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Abstract—In this work, we provide a computable expression for the
Kullback–Leibler divergence rate lim ( ) between
two time-invariant finite-alphabet Markov sources of arbitrary order and
arbitrary initial distributions described by the probability distributions

and , respectively. We illustrate it numerically and examine its
rate of convergence. The main tools used to obtain the Kullback–Leibler
divergence rate and its rate of convergence are the theory of nonnegative
matrices and Perron–Frobenius theory. Similarly, we provide a formula
for the Shannon entropy rate lim ( ) of Markov sources and
examine its rate of convergence.

Index Terms—Classifcation, decision theory, Kullback–Leibler diver-
gence rate, nonnegative matrices, pattern recognition, Perron–Frobenius
theory, rate of convergence, Shannon entropy rate, time-invariant Markov
sources.

I. INTRODUCTION

Let fX1; X2; . . .g be a first-order time-invariant Markov source with
finite-alphabetX = f1; . . . ;Mg. Consider the following two different
probability laws for this source. Under the first law

PrfX1= ig =: pi and PrfXk+1=jjXk= ig =: pij ; i; j 2 X

so that

p
(n)(in) :=PrfX1 = i1; . . . ; Xn = ing

= pi pi i � � � pi i ; i1; . . . ; in 2 X

while under the second law, the initial probabilities are qi, the transition
probabilities are qij , and the n-tuple probabilities are q(n). Let p =
(p1; . . . ; pM) and q = (q1; . . . ; qM) denote the initial distributions
under p(n) and q(n), respectively.
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The Kullback–Leibler divergence [13] between two distributions p̂
and q̂ defined on X is given by

D(p̂kq̂) =
i2X

p̂i log
p̂i

q̂i

where the base of the logarithm is arbitrary. The application of the Kull-
back–Leibler divergence can be found in many areas such as approx-
imation of probability distributions [3], [12], signal processing [10],
[11], [5], pattern recognition [1], [2], etc.

One natural direction for further studies is the investigation of the
Kullback–Leibler divergence rate

lim
n!1

1

n
D p

(n)kq(n)

between two probability distributions p(n) and q(n) defined on Xn,
where

D(p(n)kq(n)) =
i 2X

p
(n)(in) log

p(n)(in)

q(n)(in)

for sources with memory. In earlier work, Gray [8] proved that the Kull-
back–Leibler divergence rate exists between a stationary source p(n)

and a time-invariant Markov source q(n). This result can also be found
in [18, p. 27]. In [14], the authors noted that the Kullback–Leibler di-
vergence rate between ergodic Markov sources exists. In [17], Shields
presented two examples for non-Markovian sources for which the Kull-
back–Leibler divergence rate does not exist. Finally, in [5], Do provides
an upper bound for the Kullback–Leibler divergence rate between sta-
tionary hidden Markov sources. To the best of our knowledge, these
are the only results available in the literature about the existence and/or
computation of the Kullback–Leibler divergence rate between sources
with memory.

Here, we provide an explicit computable expression for the Kull-
back–Leibler divergence rate between two arbitrary time-invariant (not
necessarily stationary, irreducible) finite-alphabet Markov sources.
This expression, which is proved in a straightforward manner using
results from the theory of nonnegative matrices and Perron–Frobenius
theory, has a readily usable form, making it appealing for various
analytical studies and applications involving the divergence rate for
systems with memory.

The rest of this work is organized as follows. Preliminaries about
the theory of nonnegative matrices are first briefly presented in Sec-
tion II. In Section III, an explicit formula for the divergence rate be-
tween arbitrary time-invariant finite-alphabet Markov sources is de-
rived and its rate of convergence is investigated. A similar study for
the expression and convergence rate of the Shannon entropy rate of
time-invariant (nonstationary in general) Markov sources is briefly ad-
dressed in Section IV. Numerical examples are presented in Section V,
and conclusions are stated in Section VI.

