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Abstract—In an earlier work, Poor and Verdú established an upper
bound for the reliability function of arbitrary single-user discrete-time
channels with memory. They also conjectured that their bound is tight for
all coding rates. In this note, we demonstrate via a counterexample in-
volving memoryless binary erasure channels (BECs) that the Poor–Verdú
upper bound is not tight at low rates. We conclude by examining possible
improvements to this bound.

Index Terms—Arbitrary channels with memory, binary erasure chan-
nels (BECs), channel coding, channel reliability function, information spec-
trum, probability of error.

I. INTRODUCTION

Consider an arbitrary inputXXX defined by a sequence of finite-dimen-
sional distributions [9]

XXX
�
= X

n = X
(n)
1 ; . . . ; X(n)

n

1

n=1
:

Denote by

YYY
�
= Y

n = Y
(n)
1 ; . . . ; Y (n)

n

1

n=1

the corresponding output induced byXXX via the channel

WWW
�
= fWn = PY jX : Xn ! Yng1n=1

which is an arbitrary sequence ofn-dimensional conditional distribu-
tions fromXn to Yn, whereX andY are the input and output alpha-
bets, respectively. We assume throughout thatX is finite and thatY is
arbitrary.

In [8], Poor and Verdú established an upper bound for the reliability
functionE�(R) of WWW . They then conjectured that this bound is tight
for all code rates. However, no known proof could substantiate this
conjecture. In this work, we demonstrate via a counterexample that
their original upper bound formula is not necessarily tight at low rates.
A possible improvement to this bound is then addressed.

Previous related work mainly involved the establishment of upper
and lower bounds forE�(R). In [1], [4], [6], and [10] (cf. also the
references therein), the authors examinedE�(R) for discrete memo-
ryless channels (DMCs). More specifically, they presented three upper
bounds (sphere packing, space partitioning, and straight line) and two
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lower bounds (random coding and expurgating) forE�(R) and em-
ployed them to show thatE�(R) is convex and can be exactly deter-
mined via a simple expression at high rates (forR beyond some critical
rate). The determination ofE�(R) at low rates, which is conjectured
to be convex, is still an unsolved problem, even for the simple memo-
ryless binary symmetric channel (BSC). In [5], Egarmin extended the
expressions of the random coding lower bound and the space parti-
tioning upper bound forE�(R) for discrete finite-alphabet channels
with modulo-additive irreducible Markov noise. He also proved that the
two bounds coincide asymptotically (with the block lengthn) at high
rates. In [7], Han derived an information-spectrum-based lower bound
forE�(R) for arbitrary (not necessarily, stationary, ergodic, etc.) chan-
nels with memory. In addition to the general upper bound provided by
Poor and Verdú, Chenet al. [3] derived another information-spectrum
upper bound forE�(R) for arbitrary channels as a consequence to their
result providing a general expression for the asymptotic largest min-
imum distance of block codes.

II. PRELIMINARIES

Definition 1 (Channel Block Code):An (n; M) code for channel
Wn with input alphabetX and output alphabetY is a pair of mappings

f : f1; 2; . . . ; Mg ! Xn and g: Yn ! f1; 2; . . . ; Mg:

Its average error probability is given by

Pe(n; M)
�
=

1

M

M

m=1 fy : g(y )6=mg

W
n(ynjf(m)):

Definition 2 (Channel Reliability Function [8]):For anyR > 0,
define the channel reliability functionE�(R) for a channelWWW as the
largest scalar� > 0 such that there exists a sequence of(n; Mn) codes
with

� � lim inf
n!1

�
1

N
log2 Pe(n; Mn)

and

R < lim inf
n!1

1

n
log2Mn: (1)

With this definition, we next derive a slightly different but equivalent
expression of the Poor–Verdú upper bound.

Definition 3: Fix R > 0. For an inputXXX and a channelWWW , the
large-deviation spectrum of the channel is defined as

�XXX(R)
�
= lim inf

n!1
�

1

n
log2 Pr

1

n
iX W (Xn; Y n) � R

where

iX W (Xn; Y n) = log2
Wn(Y njXn)

PY (Y n)

is the channel information density.

