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Abstract

Csiszar’s forward f-cutoff rate (given a fixed 8 > 0) for a discrete source is defined
as the smallest number Ry such that for every R > Ry, there exists a sequence of fixed-
length codes of rate R with probability of error asymptotically vanishing as e "#(E—Fo)
For a discrete memoryless source, the forward S-cutoff rate is shown by Csiszar [6] to
be equal to the source Rényi entropy. An analogous concept of reverse S-cutoff rate
regarding the probability of correct decoding is also characterized by Csiszar in terms
of the Rényi entropy.

In this work, Csiszar’s results are generalized by investigating the [-cutoff rates
for the class of arbitrary discrete sources with memory. It is demonstrated that the
limsup and liminf Rényi entropy rates provide the formulas for the forward and reverse

B-cutoff rates, respectively. Consequently, new fixed-length source coding operational

characterizations for the Rényi entropy rates are established.

Index terms — Source reliability function, Rényi’s entropy rates, cutoff rates, arbitrary

sources with memory, fixed-length source coding, probability of error.
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1 Introduction

In [6], Csiszar establishes the concept of generalized fixed-length coding cutoff rates (forward
and reverse) for discrete memoryless sources (DMS’s). More specifically, given 5 > 0, he
defines the forward S-cutoff rate for a source {X;}°, as the number R, that provides the best
possible lower bound in the form 5(R— Ry) to the source reliability function. This definition
implies that the source error probability is guaranteed to exponentially decay with a linear
exponent of specified slope  for R > Ry. He also provides a similar definition for the reverse
p-cutoff rate (where 8 > 0) with respect to the source unreliability function (the exponent
of the vanishing probability of correct decoding). He then demonstrates that the forward
and reverse [-cutoff rates are respectively given by Hi (144 (X;) and Hl/(l_[;)(Xl), where
H,(X,) denotes the Rényi entropy of order « [15]. This result provides a new operational

significance for Rényi’s entropy.

Previous operational characterizations of Rényi’s entropy were established by Arikan [1]
for the theory of guessing, by Jelinek [12] and others (e.g., [14]) for the buffer overflow problem
in lossless source coding, and by Campbell [5] for the lossless variable-length coding problem
with an exponential cost constraint for a DMS. Recently, Erez and Zamir [9] demonstrated
that for discrete memoryless modulo additive noise channels with side information at the
transmitter, Gallager’s random coding error exponent as well as the sphere-packing error
exponent can be written in terms of the Rényi entropy. Finally, Campbell’s work was

generalized in [16] for the class of Markov sources of arbitrary order.

In this work, we extend Csiszar’s results [6] by investigating the S-cutoff rate for arbitrary
(not necessarily, stationary, ergodic, etc.) discrete-time finite-alphabet sources X 2 {X" =
(Xl("), o, X))} We demonstrate that the limsup and liminf Rényi entropy rates provide
the expressions for the forward and reverse (-cutoff rates, respectively. These results also

provide simple, and in certain cases, computable lower bounds to the source reliability and

unreliability functions.



The rest of this paper is organized as follows. In Section 2, relevant previous results by
Han on the reliability and unreliability functions of arbitrary sources are briefly reviewed.
The general expression for the forward S-cutoff rate and the reverse S-cutoff rates are proved

in Sections 3 and 4, respectively. Finally, concluding remarks are stated in Section 5.

2 Preliminaries: Source Reliability and Unreliability

Functions

In this section, we briefly review the previous results by Han [10, 11] on the general expres-
sions for the reliability and unreliability functions of arbitrary discrete-time finite-alphabet

sources (for previous work on the source coding error exponent, see [7], [13], [2], [8], [3] and
[11]).
Consider a discrete-time source X defined by a sequence of finite dimensional distri-

butions [10]: X2 {X” = (an), . ,X(”))}Oo . We assume that the source alphabet X is

n n=1

finite.

Definition 1 (Fixed-length source code) An (n, M) fixed-length source code for X" is

a collection of M n-tuples €, = {c},...,c},;}. The error probability of the code is

P.(€C,) 2Py [X" & ).

Definition 2 (Source reliability function [10, Definitions 1.12 and 1.13]) Fix e > 0.
R > 0 is e-achievable for a source X, if there exists a sequence of (n, M,) fixed-length source

code G, such that

1 1
limsup—logM, < R and lirr_1>inf—— log P.(*€,) > e.
n—00 n

n—oo T

The infimum of all e-achievable rates for source X is denoted by R(e|X). The reliability



function for source X, E(R|X) is the dual of R(e|X). More specifically,
E(R|X)é sup{e > 0: R is e-achievable for X},

and F(R|X) = 0 if the above set is empty.

