(Xn) < R�� �t�R� lim infn!1 1nH1+t(Xn)� ; for t > 0 (4.16)= � �1� � �R � lim infn!1 1nH1=(1��)(Xn)� ; for 0 < �4= t1 + t < 1:2. Converse part: R(r)0 (�jX) � lim infn!1(1=n)H1=(1��)(Xn)3It is straightforward to verify that the reverse �-uto� rate is zero. We herein show thatlim infn!1(1=n)H1=(1��)(Xn) = 0. For � = 1=(1� �) > 1,PXn �� 1n logPXn(Xn) < R� = PXn nP��1Xn (Xn) > e�(��1)nRo � E �P��1Xn (Xn)�e�(��1)nR = e(��1)nRe(1��)H�(Xn):Sine �(R) = 0 for any R > 0, we get that0 = �(R)4=lim infn!1 � 1n logPXn �� 1n logPXn(Xn) < R� � (1� �)R + (�� 1) lim infn!1 1nH�(Xn):Thus, for any R > 0, R � lim infn!1(1=n)H�(Xn): Therefore, lim infn!1(1=n)H�(Xn) = 0. 217



By (4.13), it suÆes to show that for any Æ > 0 arbitrarily small, there exists R1 suhthat �(R1) � � �1� � �R1 � lim infn!1 1nH1=(1��)(Xn)� 3Æ� :De�ne the tilted distributionP (t)Xn(xn) 4= P 1�tXn (xn)Px̂n2Xn P 1�tXn (x̂n)= expf�t[logPXn(xn) +H1�t(Xn)℄gPXn(xn); (4.17)where t = ��=(1� �) < 0. Also de�ne�4=sup nR 2 [0;1) : �(t)(R) > 0oand m(t)n 4= Xxn2Xn P (t)Xn(xn)[� logPXn(xn)℄;where �(t)(R)4= lim infn!1 � 1n logP (t)Xn �xn 2 X n : � 1n logPXn(xn) < R� :We �rst point out that � is positive and �nite. Our assumption about the existene ofR > 0 suh that �(R) > 0 implies via Lemma 2 thatR14=sup fR � 0 : �(R) > Rg > 0and for 0 < R < R1, �����xn 2 X n : � 1n logPXn(xn) < R����� = 0for all suÆiently large n. Thus �(t)(R) =1 for 0 < R < R1. Therefore,�4=sup nR � 0 : �(t)(R) > 0o � R1 > 0:Furthermore, we show in Appendix B (f. Lemma 6) that � � log jX j.18



We next observe that(1� t) logPXn(xn) = logP (t)Xn(xn) + tH1�t(Xn):Hene, m(t)n = 11� t Xxn2Xn P (t)Xn(xn) log 1P (t)Xn(xn) + �t1� tH1�t(Xn)� 11� t log jX jn + �t1� t log jX jn = log jX jn: (4.18)Sine 0 < � � log jX j, it follows from the de�nition of � that for any 0 < Æ <minf�; 2 log jX j � �g, there exists " > 0 suh that�(t)(� � Æ) = lim infn!1 � 1n logP (t)Xn �xn 2 X n : � 1n logPXn(xn) < � � Æ� > " > 0:ThusP (t)Xn �xn 2 X n : � 1n logPXn(xn) � � � Æ� > 1� e�n" for all suÆiently large n:Therefore, for those n satisfying the above inequality,P (t)Xn �xn 2 X n : 2 log jX j > � 1n logPXn(xn) � � � Æ�� P (t)Xn �xn 2 X n : 2nm(t)n > � 1n logPXn(xn) � � � Æ� (by (4:18))= P (t)Xn �xn 2 X n : 1n logPXn(xn) � � � Æ��P (t)Xn "xn 2 X n : � 1n logPXn(xn) � 2m(t)nn #� 1� e�n" � 12 (by Markov0s inequality)= 1� 2e�n"2 :Let Ik4=[bk�1; bk) for 1 � k � L4= $2 log jX j � � + Æ2Æ % ;19