II. PRELIMINARIES

Matrices and vectors are positive if all their components are positive
and nonnegative if all their components are nonnegative. Throughout,
A denotes an M �M nonnegative matrix with elements aij . The ijth
element of Am is denoted by a(m)

ij .

We write i ! j if a(m)
ij > 0 for some positive integer m, and we

write i 6! j if a(m)
ij = 0 for every positive integer m. We say that i

and j communicate and write i $ j if i ! j and j ! i. If i ! j

but j 6! i for some index j, then the index i is called inessential (or
transient); otherwise, it is called essential (or recurrent). Thus, if i is
essential, i ! j implies i $ j, and there is at least one j such that
i ! j.

0018-9448/04$20.00 © 2004 IEEE
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With these definitions, it is possible to partition the set of indexes
f1; 2; . . . ;Mg into disjoint sets, called classes. All essential indexes
can be subdivided into essential classes in such a way that all the
indexes belonging to one class communicate, but cannot lead to an
index outside the class. Moreover, all inessential indexes (if any) may
be divided into two types of inessential classes: self-communicating
classes and non-self-communicating classes. Each self-communicating
inessential class contains inessential indexes which communicate with
each other. A non-self-communicating inessential class is a singleton
set whose element is an index which does not communicate with any
index (including itself). A matrix is irreducible if its indexes form a
single essential class; i.e., if every index communicates with every other
index.

Proposition 1 [16, p. 15]: By renumbering the indexes (i.e., by per-
forming row and column permutations), it is possible to put matrix A
in the canonical form

A =

A1 . . . 0 0 . . . 0 . . . . . . 0

0 . . . 0 0 . . . 0 . . . . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . 0

0 . . . Ah 0 . . . 0 . . . . . . 0

Ah+11 . . . Ah+1h Ah+1 . . . 0 . . . . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . 0

Ag1 . . . Agh Agh+1 . . . Ag . . . . . . 0

Ag+11 . . . Ag+1h Ag+1h+1 . . . Ag+1g 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . 0

Al1 . . . Alh Alh+1 . . . Alg Alg+1 . . . 0

where Ai, i = 1; . . . ; g, are irreducible square matrices, and in each
row i = h+1; . . . ; g at least one of the matricesAi1; Ai2; . . . ; Aii�1 is
not zero. The matrix Ai for i = 1; . . . ; h corresponds to the essential
class Ci; while the matrix Ai for i = h + 1; . . . ; g corresponds to
the self-communicating inessential class Ci. The other diagonal block
submatrices which correspond to non-self-communicating classes Ci,
i = g+1; . . . ; l, are 1 � 1 zero matrices. In every row i = g+1; . . . ; l
any of the matrices Ai1; . . . ; Aii�1 may be zero.

Proposition 2 [9, p. 492]: Suppose A is irreducible and let Ri, i =
1; . . . ;M denote the sum of the ith row. Also, let

Rmax = maxfR1; . . . ; RMg and Rmin = minfR1; . . . ; RMg:

Then the largest positive real eigenvalue � satisfies

Rmin � � � Rmax:

The following lemma follows by appropriately modifying the proof
of the above proposition and applying the Frobenius theorem [7, p.
115].

Lemma 1: If A is irreducible and the row sums are not all identical,
then the largest positive real eigenvalue � satisfies

Rmin < � < Rmax:

With the aid of [9, Theorem 8.6.1, p. 524] and Proposition 1, it
can be shown that for an arbitrary stochastic matrix P (i.e., with non-
negative entries and every row-sum equal to one), the Cesáro limit
limn!1

1
n

n

i=1 P
i exists and is computable.

Proposition 3 [4, p. 129]: Let P be the probability transition matrix
for an arbitrary Markov source with associated canonical form as in
Proposition 1

P =
� 0

B C

where

� =

P1 . . . 0

0 . . . 0

. . . . . . . . .

0 . . . Ph

; B =

Ph+11 . . . Ph+1h

. . . . . . . . .

Pg1 . . . Pgh

Pg+11 . . . Pg+1h

. . . . . . . . .