Note that since the source alphabet is finite, R(e|X) < log|X| < oo for every e > 0; this
implies that E(R|X) = oo for R > log|X|. Furthermore, E(R|X) is non-decreasing in R

but non-convex in general.

Theorem 1 ([10, Theorem 1.15]) Fix e > 0. For any source X,
R(e|X) =sup{R—0o(R) : R€ (0,00) and o(R) < e},

where

1 1
J(R)élim inf —— log Pxn {—— log Py (X™) > R} :
n n

n— 00

Definition 3 (Source unreliability function [10, Definitions 1.14 and 1.15]) Fix
e > 0. R > 0 is reverse e-achievable for source X, if there exists a sequence of (n, M,)

fixed-length source code €, such that

1 1
limsup—log M, <R and liminf——log(l — P.(€,)) <e.
n

n—oo M n—00

The infimum of all reverse e-achievable rates for source X is denoted by R*(e|X). Therefore
for any 0 < R < R*(e|X), every code sequence €, with limsup, . (1/n)logM, < R
satisfies P.(€,) > 1 — exp{—ne} for all sufficiently large n. This is a pessimistic view
point, since we require that all code sequences are “bad” for all sufficiently large n'. The

unreliability function for source X, E*(R|X) is the dual of R*(e|X). More specifically,

!Note that this is consistent with our terminology for R*(e|X) as an unreliability function. However,
one could also regard our definition from the optimistic point of view [10] if the quantity of interest is the
probability of correct decoding as opposed to the probability of error. In this case, one would require “good”

codes for infinitely many n.



E*(R|X)é inf{e > 0 : R is reverse e-achievable for X }.

Under slight modification, the following result follows from [10, Theorem 1.16].

Theorem 2 Fix e > 0. For any source X,

A(R) = h]") < e},

1m in (0] n (0] n

and [m]+é max(x, 0).

3 Forward p-Cutoff Rate

Definition 4 (Forward f-cutoff rate) Fix § > 0. Ry > 0 is a forward -achievable rate
for a source X if

E(R|X) > B(R — Ry)

for every R > 0, or equivalently,
1
R(€|X) S Be + Rg,

for every e > 0. The forward [(-cutoff rate for X is defined as the infimum of all forward
B-achievable rates, and is denoted by RS’ (B|X). A graphical illustration of R (B|X) is

provided in Figure 1.

It is important to remark that the above definition of the forward S-cutoff rate is equiv-

alent to the first part of Csiszar’s definition (cf. [6, Definition 1]).

Before providing the general expression of the forward g-cutoff rate, we prove the follow-

ing lemma, which is a consequence of Theorem 1.

4



0 R (51X) R

Figure 1: Forward S-cutoff rate for an arbitrary source X.

Lemma 1 The following two conditions are equivalent.
(VR>0) ofR)>—(R—Ry) (3.1)
—1+p

and

(Ve>0) R(e|X)< %e + Ry, (3.2)
Proof:

1. Forward part: (3.1)=(3.2)

For any e > 0, we obtain by Theorem 1 that

(V & > 0)(3 Ry with o(R;) <€) R(e|X) — 8 < Ry — o(Rs).

= R(e|X) < Rs—o(Rs)+9¢

< Rs— %(Rd — Ro) + (3.3)



where (3.3) follows by (3.1),

€>O'(R5) >

1 s
R Ro+6
1rg 1yt

1 (148 3

1
= B€+R0+(5,

and (3.4) holds because

B

> m(Ré - Ry).

The proof is then completed by noting that ¢ can be made arbitrarily small (indepen-

dently of e).

2. Converse part: (3.2) = (3.1)

(3.1) holds trivially for those R satisfying o(R) = oo. For any R > 0 with o(R) < oo,

let e(;éa(R) + ¢ for some § > 0. Then (by Theorem 1)

= o(R)

where (3.5) follows by (3.2).

o(R)

The proof is then completed by noting that 6 can be made arbitrarily small.

R(es|X) > R — o(R).