Theorem 1 (Poor–Verdú Upper Bound toE�(R) [8, eq. (14)]): The
channel reliability function satisfies

E
�(R) � lim inf

n!1
sup
X

�
1

n
log2 Pr

1

n
iX W (Xn; Y n) � R (2)

= sup
XXX

�XXX(R) (3)

for R > 0.
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Proof: Inequality (2) is actually given by [8, eq. (14)]; so we only
need to prove equality (3). For anyXn

� 1

n
log2 Pr

1

n
iX W (Xn; Y n) � R

� sup
X

� 1

n
log2 Pr

1

n
iX W (Xn; Y n) � R

which implies that for anyXXX

�XXX(R) � lim inf
n!1

sup
X

� 1

n
log2 Pr

1

n
iX W (Xn;Y n) � R :

Accordingly, we have

sup
XXX

�XXX(R) � lim inf
n!1

sup
X

� 1

n
log2 Pr

1

n
iX W (Xn;Y n) � R :

On the other hand, the finite alphabet assumption ensures the existence
of X̂n such that

� 1

n
log2 Pr

1

n
iX̂ W X̂

n; Ŷ n � R

= sup
X

� 1

n
log2 Pr

1

n
iX W (Xn; Y n) � R

whereŶ n is the channel output due to channel inputX̂n. LetX̂XX be the
triangular-array process havinĝXn as itsn-dimensional marginal (for
eachn). Then

sup
XXX

�XXX(R) ��X̂XX(R)

= lim inf
n!1

sup
X

� 1

n
log2 Pr

1

n
iX W (Xn; Y n) � R :

In the previous theorem, the range of the supremum operation in-
cludesall possible inputs. However, it is straightforward from the proof
of the Poor–Verdú upper bound (e.g., [8, eq. (14)]) that one can place
both auniformityrestriction and the asymptotic condition of (1) on the
input to yield a (possibly) better bound. This is illustrated in the next
corollary.

Corollary 1: The channel reliability function satisfies

E
�(R) � EPV(R)

�
= sup

XXX2Q(R)

�XXX(R)

for anyR > 0, where

Q(R)
�
= XXX:EachXn inXXX is uniformly distributed over its support

S(Xn); andR< lim inf
n!1

1

n
log2 jS(Xn)j :

Remark: An observation that upholds the result of the above corol-
lary is that for a channelWWW and any inputXXX uniformly distributed over
its support and satisfying

lim inf
n!1

1

n
log2 jS(Xn)j < R (4)

the channel large deviation spectrum satisfies

�XXX(R) = 0:

This is justified as follows. LetMn
�
= jS(Xn)j. We then observe that

iX W (xn; yn) = log2
PX ;Y (xn; yn)

PX (xn)PY (yn)

= log2
PX ;Y (xn; yn)

1
M

x 2S(X )

PX ;Y (xn; yn)

= log2Mn+ log2
PX ;Y (xn; yn)

x 2S(X )

PX ;Y (xn; yn)

� log2Mn:

Hence by (4)

Pr
1

n
iX W (Xn; Y n) � R

� Pr
1

n
iX W (Xn; Y n) � 1

n
log2Mn = 1

for n infinitely often, which immediately gives that�XXX(R) = 0. Con-
sequently, when maximizing�XXX(R) over allXXX that are uniformly dis-
tributed over their support, one only needs to consider thoseXXX vio-
lating (4); this justifies the upper bound formula in Corollary 1.

III. L OOSENESS OFEPV(R) AT LOW RATES

In this section, we provide a counterexample in terms of a binary
erasure channel (BEC) with crossover probability" (0 < " < 1),
which proves the looseness ofEPV(R) at low rates.