where bk4=(� � Æ) + 2kÆ for 1 � k < L, and bL4=2 log jX j. Note that bk � bk�1 = 2Æ forevery 1 � k < L and bL � bL�1 � 2Æ. Therefore there exists 1 � k(n) � L suh thatP (t)Xn �� 1n logPXn(Xn) 2 Ik(n)� � 1� 2e�n"2L for all suÆiently large n.Then, by letting R14= lim supn!1 bk(n)+Æ and noting that R1 � bk(n) for all suÆientlylarge n, we obtain thatPr �� 1n logPXn(Xn) < R1� � Pr �� 1n logPXn(Xn) 2 Ik(n)� for all n suÆiently large:However, for all suÆiently large n, we have thatPr �� 1n logPXn(Xn) 2 Ik(n)�= Xxn2fxn2Xn:�(1=n) logPXn (xn)2Ik(n)gPXn(xn)= Xxn2fxn2Xn:�(1=n) logPXn (xn)2Ik(n)g et[logPXn(xn)+H1�t(Xn)℄P (t)Xn(xn) (by (4:17))� e�nt[bk(n)�1�(1=n)H1�t(Xn)℄ Xxn2fxn2Xn:�(1=n) logPXn(xn)2Ik(n)gP (t)Xn(xn) (4.19)= e�nt[bk(n)�1�(1=n)H1�t(Xn)℄P (t)Xn �� 1n logPXn(Xn) 2 Ik(n)�� 1� 2e�n"2L e�nt[bk(n)�1�(1=n)H1�t(Xn)℄;where (4.19) follows from the fat that bk(n)�1 � �(1=n) logPXn(xn) < bk(n) and thatt < 0. Consequently,�(R1) = lim infn!1 � 1n logPr �� 1n logPXn(Xn) < R1�� t�lim supn!1 bk(n)�1 � lim infn!1 1nH1�t(Xn)�� t�lim supn!1 bk(n) � lim infn!1 1nH1�t(Xn)� 2Æ�= t�R1 � lim infn!1 1nH1�t(Xn)� 3Æ� : (4.20)This ompletes the proof. 220



Remark: For the ase of � � 1, the expression of the reverse �-uto� rate is no longerprovided by (4.15). It an atually be shown that for � � 1,R(r)0 (�jX) = 1� lim infn!1 1nH1(Xn);where H1(Xn) = lim�"1H�(Xn) = � log maxxn2Xn PXn(xn)is the R�enyi entropy of in�nite order.5 Conluding remarksIn this paper, general expressions for the forward and reverse �-uto� rates, R(f)0 (�jX)and R(r)0 (�jX) respetively, for an arbitrary disrete-time �nite-alphabet soure X wereestablished. More spei�ally, it was demonstrated thatR(f)0 (�jX) = lim supn!1 1nH1=(1+�)(Xn)and R(r)0 (�jX) = lim infn!1 1nH1=(1��)(Xn):These results { whih provide a new operational haraterization for the R�enyi entropyrates (in addition to the variable length soure oding haraterization under exponentialost onstraints investigated in [16℄) { generalize Csisz�ar's previous work [6℄ on the �-uto�rates, where he only onsidered the ase of memoryless soures. It an be diretly veri�edthat if the soure X is memoryless, then Theorems 3 and 4 simplify to Csisz�ar's result [6,Theorem 1℄. In losing, we would like to make the following observations.� It is important to point out that if the soure X is a time-invariant Markov soure ofarbitrary order, then its R�enyi entropy rate exists and an be omputed [16, 17℄. Thusin this ase, the �-uto� rates for this soure an be obtained.21



� It diretly follows from the de�nition of the soure reliability funtion E(RjX) of Xthat a onvex lower bound an be obtained on E(RjX). It onsists of the supremumof all the support lines with slope � whih pass through the point (R(f)0 (�jX); 0): foreah R > 0, E(RjX) � sup�>0[�(R� R(f)0 (�jX))℄: (5.21)Note that sine the right-hand side of (5.21) is the best onvex lower bound to E(RjX),then the inequality given by (5.21) beomes tight whenever E(RjX) is onvex. This isthe ase for irreduible Markov soures [18, 17℄. Furthermore, for the lass of souresXfor whih E(RjX) is not known but its R�enyi entropy rate an be alulated (e.g., thelass of non-irreduible Markov soures [17℄), a omputable lower bound to E(RjX)an also be obtained. A similar remark applies for the soure unreliability funtionE�(RjX).Appendix ALemma 4 For t = �=(1 + �) 2 (0; 1),inf nR : �(t)J (R) > 0o � 11� t log jX j;for every inreasing sequene of positive integers J = fnjgj�1.Proof : Let us prove the result by ontradition. Suppose that�(t)J  log jX j+ Æ1� t ! = 0for some positive Æ. Then0 = �(t)J  log jX j+ Æ1� t !4= lim infn!1; n2J � 1n logP (t)Xn "xn : � 1n logPXn(xn) � log jX j+ Æ1� t #22