> R— R(es|X)
> R—%%—RU
- R—%U(R)—%—Rg,
Thus,
Z%(R—RO)—ﬁ-



Remark: The above lemma actually identifies the forward S-cutoff rate RS (B|X) as the
R-axis intercept of the support line with slope /(1 + /) to the large deviation spectrum
curve o(R). We next establish an expression for R (B|X) by showing that the limsup

Rényi entropy rate of order 1/(1 4 () is indeed the above intercept.

Theorem 3 (Forward [-cutoff rate formula) Fix 8 > 0. For an arbitrary source X,
R{ (81 X) =1i Ly X"
o (B1X) = limsup —Hyja4p) (X"),

where
A

H,(X") log > Pga(2")

zeXxn

is the (n-dimensional) Rényi entropy of order «.

Proof:

1. Forward part: RS (8| X) < lim SUP, 00 (1/1) Hy 48 (X™)

By the equivalence of conditions (3.1) and (3.2), it suffices to show that

g .
(VR>0)o(R)> % (R - hgljc}ip EHl/(lJrﬁ) (X )> :

1 n
Pr|——1log Px»(X") > R} = Pr [e’“ogPX"(X ) > e”tR] , fort >0
n

< e R Z Py.H(a™), for t > 0 (by Markov's inequality)

zheXn

1
= exp {—nt <R — —Hlt(X”)>} , for0<t<1.
n

1
= o(R) >t (R — lim sup —Hlt(X”)> , for0<t<1

n—oo T
s . 1 n N
= 45 <R — hzr;s{gp ﬁHl/(1+ﬁ) (X )) , for B:I—_t > 0.



2. Converse part: RS (B8] X) > limsup, . (1/n)Hija4p(X™)

The converse part holds trivially if limsup,_,.(1/n)H1/q45)(X") = 0. Without loss

of generality, we assume that limsup,,_, . (1/n)Hi/q48(X™) > 0.

By the equivalence of conditions (3.1) and (3.2), it suffices to show that for any ¢ > 0

arbitrarily small, there exists R = R(0) > 0 such that

1
o(R) < —— (E — limsup —Hy 145 (X") + 35) :

n—oo T
Consider the tilted distribution (e.g., [4, 3]) with parameter ¢ of the random variable
— log Pxn(X™), defined as

et(f log Pxn (a:"))PXn (xn)

t).my &
PXn(x ) - Z et(_logpxn(:en))Pxn(:%n)
Tnexn
N - Coi) N b o5 G
ST oPGiE™) exp{tH, (X))}
inexn
= exp{—t[log Pxn(a") + Hi_(X")]} Pxn(2"), (3.6)

where t = /(1 + ). By definition of limsup, there exists an increasing sequence of

positive integers jé{nj}jzl satisfying

1 a1 N 1 .
lim _Hl/(1+6)(X ): lim _Hl/(l-i—ﬁ) (X ]) = lim sup —Hl/(l_,_[;)(X )

n—00, n€J N Jj—00 ] n—oo T
Also define
72 inf {R € [0,00) : ag)(R) > 0}, (3.7)
where?

1 1
oD(R)2 liminf —— log P{) [m” €A™ —~ log Pyn(a™) > R] .
n

n—o0, n€J M

2Recall that for any sequence {a,},

.. AL .
liminf a,=liminfa,, = lim inf a,,.
n—00, ne€J j—oo j—oo k>j



In Appendix A (cf. Lemmas 4 and 5), we show that for 0 < ¢ < 1,

T <

log |X
T Lo | X,

and

: 1 n : 1 n
lim —Hl/(1+5)(X )> 0 =72 lim —Hl/(1+5)(X )> 0.

n—o0, n€J N n—oo, neJ N

Hence, we can choose a fixed § € (0, 7] such that

1 1
a?@’—l—é) = liminf —ElogP(t,)L [x” cXx": —ﬁlogPXn(:r”) > T+5} > 0.

n—o00, nc€J

The above inequality implies the existence of v > 0 such that
—%logP)({tr)L [x” eXx": —%logPXn(:r") > T+(5} >y

for all n € J sufficiently large. Thus, for those n satisfying the above inequality,
prl) {x" e x": —%logPXn(x") < T+5] >1—e ™.

Let
LEbe_r,by) for 1 <k < K2T[(r+6)/(20)],

where

V1<k<K) b,=2kd, and bx=1+40.
Note that by — by_1 = 20 for every 1 < k < K and 0 < bg — bg_1 < 26. Since
—log Px«(X™) > 0 with probability 1, then
W [ n. 1 n W [n. 1 n
Py |z : ——log Pxn(x )<T+6:| = > Py [x : ——log Py« (2") € I
n n

> 1—¢e "7 forall n € J sufficiently large.