Denote by ~XXX the input to the BEC, where~Xn is uniformly dis-
tributed overf0; 1gn. Then for anys > 0

Pr
1

n
i ~X W

~Xn; ~Y n � R

= Pr 2�s�i ( ~X ; ~Y ) � 2�n�s�R

� 2n�s�RE 2�s�i ( ~X ; ~Y ) (Markov's inequality)

= 2n�s�REn 2�s�i ( ~X; ~Y )

where~Y n is the channel output due to the input~Xn. This implies

EPV(R)
�
= sup

XXX2Q(R)

�XXX(R)

� � ~XXX(R)

� sup
s>0

�sR� log2E 2�s�i ( ~X; ~Y )

= sup
s>0

�sR� log2 "+ (1� ")2�s

=

R log2
R
1�"

+ (1�R) log2
1�R
"
;

for 0 < R < 1� "

0; for R � 1� ":

(5)

Observe that (5) isexactlythe space partitioning upper boundEpar(R)
for the BEC which is given by [1]

Epar(R)
�
= sup

X
sup
s>0

� �sR� log2
y2Y x2X

PX(x)P
1=(1+s)
Y jX (yjx)

1+s

= sup
s>0

�sR� log2 "+ 2�s(1� ") :

Hence, the conjectured tightness ofEPV(R) can be disproved via the
looseness of the space partitioning upper bound. We then conclude
from [1, Theorem 10.7.3] that

EPV(R) > E
�(R)

for 0 < R < 1 � p
" (see the Appendix).
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Remarks:
• It can be shown by Cramer’s theorem [2] that for DMCs

� ~XXX(R) = sup
s>0

�sR� log2E 2�s�i ( ~X; ~Y ) (6)

for a channel input~XXX uniformly distributed over its entire space.
The memoryless BEC, however, is indeed a peculiar channel for
which the space-partitioning upper boundEpar(R) is actually
equal1 to (6). For example, in the case of the memoryless BSC,
(6) is numerically observed to be strictly less thanEpar(R) (and
the straight-line bound); hence, the above simple technique that
is used to disprove the tightness ofEPV(R) at low rates certainly
does not apply for the BSC. Furthermore, since (6) is equal to
Epar(R) for the BEC, we also cannot use this technique to dis-
prove the tightness ofEPV(R) at high rates [sinceEpar(R) is
tight at high rates].

• One may ask that the looseness ofEPV(R) at low rates may be
due to the fact that in its formula, the range of the supremum op-
eration includes all the inputs inQ(R), which may not be neces-
sary. From the proofs of the Poor–Verdú upper bound in [8] and
Theorem 1, we can further restrict the condition on the input to
yield that for any� > 0

E�(R) � E
(�)
PV (R)

�
= sup

XXX2P(R; �)

�XXX(R)

where

P(R; �)
�
= XXX: Xn is uniform over its supportS(Xn) and

R < lim inf
n!1

1

n
log2 jS(X

n)j < R+ � :

Clearly,E(�)
PV(R) is no greater thanEPV(R) since the former in-

volves an additional restriction on the choice ofXXX. Also, note
that the uniform input overf0; 1gn, which is used to disprove
the tightness ofEPV(R), does not belong toP(R; �) for 0 <
R � 1� �; hence, a possible improvement onEPV(R) may be
rendered fromE(�)

PV(R). We, however, can create another coun-
terexample to show thatE(�)

PV(R) is still not tight at rates close to
zero.

Claim: Consider a BEC with crossover probability", and fix� > 0.
Then for0 < R < 1=k

E
(�)
PV(R) � sup

s>0
�sR�

1

k
log2 "k + 2�s 1� "k

wherek
�
= d1=�e.