Pl1 . . . Plh

and

C =

Ph+1 . . . 0 . . . . . . 0

. . . . . . . . . . . . . . . . . .

Pgh+1 . . . Pg . . . . . . 0

Pg+1h+1 . . . Pg+1g 0 . . . 0

. . . . . . . . . . . . . . . . . .

Plh+1 . . . Plg Plg+1 . . . 0

:

Let ai (bi) be the left (right) eigenvector of Pi associated with � = 1
such that aibi = 1, for i = 1; . . . ; h, and define

D =

b1a1 . . . 0

0 . . . 0

. . . . . . . . .

0 . . . bhah

:

We then have the following:

lim
n!1

1

n

n

i=1

P
i =

D 0

(I � C)�1BD 0

where I is the identity matrix.

Remark: For each i = 1; 2; . . . ; h, the above left eigenvector ai is
the unique stationary distribution � of Pi and bti = (1; . . . ; 1), where
t denotes the transpose operation.

III. KULLBACK–LEIBLER DIVERGENCE RATE

A. First-Order Markov Sources

We first assume that the time-invariant Markov source
fX1; X2; . . .g is of order one. Later, we generalize the results
for sources of arbitrary order k. Let p and q be two initial distributions
and P and Q be two probability transition matrices for the source,
yielding n-tuple distributions p(n) and q(n), respectively. We assume
that p is absolutely continuous with respect to q (p � q) and
that P is absolutely continuous with respect to Q (P � Q); i.e.,
qi = 0 ) pi = 0 and qij = 0 ) pij = 0, for all i; j 2 X . These
conditions ensure that p(n) � q(n) for each n and cover most cases
of interest regarding the computation of the divergence rate. We then
have the following results.

Theorem 1: Suppose that the Markov source fX1;X2; . . .g is irre-
ducible under P and Q. Let

S(X2jX1 = i)
j2X

pij log
pij

qij
:

Then, the Kullback–Leibler divergence rate between p(n) and q(n) is
given by

lim
n!1

1

n
D(p(n)kq(n)) =

i2X

�iS(X2jX1 = i)

where � = (�1; . . . ; �M) is the unique stationary distribution of P .
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Proof: First note thatS(X2jX1 = i) is well defined for all i 2 X
since P � Q. Furthermore, since both p � q and P � Q hold, we
have after expanding the logarithm that

1

n
D(p(n)kq(n)) =

1

n
p(I + P + � � �+ Pn�2)V (1)

+
1

n
i2X

pi log
pi
qi

(2)

where

V t = (S(X2jX1 = 1); . . . ; S(X2jX1 = M)):

Note that (2) approaches 0 as n ! 1. Hence, by Proposition 3, we
obtain that

lim
n!1

1

n
p(I + P + � � �+ Pn�2)V = pLV

where

L = ba = (1; . . . ; 1)t(�1; . . . ; �M ) =

�1 �2 . . . �M
�1 �2 . . . �M
...

...
...

...
�1 �2 . . . �M

where a (b) is the left (right) eigenvector of P associated with the
largest real eigenvalue � = 1 such that ab = 1 (note that since P
is irreducible, then it is already in its canonical form; so g = h = 1
in Proposition 3 with the Cesáro limit trivially reducing to D = ba).
Thus,

lim
n!1

1

n
D(p(n)kq(n)) = p

�1 �2 . . . �M
�1 �2 . . . �M
...

...
...

...
�1 �2 . . . �M

V

=
i2X

�iS(X2jX1 = i):

Theorem 2: Suppose that the Markov source fX1;X2; . . .g under
p(n) and q(n) is arbitrary1 (not necessarily irreducible, stationary, etc.).
Let the canonical form of P be as in Proposition 1. Also, letB,D, and
C be as defined in Proposition 3. Then, the Kullback–Leibler diver-
gence rate between p(n) and q(n) is given by

lim
n!1

1

n
D(p(n)kq(n)) = p

D 0

(I � C)�1BD 0
V

where

V t = (S(X2jX1 = 1); . . . ; S(X2jX1 = M))

and I is the identity matrix with same dimensions as the matrix C .
Proof: As in the previous theorem, we have that

1

n
D(p(n)kq(n)) =

1

n
p(I + P + � � �+ Pn�2)V (3)

+
1

n
i2X

pi log
pi
qi
: (4)

Then, the desired result follows immediately from Proposition 3.