Hence, there exists k(n) € [1, K] for all sufficiently large n € J such that

1—e™

= (3.8)

1
P)(}i " - log Pxn(2") € Iim)

9



Let R 2 lim inf, o0, nes emy—1 — 0 (here, we assume that by choosing 6 > 0 small
enough, we can make R > 0. We will substantiate this assumption later). Then by

noting that R < by(n)—1 for all sufficiently large n € J, we obtain that
1 1
Pyn {x” : ——log Py« (2") > ﬁ} > Pyxn {:r” : ——log Pxn(2") € Ijm)
n n
for all n € J sufficiently large. But,
1 n
Pxn {:r” : —ﬁlogPXn(:r )€ Ik(n)}

= Z PXn (CE’n)

[:c":—(l/n) log Pxn (In)elk(n)}

- 3 exp{t[log Py« (z") + Hi_(X")]}PL(z")  (by (3.6))
[¢:—(1/n)log Pxn (2™) €Lk (n)]
> exp{—ntbyy) + tH;_(X")} > p) (")
[¢7:—(1/n)log Pxn (2™) €Lk (n)]
_ 1 n 0 [n. 1 n
= exp < —nt | bem) — ﬁHI_t(X )] ¢ Pxn |2 .—ElogPXn(x ) € Lim)
1—e™ 1 -
> —  &XP {—nt <bk(n) — —Hl_t(Xn)>} V n € J sufficiently large, (3.9)
n

where the last inequality follows from (3.8). Consequently,

1 1
o(R) = liminf——logPr [—— log Pxn»(X™) > ﬁ}
n n

— n— 00

1 1
< liminf ——logPr [—— log Pxn (X™) > E}
n

n—oo, n€J N

1
< t< liminf b,y —  lim —Hlt(X”)>

n—oo, ne€J n—oo, n€J N,

1
<t < liminf bg(,)—1 + 26 — limsup —Hl_t(Xn)>

n—00, n€J n—oo N
1
=t <E — limsup —H;_4(X") + 35) . (3.10)
n—oo T

Now it remains to validate the claim on R that it can be made positive by choosing

small enough. We prove this assumption by contradiction. Suppose that R cannot be

10



made positive for any o > 0; i.e., liminf,,_, o nes brn)—1 = 0 for arbitrarily small 6 > 0.

Then by following a similar procedure as in (3.9) and (3.10), we obtain

1 1
0 < liminf——Ilog Pr {——log Pyn(X™) > 0]
n n

n—00

1 1
< liminf ——logPr {——log Pyn(X™) > 0]
n

n—oo, n€J M

IN

¢ (25 ~ lim lHH(X"))

n—oo, n€J N

1
— ¢ (25 — lim sup —Hlt(X”)> :

n—oo T

which implies that
1
limsup —H;_(X") =0
n

n—0o0

since ¢ can be made arbitrarily small, thus contradicting the positivity assumption on

limsup,_,,, = H_;(X™). The proof is therefore completed. O

Observation:

It is important to point out that the proofs of the forward and converse parts do not
directly depend on Theorem 1 or on source coding concepts. While the proof of the forward
part is straightforward, the proof of the converse is more involved. More specifically, the
objective of the converse part is to demonstrate that if lim sup,, , (1/n)H;_;(X™) is slightly
nudged to the left (by a factor of 3d), then there exists a coordinate R on the R-axis such
that a straight line of slope 5/(1 + ) given by

i s v )

lies above the curve of o(R) at R = R, thus violating its status of support line for o(R).

This proof is established by observing that the desired coordinate R lies in a small

neighborhood of 7, where 7 is the largest point for which the spectrum Ug)(R) of the tilted

distribution with parameter ¢ for the random variable — log Py~ (X"™) vanishes. A key point

11



is to choose the tilted parameter ¢ to be equal to 5/(1+ () which is the slope of the support

line to o(R). We graphically illustrate this observation (based on a true example) in Figure 2.

14 -

o(R)

1.2 -

08 r-

0.6 -

0.4 r

0.2

Figure 2: Functions o(R), ag)(R) and [6/(1 + B)](R — limsup,,_, . (1/n)Hy 0+ (X")) for
=1—Px(1l) =1/4 and B =9 (or equivalently, t = 0.9).

~—

an i.i.d. binary source with Px (0

When R > log(4), o(R) = UE?(R

~—

= OQ.