Proof: Let X̂XX be block-wise independent with block sizek; i.e.,

PX̂ (xn1 ) =

!

i=1

PX̂ xik(i�1)k+1 � PX̂ (xn!k+1)

where!
�
= bn=kc, j

�
= n�!k,PX̂ is thej-dimensional marginal of

PX̂ , andPX̂ is equally distributed over a set consisting of the all-zero

1This property actually holds for all memorylessq-ary(q � 2) erasure chan-
nels with input alphabetf0; 1; . . . ; q�1g, output alphabetf0; 1; . . . ; q�1; eg,
and crossover probability". So the Poor–Verdú bound is also loose at low rates
for this entire family of channels.

sequence0 and the all-one sequence1 of dimensionk (PX̂ (0) =
PX̂ (1) = 1=2). Then

lim inf
n!1

1

n
log2 S X̂n = lim inf

n!1

1

n
log2 2

dn=ke =
1

k

which implies thatX̂XX 2 P(R; �) for 0 < R < 1=k, and

E
(�)
PV

�
= sup

XXX2P(R;�)

�XXX(R) � �X̂XX(R):

Observe that under̂XXX, the BEC (when the very last term is excluded)
is transformed into a DMC with transition probability described by

PŶ jX̂ yk 0 = (1� ")v (y )"k�v (y ) � 1 v1 yk = 0 (7)

and

PŶ jX̂ yk 1 = (1� ")v (y )"k�v (y ) � 1 v0 yk = 0 (8)

wherev0(yk) andv1(yk), respectively, represent the number of0’s
and1’s in yk, and1f�g is the set indicator function. SincePŶ jX̂

only depends onv0 andv1, we can rewrite (7) and (8) as

PV jX̂ (v0; v1j0) =
k

v0
�v "k � 1fv1 = 0g

and

PV jX̂ (v0; v1j1) =
k

v1
�v "k � 1fv0 = 0g

where�
�
= (1 � ")=". Therefore,

Pr
1

n
iX̂ W X̂n; Ŷ n � R

= Pr
1

n

!

i=1

iX̂ W (X̂k
i ; Ŷ

k
i )

+
1

n
iX̂ W X̂j

!+1; Ŷ
j
!+1 � R

� Pr
1

(! + 1)k

!

i=1

iX̂ W X̂k
i ; Ŷ

k
i

+
1

(! + 1)k
iX̂ W X̂j

!+1; Ŷ
j
!+1 � R (9)

� Pr
1

(! + 1)k

!

i=1

iX̂ W X̂k
i ; Ŷ

k
i � R (10)

where (9) holds since(1=n) � 1=[(!+1)k], and (10) follows because

iX̂ W X̂j
!+1; Ŷ

j
!+1 � 0 with probability one:

Accordingly,

�
1

n
log2 Pr

1

n
iX̂ W X̂n; Ŷ n � R

�
1

k
�

1

!
log2 Pr

1

! + 1

!

i=1

iX̂ W X̂k
i ; Ŷ

k
i � kR :
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The proof is completed by noting thatfiX̂ W (X̂k
i ; Ŷ

k
i )g!i=1 is in-

dependent and identically distributed (i.i.d.), and hence we can apply
Cramer’s theorem [2] to obtain

�X̂XX(R) � sup
s>0

�sR� 1

k
log2

x 2X y 2Y

PX̂ xk

� P 1�s

Ŷ jX̂
yk xk P s

Ŷ yk

= sup
s>0

�sR� 1

k
log2

1

2
y 2Y

P s
Ŷ yk

� P 1�s

Ŷ jX̂
yk 0 + P 1�s

Ŷ jX̂
yk 1

= sup
s>0

�sR� 1

k
log2

1

2

k

v =0

k�v

v =0

� 1

2

k

v0
�v "k1(v1 = 0)

+
1

2

k

v1
�v "k1(v0 = 0)

s

� k

v0
�v "k1(v1 = 0)

1�s

+
k

v1
�v "k1(v0 = 0)

1�s

= sup
s>0

�sR� 1

k
log2

� 1

2
2"k +

k

v =1

1

2s
k

v1
�v "k

+

k

v =1

1

2s
k

v0
�v "k

= sup
s>0

�sR� 1

k
log2 "k +

1

2s
1� "k :

Based on the above claim, we can takeR # 0 to obtain

lim
R#0

E
(�)
PV (R) � lim

R#0
sup
s>0

�sR� 1

k
log2 "k + 2�s[1� "k]

=�log2(");

which is strictly greater thanlimR#0 E
�(R) = �log2(")=2. Conse-

quently,E(�)
PV (R) is not tight at rates close to zero.