1Since and are assumed to be absolutely continuous with respect to
and , respectively, it follows that is absolutely continuous with respect to

. Hence, some restriction on their behavior is induced. For instance, if is
irreducible, must be irreducible. However, it is possible to have irreducible
and reducible. So, in general, and do not necessarily have the same
number of classes.

Theorem 3: The rate of convergence of the Kullback–Leibler diver-
gence rate between arbitrary p(n) and q(n) is of the order 1=n.

Proof: Clearly, the rate of convergence of (4) to 0 is of the order
1=n. In [9, Theorem 8.6.1, p. 524], it is proved that the rate of con-
vergence of the Cesáro sum of an irreducible stochastic matrix is of
the order 1=n. On the other hand, if P is not irreducible, let Pi, i =
1; . . . ; h, be the submatrices corresponding to essential classes and let
Pi, i = h + 1; . . . ; g be the submatrices corresponding to inessential
classes as in Proposition 1. For i = 1; . . . ; h, each Pi is stochastic and
irreducible; so its Cesáro sum is of the order 1=n by [9, Theorem 8.6.1,
p. 524]. Now, for i = h+ 1; . . . ; g, every Pi is irreducible and hence,
by [15, Corollary 1], we have that

Pn
i � �ni Gi; i = h+ 1; . . . ; g (5)

where �i is the largest positive real eigenvalue ofPi, andGi is a matrix
with identical entries that are independent of n. Therefore,

1

n

n

j=1

P j
i �

1

n

n

j=1

�jiGi =
1

n

�i(1� �ni )

1� �i
Gi

for i = h + 1; . . . ; g. If Pi has all row sums identical, then �i < 1
by Proposition 2, the fact that P is stochastic and the fact that, in the
canonical form of P , at least one of the matrices Pi1; Pi2; . . . ; Pii�1 is
nonzero when i = h+1; . . . ; g (so that the row sums of Pi are strictly
less than one). Otherwise, �i < 1 by Lemma 1. Hence, the Cesáro sum
of Pi, i = h+1; . . . ; g is of the order 1=n. By considering the Cesáro
sum of the canonical form of P , we get that the rate of convergence
of (3) is of the order 1=n. Therefore, the rate of convergence of the
Kullback–Leibler divergence rate is of the order 1=n.

B. kth-Order Markov Sources

We next suppose that the Markov source fXng has an arbitrary order
k, and let ~p(n) and ~q(n) be two possible n-tuple distributions for fXng.
Define fWng as the process obtained by k-step blocking the Markov
source fXng; i.e.,

Wn := (Xn;Xn+1; . . . ; Xn+k�1):

Then fWng is a first-order Markov source with Mk states. Let p =
(p1; . . . ; pM ) and q = (q1; . . . ; qM ) denote the initial distributions
of W1 and let P = [pij ] and Q = [qij ] (with i; j = 1; . . . ;Mk) de-
note the probability transition matrices for fWng, resulting in n-tuple
distributions p(n) and q(n), respectively.

We first note that since

~p(n+k�1)(xn+k�1) = p(n)(wn)

and

~q(n+k�1)(xn+k�1) = q(n)(wn)

for all n � 1, then

D(~p(n+k�1)k~q(n+k�1)) = D(p(n)kq(n)):

Therefore, the divergence rates for fXng and fWng are identical since
(n + k � 1)=n ! 1 as n ! 1. Now clearly, D(p(n)kq(n)) can be
written as

1

n
D(p(n)kq(n)) =

1

n
p(I + P + � � �+ Pn�2)V

+
1

n
i2X

p(W1 = i) log
p(W1 = i)

q(W1 = i)

where

V t = (S(W2jW1 = 1); . . . ; S(W2jW1 = Mk)):
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It then directly follows that Theorems 2 and 3 also hold for a Markov
source of arbitrary order k.