4 Reverse -cutoff rate

Definition 5 (Reverse [-cutoff rate) Fix § > 0. Ry > 0 is a reverse [-achievable rate

for a source X if

E*(R|X) > —B(R — Ry)

for every R > 0, or equivalently,

1
R (e|X) > e+ Ro,

12



for every e > 0. The reverse (-cutoff rate for X is defined as the supremum of all reverse
B-achievable rates, and is denoted by R (8|X). A graphical illustration of R{”(8]X) is

provided in Figure 3.

0 Ry (8X) R

Figure 3: Reverse [-cutoff rate for an arbitrary source X.

We observe that the above definition of S-cutoff rate is equivalent to Csiszar’s definition

of largest S-unachievable rate in [6, Definition 1], where 5 = —f3.

We first prove the following two lemmas.

Lemma 2 Consider A(R) defined in Theorem 2. Then the following properties hold.

1. For any R > 0 satisfying A(R) > R, A(R) = oc.
2. If A(R) > 0 for some R > 0, then

ReoZsup{R>0:A(R) > R} >0, (4.11)

13



and for very 0 < R < R,

1
{:r” € X" : ——log Pxn(2") < RH =0 for all sufficiently large n. (4.12)
n

Proof:

1. Let us prove this property by contradiction. Suppose there exists R > 0 such that
A(R) > R, and that there exists L < oo with
1 1
A(R) = lim inf —~ log Pr {—— log Py (X") < R} < L.
n— 00 n n

Then

1
Pr {—— log Py (X™) < R} > e ™' >0 infinitely often in n.
n

=

1
{x” € X" ——log Pxn(a") < RH > 1 infinitely often in n.
n

On the other hand, A(R) > R implies the existence of § > 0 with A(R) > R+, which

implies that for all sufficiently large n
1
Pr {—— log Pxn (X™) < R} < e MR,
n
Consequently, for infinitely many n,

1<

1
{x" € X" —=log Pxn(2") < RH
n

1
< e"fpr {—— log Pxn(X") < R}
n

< 6nRefn(R+5) _ efn(s <1

Hence, the desired contradiction is obtained.

2. (4.11) is an immediate consequence of the non-increasing property of A(R). We next
prove (4.12) by contradiction. We know that for every 0 < R < R, A(R) = co. Now

suppose that

1
{x” € X" : ——log Px~(z") < RH > 1 infinitely often in n.
n

14



Then for infinitely many n,

1
Pr{——logPXn(X”)<R} > e "R
n

nR

vV
m

Thus
1 1
A(R) = liminf —— log Pr {—— log Pxn(X") < R} <R,
n

n—o0 n

which contradicts the fact that A(R) = oo.

Lemma 3 The following two conditions are equivalent.

p

(R—Ry)
and
1
Ve>0) R'(e|X)> —Be + Ry,

under 4 € (0,1).
Proof:

1. Forward part: (4.13) = (4.14)

For any e > 0, we obtain from Theorem 2 that (V 6 > 0)(3 hs > 0)

inf {A\(R) +[R—A(R) —hs]"} <e and R*(e|]X)+ 3 > hs,

R>0

which in turn implies the existence of R satisfying

inf {A(R) + [R = A(R) = hs] "} +0 = ARs) + [R5 — A(Rs) — ho]"

R>0

= maX{A(R(s), R5 — hg}

Thus
e+d>ARs) and e+0 > Ry — hs.

15

1
{x” € X" : ——log Pxn(2") < RH
n

(4.13)

(4.14)



= R'(e|X) > hy—0

> (Ry—e—0)—0

> —%A(Ra)ﬁ-Ro —e—20
> —lgﬁ(e+5)+R0—e—25
= —%B—FRO—#&

The proof is then completed by noting that 6 can be made arbitrarily small.

2. Converse part: (4.14) = (4.13)

The claim holds trivially when R < A(R) since it implies by Lemma 2 that A(R) = oo.

It remains to prove the claim under R > A(R). Let
hp2R— AR) and ex=A(R).

= inf (
a>0

Ma) + [a = Ma) = he]*) < MR) +[R = MR) — hg]t = M(R) = ex.
= R'(er|X) < hg.

Therefore,

1 1

Hence,

s
A(R) = —m(R — Ry).