• The previous remarks, together with the remark following
Corollary 1, indicate that when bounding the reliability function
of a channel by its large deviation spectrum, one should always
consider the input whose normalized support size ultimately
achieves the considered code rate. Any small deviation of the
asymptotic normalized support size from the code rate could
lead to a loose upper bound (at low rates). As a consequence, the
best upper bound that can be readily obtained from the proofs of
the Poor–Verdú upper bound in [8] and Theorem 1 is

E�(R) � inf
�>0

E
(�)
PV(R): (11)

Further investigation of the tightness of (11) at low rates for the
BEC is an interesting future work.

APPENDIX

Lemma 1: For a BEC with crossover probability"

Epar(R) > Esl(R)

for 0 < R < 1 � p
", whereEsl(R) represents a straight-line upper

bound for the channel reliability function.
Proof: First recall that for a BEC, the low-rate reliability function

can be written as

EL(R) = sup
s�0

max
P

�sR� s log2
i; j2f0; 1g

PX(i)PX(j)

�
k2f0; e; 1g

W (kji)W (kjj)

= sup
s�0

�sR� s log2
1 + "1=s

2
:

In the limit asR ! 0, the sphere-packing upper boundEU (R) coin-
cides withEL(R) [1, p. 410]. Hence,

EU(0) = EL(0) = sup
s�0

�s log2
1 + "1=s

2
:

It is easy to check that�s log2([1+"1=s]=2) is increasing ins. There-
fore,

EU(0) = lim
s!1

�s log2
1 + "1=s

2

= lim
s!1

�
log2

1+"
2

1=s

=� log2
p
"

where the last equality follows by l’Hôpital’s rule [11].
Now [1, Theorem 10.7.3] indicates that any line segment between

a point on the sphere-packing upper bound and a point on the
spacing partitioning upper bound is an upper bound for the channel
reliability. Construct the straight-line upper bound by taking the point
(0; � log2

p
") from the sphere-packing upper bound and the point

(1 � p
", Epar(1 � p

")) from the space partitioning upper bound
Epar(R). This straight-line upper bound should be of the form

Esl(R) =RE0
par(R0)� log2

p
"

=R log2
R0"

(1�R0)(1� ")
� log2

p
"

for 0 < R < R0, whereR0 satisfiesEpar(R0) = Esl(R0), which is
exactlyR0 = 1�p

". TakingR0 = 1�p
" into the above equation,

yields

Esl(R) = R � log2
p
"

1 +
p
"
� log2

p
"; for 0 < R < 1�p

":
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The proof is then completed by noting thatEpar(R) is strictly convex
in its domain, and hence is larger thanEsl(R) for 0<R<1�p".

REFERENCES

[1] R. Blahut,Principles and Practice of Information Theory. Reading,
MA: Addison Wesley, 1988.

[2] J. A. Bucklew,Large Deviation Techniques in Decision, Simulation, and
Estimation. New York: Wiley, 1990.

[3] P.-N. Chen, T.-Y. Lee, and Y. Han, “Distance-spectrum formulas on the
largest minimum distance of block codes,”IEEE Trans. Inform. Theory,
vol. 46, pp. 869–885, May 2000.

[4] I. Csiszár and J. Körner,Information Theory: Coding Theorems for Dis-
crete Memoryless Systems. New York: Academic, 1981.

[5] M. Egarmin, “Upper and lower bounds for the probability of error in
coding for discrete channels,”Probl. Pered. Inform., vol. 5, no. 1, pp.
23–39, 1969.

[6] R. G. Gallager, Information Theory and Reliable Communica-
tion. New York: Wiley, 1968.

[7] T. S. Han, Information-Spectrum Methods in Information Theory(in
Japanese). Tokyo, Japan: BaifuKan, 1998.

[8] H. V. Poor and S. Verdú, “A lower bound on the probability of error
in multi-hypothesis testing,”IEEE Trans. Inform. Theory, vol. 41, pp.
1992–1994, Nov. 1995.