IV. SHANNON ENTROPY RATE

The existence and the computation of the Shannon entropy rate of
an arbitrary time-invariant finite-alphabet Markov source can be di-
rectly deduced from the existence and the computation of the Kull-
back–Leibler divergence rate. Indeed, if q(n) is stationary memoryless
with uniform marginal distribution then

D p(n)kq(n) = n logM �H(p(n)):

Therefore,

lim
n!1

1

n
D p(n)kq(n) = logM � lim

n!1

1

n
H p(n) : (6)

We have the following corollaries.

Corollary 1: Suppose that the Markov source fX1; X2; . . .g under
P is irreducible. Let

H(X2jX1 = i) �
j2X

pij log pij :

Then, the Shannon entropy rate of p(n) is given by

lim
n!1

1

n
H(p(n)) =

i2X

�iH(X2jX1 = i)

where � = (�1; . . . ; �M ) is the unique stationary distribution of P .
Proof: Obtained directly by plugging qij = 1=M in Theorem 1

and using (6).

Corollary 2: Let the canonical form of P be as in Proposition 1.
Also, letB,D, andC be as defined in Proposition 3. Then, the Shannon
entropy rate is given by

lim
n!1

1

n
H(p(n)) = p

D 0

(I � C)�1BD 0
V

where

V t = (H(X2jX1 = 1); . . . ; H(X2jX1 = M))

and I is the identity matrix with the same dimensions as the matrix C .
Proof: Note that P i, i = 1; 2; . . . is a stochastic matrix.2 Hence,

lim
n!1

1

n
(I + P + � � �+ Pn�2)1t = lim

n!1

n� 1

n
1
t

=1
t

which yields that

lim
n!1

1

n
(I + P + � � �+ Pn�2)

is a stochastic matrix. Therefore,

D 0

(I � C)�1BD 0

is also a stochastic matrix. Hence,

p
D 0

(I � C)�1BD 0

logM
...

logM

= p

logM
...

logM

= logM:

Then, the corollary follows directly by plugging qij = 1
M

in Theorem 2
and using (6).

2We have that 1 = 1 , where 1 = (1 . . . 1) and is the transpose
operation. Using this fact and the fact that = , the result follows
by mathematical induction on .

Remark: It was mentioned in [6, p. 68] that the Shannon entropy rate
for an arbitrary time-invariant finite-alphabet Markov source exists, but
no computational details nor an explicit analytical expression for the
entropy rate (as shown above) were provided.

Corollary 3: The rate of convergence of the Shannon entropy rate
of p(n) is of the order 1=n.

V. NUMERICAL EXAMPLES

In this section, we use the natural logarithm for simplicity.

Example 1: Let P andQ be two possible probability transition ma-
trices for a first-order Markov source fX1;X2; . . .g (not stationary and
not irreducible) defined as follows:

P =

1=2 0 0 1=2 0 0 0

0 0 4=7 2=7 1=7 0 0

0 0 1=3 0 0 2=3 0

1=4 0 0 3=4 0 0 0

2=5 2=5 0 0 1=5 0 0

0 0 1 0 0 0 0

1=4 0 1=2 0 1=4 0 0

and

Q =

1=3 0 0 2=3 0 0 0

0 0 2=7 1=7 4=7 0 0

0 0 1=5 0 0 4=5 0

1=6 0 0 5=6 0 0 0

1=5 2=5 0 0 2=5 0 0

0 0 1 0 0 0 0

1=4 0 1=4 0 1=2 0 0

:

Let

p = (3=7;0; 1=7; 0; 1=7; 2=7;0)

and

q = (2=8; 0; 3=8; 0; 1=8; 2=8; 0)

be two possible initial distributions under p(n) and q(n), respectively.
In canonical form, P and Q can be rewritten as