Theorem 4 (Reverse (-cutoff rate formula) Fix 0 < § < 1. For any source X,
r ' .
R (B|1X) = hT{I_gglfﬁHl/(kﬂ)(X ). (4.15)

16



Proof: The theorem holds if A(R) = 0 for all R > 0, in which case both the reverse S-cutoff
rate and the liminf Rényi entropy rate are zero®. Without loss of generality, we assume that

A(R) > 0 for some R > 0.

1. Forward part: R (8|X) > liminf, oo (1/n)Hija-p)(X")
By (4.13), it suffices to show that

B

(VR >0) A(R) 2 ~1 =5

ool n
(R - IITEI_lﬂl)glf EHl/(lf,B)(X )) .

1
Pr == log Py (X™) < R] = Pr[Ph(x") > e—ntR] L fort >0
n

< MY Pt(a™), for t > 0 (by Markov's inequality)
Trex™

1
= exp{nt(R——HHt(X”))}, for t > 0.
n

o 1 1 N
= AMR) = hggg}lf—ﬁlogPr [—ﬁlogPXn(X )<R]

v

1
t (R—nrginf—HHt(X")), for ¢ > 0 (4.16)
n—oo n,

_ s | ) t
- T1-3 (R — liminf —Hy ) (X )) , for0< 5_1 <L
2. Converse part: R[(]T)(5|X) < liminf, 00 (1/n)Hyyq g (X™)
3t s straightforward to verify that the reverse p[-cutoff rate is zero.  We herein show that

liminf, o (1/n)Hy /g (X™) = 0. For a =1/(1 - ) > 1,

1 n _ a—1/yn —(a—1nr) o F [Pgt(xm] (a—1)nR (1-a)Ha(X™)
PX"{_EIOgPX"(X)<R}_PX"{PXn (X)>€ }Sm—e e .

Since A(R) = 0 for any R > 0, we get that

1 1 1

n—oo n—oo N

Thus, for any R > 0, R > liminf,_,(1/n)H,(X™). Therefore, liminf, o (1/n)H(X,) = 0. |

17



By (4.13), it suffices to show that for any 6 > 0 arbitrarily small, there exists R; such
that
&} el n
A(Rl) S —W (R]_ — lim 1nf—H1/(1,/3)(X ) - 36) .
— n

n—00

Define the tilted distribution

A Pyt (a™)

Ygnean Pxa' (")

= exp{—tllog Pxn(2") + H1_(X")]} Pxn(2"), (4.17)

where t = —3/(1 — ) < 0. Also define
= sup{R €[0,00) : AY(R) > 0}

and

m2 3 PY(a")[ = log Pxn (2],

zreXn

where

1 1
AO(R)2 lim inf —— log P{) {x" € X" : ——log Pyr(a") < R].
n n

- n—00

We first point out that 7 is positive and finite. Our assumption about the existence of

R > 0 such that A(R) > 0 implies via Lemma 2 that
RooZsup {R>0:A(R) > R} >0
and for 0 < R < R,

1
{:r” SIP —ﬁlogPXn(x”) < RH =0

for all sufficiently large n. Thus A”(R) = oo for 0 < R < R.. Therefore,
Tésup {R >0: A(t)(R) > O} > Ry > 0.

Furthermore, we show in Appendix B (cf. Lemma 6) that 7 < log | X|.
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We next observe that

(1 = t)log Pyn (") = log P\) (a™) + tH, ,(X™).

Hence,
1 1 —t
o —_ - Z P(t)( n)l H X"
m! »(z™) log + 1-¢(X")
L=t i P)((tr)l (an) 11—t
—1
< log | X|" log | X|" = log | X|". 4.1
< ——log A" + T log| X" = log || (1.15)

Since 0 < 7 < log|X|, it follows from the definition of 7 that for any 0 < ¢ <

min{r, 2log|X| — 7}, there exists ¢ > 0 such that
(t) S 1 (t) n n 1 n
AV (1 —0) = liminf ——log Py, |2" € X" : ——log Pxn(2") <7 —9| >¢ > 0.
n n

n—0o0

Thus

1
P)((t)z "€ X" ——log Pxn(2") > 7 — 6} >1—e ™ for all sufficiently large n.
n
Therefore, for those n satisfying the above inequality,

' 1
P o € X7 : 2log |X| > —= log Pyn (a") > 7 — 5]
L n

Y

P)(fl e X"

— 3N

= P)(}% " € X" —log Py« (2") > 1 —5]
A n

()
PO " € am s L log Pya(am) > 2
o |2 € 1 ——log (™) > "

Y

1
1—e™ — 3 (by Markov's inequality)

1—2e "
5 .