[9] S. Verdú and T. S. Han, “A general formula for channel capacity,”IEEE
Trans. Inform. Theory, vol. 40, pp. 1147–1157, July 1994.

[10] A. J. Viterbi and J. K. Omura,Principles of Digital Communication and
Coding. New York: McGraw-Hill, 1979.

[11] W. R. Wade,An Introduction to Analysis. Englewood Cliffs, NJ: Pren-
tice-Hall, 1995.

Strong Law of Large Numbers and Shannon–McMillan
Theorem for Markov Chain Fields on Trees

Weiguo Yang and Wen Liu

Abstract—We study the strong law of large numbers and the
Shannon–McMillan theorem for Markov chain fields on trees. First, we
prove the strong law of large numbers for the frequencies of occurrence
of states and ordered couples of states for Markov chain fields on trees.
Then, we prove the Shannon–McMillan theorem with almost everywhere
(a.e.) convergence for Markov chain fields on trees. We prove the results
on a Bethe tree and then just state the analogous results on a rooted
Cayley tree. In the proof, a new technique for establishing the strong limit
theorem in probability theory is applied

Index Terms—Bethe tree, Markov chain fields, random fields, rooted
Cayley tree, Shannon–McMillan theorem, strong law of large numbers.

I. INTRODUCTION

A tree is a graphG = fT; Eg which is connected and contains no
circuits. Given any two vertices� 6= � 2 T , let �� be the unique
path connecting� and�. Define the graph distanced(�; �) to be the
number of edges contained in the path��.

Manuscript received Nov. 1, 1999; revised April 21, 2001.
W. Yang is with the Jiangsu University of Science and Technology, Zhenjiang

212013, China (e-mail: yangweiguo1@263.net).
W. Liu is with the Hebei University of Technology, Tianjin 300130, China.
Communicated by I. Csiszár, Associate Editor for Shannon Theory.
Publisher Item Identifier S 0018-9448(02)00060-3.

Fig. 1. Bethe treeT .

Fig. 2. Cayley treeT (i.e., binary tree).

We discuss mainly a Bethe treeTB;N on which each vertex hasN+
1 neighboring vertices. For simplicity, we investigate onlyTB; 2 (see
Fig. 1) in this correspondence.

To index the vertices onTB; 2, we first fix any one vertex as the
“root” and label it by0. A vertex is said to be on thenth level if the
path linking it to the root hasn edges.

We also discuss a rooted Cayley treeTC; 2 (i.e., a binary tree, see
Fig. 2). In a Cayley treeTC; 2, the root has only two neighbors and all
other vertices have three neighbors just as inTB; 2. When the context
permits,TB; 2 andTC; 2 are all denoted simply byT .

We denote byLmn the subgraph ofT containing the vertices from
nth level to themth level. In particular,T (n) �

= Ln0 is the subtree ofT
containing the vertices from level0 (the root) to leveln.

We use(n; j) to denote thejth vertex at thenth level. Thus,(n; j)
has neighbors(n+1; 2j� 1); (n+1; 2j) and(n� 1; [j=2]), where
[c] is the smallest integer not less thanc.

We denote byjBj the number of vertices in subgraphB. It is easy
to see that ifT is a Bethe treeTB; 2

T (n) = 3 � 2n � 2 (1)

if T is a Cayley treeTC; 2

T (n) = 2n+1 � 1: (2)

Let 
 = f0; 1gT , F be the smallest Borel field containing all
cylinder sets in
. LetX = fXt; t 2 Tg be the stochastic process de-
fined on the measurable space(
; F), that is, for any! = f!(t); t 2
Tg, define

Xt(!) = !(t); t 2 T: (3)

Let� be a probability measure on the measurable space(
; F). We
will call � a random field on treeT .

Definition 1 (see [5]): Let � be a probability measure on the mea-
surable space(
; F). If

�(!(j)j!(k); k 2 T � fjg) = �(!(j)j!(k); k 2 N(j)) (4)

0018–9448/02$17.00 © 2002 IEEE