= lim infn!1; n2J � 1n logP (t)Xn �xn : � 1n logP 1�tXn (xn) � log jX j+ Æ�= lim infn!1; n2J � 1n logP (t)Xn �xn : � 1n logP (t)Xn(xn)� tnH1�t(Xn) � log jX j+ Æ�= lim infn!1; n2J � 1n logP (t)Xn �xn : � 1n logP (t)Xn(xn) � tnH1�t(Xn) + log jX j+ Æ�� lim infn!1; n2J � 1n logP (t)Xn �xn : � 1n logP (t)Xn(xn) � log jX j+ Æ� ;where the last step follows sine H1�t(Xn) � 0. Thus we an say thatlim infn!1; n2J � 1n logP (t)Xn �xn : � 1n logP (t)Xn(xn) � log jX j+ Æ� < Æ2 ;) P (t)Xn �xn : � 1n logP (t)Xn(xn) � log jX j+ Æ� > e�nÆ=2 in�nitely often in n 2 J :For those n satisfying the above inequality, the set�xn : � 1n logP (t)Xn(xn) � log jX j+ Æ�is non-empty, and hene, P (t)Xn �xn : � 1n logP (t)Xn(xn) � log jX j+ Æ�� �����xn : � 1n logP (t)Xn(xn) � log jX j+ Æ����� 1jX jnenÆ :Finally, we obtain the ontradition by observing thatjX jn � �����xn : � 1n logP (t)Xn(xn) � log jX j+ Æ������ jX jnenÆ � P (t)Xn �xn : � 1n logP (t)Xn(xn) � log jX j+ Æ�> jX jnenÆe�nÆ=2 = jX jnenÆ=2 for in�nitely many n 2 J : 2Lemma 5 For t 2 (0; 1) and every inreasing sequene of positive integers J = fnjgj�1, iflim supn!1; n2J (1=n)H1�t(Xn) > 0;23



then inf nR : �(t)J (R) > 0o � lim supn!1; n2J 1nH1�t(Xn):Proof : (8 � > 0),P (t)Xn (� 1n logPXn(Xn) � lim supn!1; n2J 1nH1�t(Xn)� 2�)� P (t)Xn �� 1n logPXn(Xn) � 1nH1�t(Xn)� �� for in�nitely many n 2 J :But P (t)Xn �� 1n logPXn(Xn) � 1nH1�t(Xn)� ��= P (t)Xn � 1n (�t [logPXn(Xn) +H1�t(Xn)℄) � ��t�= P (t)Xn 8<:1n log P (t)Xn(Xn)PXn(Xn) � ��t9=;= 1� P (t)Xn 8<:1n log P (t)Xn(Xn)PXn(Xn) < ��t9=;= 1� P (t)Xn nP (t)Xn(Xn) < e�n�tPXn(Xn)o� 1� e�n�t � PXn nP (t)Xn(Xn) < e�n�tPXn(Xn)o� 1� e�n�t:Thus P (t)Xn (� 1n logPXn(Xn) � lim supn!1; n2J 1nH1�t(Xn)� 2�)� 1� e�n�t for in�nitely many n 2 J :Consequently, (8 � > 0) �(t)J  lim supn!1; n2J 1nH1�t(Xn)� 2�! = 0) inffR : �(t)J (R) > 0g � lim supn!1; n2J 1nH1�t(Xn)� 2�:24



2Appendix BLemma 6 For t < 0,sup nR : �(t)(R) > 0o � lim infn!1 1nH1�t(Xn) � log jX j:Proof: For any � > 0,P (t)Xn �� 1n logPXn(Xn) � lim infn!1 1nH1�t(Xn) + 2��� P (t)Xn �� 1n logPXn(Xn) > 1nH1�t(Xn) + �� for in�nitely many n:But P (t)Xn �� 1n logPXn(Xn) > 1nH1�t(Xn) + ��= P (t)Xn � 1n (�t [logPXn(Xn) +H1�t(Xn)℄) < �t� for t < 0= P (t)Xn 8<:1n log P (t)Xn(Xn)PXn(Xn) < �t9=;= P (t)Xn nP (t)Xn(Xn) < en�tPXn(Xn)o� en�tPXn nP (t)Xn(Xn) < en�tPXn(Xn)o� en�t:Thus for in�nitely many n,P (t)Xn �� 1n logPXn(Xn) < lim infn!1 1nH1�t(Xn) + 2�� � 1� en�t;whih implies �(t) �lim infn!1 1nH1�t(Xn) + 2��25
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