P =

1=3 2=3 0 0 0 0 0

1 0 0 0 0 0 0

0 0 1=2 1=2 0 0 0

0 0 1=4 3=4 0 0 0

0 0 2=5 0 1=5 2=5 0

4=7 0 0 2=7 1=7 0 0

1=2 0 1=4 0 1=4 0 0

and

Q =

1=5 4=5 0 0 0 0 0

1 0 0 0 0 0 0

0 0 1=3 2=3 0 0 0

0 0 1=6 5=6 0 0 0

0 0 1=5 0 2=5 2=5 0

2=7 0 0 1=7 4=7 0 0

1=4 0 1=4 0 1=2 0 0

;

simply by permuting the first and third rows (columns) and the
second and sixth rows (columns). Note that P has two essential
classes, one inessential self-communicating class, and one inessential
non-self-communicating class. Accordingly, the initial distributions
are rewritten as

p = (1=7; 2=7;3=7; 0; 1=7; 0; 0)
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and

q = (3=8; 2=8; 2=8;0; 1=8;0; 0)

after permuting the first and third indexes and the second and sixth
indexes. We obtain the following:

n 1
n
D(p(n)kq(n))

10 0:05323

50 0:03626

100 0:03415

By Theorem 2, the Kullback–Leibler divergence rate is equal to
0:032. Clearly, as n gets larger, 1

n
D(p(n)kq(n)) is closer to the

Kullback–Leibler divergence rate. We also obtain the following:

n 1
n
H(p(n))

10 0:54366

50 0:50877

100 0:50442

By Corollary 2, the Shannon entropy rate is equal to 0:50008. Similarly,
as n gets larger, the value of 1

n
H(p(n)) moves closer to the Shannon

entropy rate.

Example 2: Suppose that the Markov source is of order 2 under p(n)

and q(n), respectively. Let fW1;W2; . . .g be the process obtained by
two-step blocking the Markov source. Let P and Q be two possible
transition matrices for fW1;W2; . . .g defined as follows:

P =

1=3 2=3 0 0

0 0 1 0

2=5 3=5 0 0

0 0 1=6 5=6

and

Q =

3=4 1=4 0 0

0 0 1 0

7=8 1=8 0 0

0 0 2=3 1=3

:

Let p = (1=8;3=8; 2=8; 2=8) and q = (1=7;2=7; 3=7;1=7) denote
two possible initial distributions of W1 under p(n) and q(n), respec-
tively. The set of indexes f1; 2; 3g forms an essential class, while
the singleton set f4g forms a self-communicating nonessential class.
Hence, P and Q are not irreducible. Note also that both p(n) and q(n)

are not stationary. We obtain the following:

n 1
n
D(p(n)kq(n))

10 0:2982

50 0:3253

100 0:3277

By Theorem 2, the Kullback–Leibler divergence rate is equal to
0:3301. Clearly, as n increases, 1

n
D(p(n)kq(n)) gets closer to the

Kullback–Leibler divergence rate. We also obtain the following:

n 1
n
H(p(n))

10 0:4618

50 0:4175

100 0:4116

By Corollary 2, the Shannon entropy rate is equal to 0:4057. Similarly,
1
n
H(p(n)) approaches the Shannon entropy rate with increasing n.

VI. CONCLUSION

In this work, we derived a formula for the Kullback–Leibler diver-
gence rate between two time-invariant finite-alphabet Markov sources
of arbitrary order and arbitrary initial distributions. We also investi-
gated its rate of convergence. Similarly, we examined the computation
and the existence of the Shannon entropy rate for Markov sources and
investigated its rate of convergence. The main tools used in obtaining
these results are the theory of nonnegative matrices and Perron–Frobe-
nius theory. One interesting and challenging direction for future work
is the investigation of the Kullback–Leibler divergence rate for general
hidden Markov sources.
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