Let

2log | X| — 5
Iké[bkflabk) forlngLé{ og|X| -7+ |,

20
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where b= (7 — 8) + 2kd for 1 < k < L, and b, 221log |X|. Note that by — by_; = 26 for

every 1 <k < L and by, — b, > 26. Therefore there exists 1 < k(n) < L such that
1 1 —2e™™

Py [——
X n 2L

log Pxn (X™) € Ik(n)] > for all sufficiently large n.

Then, by letting Rlé lim sup,,_, o, b(n) +90 and noting that Ry > by(,) for all sufficiently

large n, we obtain that
1 1

Pr {—— log Px»(X™) < Rl} > Pr {—— log Pxn(X") € Iymy| for all n sufficiently large.
n n

However, for all sufficiently large n, we have that

1

= > Pxn(z")

g e{z"€X™:—(1/n)log Pxn (™)El}(n)}

_ 3 gtlog Pxn (o) Hi—e(XM)] pU1) () (by (4.17))
g e{z"€X™:—(1/n)log Pxn (™)E€l}(n)}
> e ntbum-1—(1/m) i (X")] 3 P (") (4.19)
zre{zneX™:—(1/n)log Pxn (x™)El(n)}
n 1
= e k)1 —(1/n)Hi—¢(X )}P)(fl {—ﬁlog PXn(Xn) S Ik(n):|
S L 26T - Hase(x7)
- 2L )

where (4.19) follows from the fact that bypm)—1 < —(1/n)log Pxn(2™) < by and that

t < 0. Consequently,

n—00

1 1
ACRy) = liminf—log Pr —ﬁlogPXn(X”)<R1}

. 1 i
< t (hm sup bg(ny—1 — 11T£ggolf EHl_t(X ))

n—0o0

1
< t (lim sup be(n) — lirginf—Hl_t(Xn) — 25)
n oo n

n—oo
— ¢ (Ry — liminf ZH, ,(X") — 36 4.20
- t( L~ liminf —Hy ((X") - ) (4.20)

This completes the proof. O
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Remark: For the case of 5 > 1, the expression of the reverse [-cutoff rate is no longer

provided by (4.15). It can actually be shown that for § > 1,

1 1
RY(8|1X) = 5 liminf = Hao(X),

where

H(X") = liTm H,(X"™) = —log max Pxn(z")

zheX™

is the Rényi entropy of infinite order.

5 Concluding remarks

In this paper, general expressions for the forward and reverse [-cutoff rates, R[()f )(B | X)
and R(()T)([ﬂX ) respectively, for an arbitrary discrete-time finite-alphabet source X were

established. More specifically, it was demonstrated that
R (81 X) =1i Ly X"
0 (A1X) = limsup —H,y .45 (X")

and

. | n
R((J )(5|X) = hT{r_lMl)gfﬁHl/(l—ﬂ)(X )-

These results — which provide a new operational characterization for the Rényi entropy
rates (in addition to the variable length source coding characterization under exponential
cost constraints investigated in [16]) — generalize Csiszér’s previous work [6] on the S-cutoff
rates, where he only considered the case of memoryless sources. It can be directly verified
that if the source X is memoryless, then Theorems 3 and 4 simplify to Csiszar’s result [6,

Theorem 1]. In closing, we would like to make the following observations.

e [t is important to point out that if the source X is a time-invariant Markov source of
arbitrary order, then its Rényi entropy rate exists and can be computed [16, 17]. Thus

in this case, the -cutoff rates for this source can be obtained.
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e It directly follows from the definition of the source reliability function E(R|X) of X
that a convex lower bound can be obtained on E(R|X). It consists of the supremum
of all the support lines with slope 3 which pass through the point (RS’ (5]X),0): for
each R > 0,

E(R|X) 2 suplB(R - R (81X))]. (5.21)

Note that since the right-hand side of (5.21) is the best convex lower bound to E(R|X),
then the inequality given by (5.21) becomes tight whenever E(R|X) is convex. This is
the case for irreducible Markov sources [18, 17]. Furthermore, for the class of sources X
for which F(R|X) is not known but its Rényi entropy rate can be calculated (e.g., the
class of non-irreducible Markov sources [17]), a computable lower bound to E(R|X)

can also be obtained. A similar remark applies for the source unreliability function

E*(R|X).

Appendix A

Lemma 4 Fort = /(1 + ) € (0,1),

inf {R : Ug)(R) > 0} < log | X|,

1—-t

for every increasing sequence of positive integers J = {n,};>1.

Proof: Let us prove the result by contradiction. Suppose that

log |X]+ 0
(t) g —
aj< 13 )—0

for some positive 6. Then

. (t) 10g|X|+6
V=g (17_15

S log |X|+ 0
- 1—-t

1 1
2 liminf — = log P{) [x” : —— log Pxn (z")
n n

n—o00, n€J
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1 [ 1
= liminf —=log P} |2": —=log PLy!(a") > log | X| + 6}
n I n

n—o00, n€J

3

3

1 [ 1 t
= liminf —=log P |2": —=log PO (™) — —Hi_,(X™) > log |X| + 5]
A n n

n—oo, n€J M

1 [ 1 t
= liminf —=log P} |2": —=1log P{) (") > —H; +(X") + log | X| + 5]
n i n n

n—0o00, n€J

S

S

1 [ 1
> liminf —=log P{) |a" : —=log P{)(a") > log |X| + 6} :
n I n

n—o00, n€J

where the last step follows since H_;(X™) > 0. Thus we can say that

1 1 o
liminf ——log P{) [m” : ——log PU.(2™) > log |X| + 5] < -,
n n

n—00, nEJ 2
= P {x" ; —% log P{) (™) > log | X| + 6} > e ™/2 infinitely often in n € J.
For those n satisfying the above inequality, the set
[m” : —% log P (2") > log | X| + 5]
is non-empty, and hence,

1
P)((t,)L {x" ; ——logP(t%(x") > log |X| + 6}
n

<

Lo PO (g0 L
{x .—ElogP n(x)210g|X|+6HW.

Finally, we obtain the contradiction by observing that

1 (®)

X" > |ja": ——logP n(x”)Zlog|X|+5”
n

1
> |x[rem . pl) {:r” : ——log PU.(2™) > log |X| + 6}
n

> |X|"eMe™2 = | X"/ for infinitely many n € J.

Lemma 5 For t € (0,1) and every increasing sequence of positive integers J = {n;},>1, if

limsup (1/n)H,_4(X"™) >0,

n—00, n€J
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then
1
inf{R : af?(R) > 0} > limsup —H;_((X").

n—oo, neJ N

Proof: (V u>0),

1 1
Py {__ log Px«(X") > limsup —H;_4(X") — 2M}
n

n—o0, ncJ N
1 1
> P)(}i {—— log Pxn(X™) > —H; +(X") — p} for infinitely many n € J.
n n
But

1 1
r {—ﬁ log Pxn (X") > = Hi_y(X") - u}

= PO (tllog P (X") + Hy (X)) >

= 1-PO{PO(X") < e Pyu(X™)}

Y

1= e Py {POL(X™) < e Py (X))

1 — e ™,

Y

Thus

1 1
P)((t)z{__longn(X") > limsup —Hlt(X")_Q‘L}
n

n—oo, neJ 1

> 1 —e ™" for infinitely many n € J.
Consequently,

1
(V > 0) JE;) ( limsup —H;_(X") — 2,u> =0

n—oo, neJ N

1
= inf{R: a‘(}t)(R) >0} > limsup —H;_(X") —2pu.

n—oo, ncJ N
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Appendix B

Lemma 6 For ¢t <0,

1
sup {R: A\ (R) > 0} < lim inf ~H,,(X") < log|X|.

Proof: For any p > 0,

wf 1 ") > liminf = "

1 1
< P)((tz» {_ﬁ log Pxn (X") > EHl,t(X") + u} for infinitely many n.

But

<

<

PO PY(X™) < e Pyn (X}
e Pyn { POL(X™) < "M Py (X™) }

et

Thus for infinitely many n,

) {

which implies

A®

1 1
log Py (X™) < liminf —Hy_(X™) + 2u} > 1 ent,
n

n n—00

1
<lim inf —H; (X") + 2,u>
n

n—0o0
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1 1 1
= liminf——1 P“l{——l Pyn(X™) < liminf —Hy_,(X™) + 2 }
iminf ——log — log Pyn (X7) <liminf — My +(X") + 24
i _l _ it :
< limsup ——log (1 e )—0 (since ¢t < 0).

n—00 n

Consequently,

1
sup { R : XO(R) > 0} < liminf —Hy_(X") + 21

The proof is completed by noting that p can be made arbitrarily small and that

1
liminf —H; ,(X") < log|X]|.

n—oo n
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