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On the Joint Source–Channel Coding Error Exponent
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Abstract—We investigate the computation of Csiszár’s bounds
for the joint source–channel coding (JSCC) error exponent
of a communication system consisting of a discrete memoryless
source and a discrete memoryless channel. We provide equivalent
expressions for these bounds and derive explicit formulas for the
rates where the bounds are attained. These equivalent representa-
tions can be readily computed for arbitrary source–channel pairs
via Arimoto’s algorithm. When the channel’s distribution satisfies
a symmetry property, the bounds admit closed-form parametric
expressions. We then use our results to provide a systematic compar-
ison between the JSCC error exponent and the tandem coding
error exponent , which applies if the source and channel are
separately coded. It is shown that 2 . We establish
conditions for which and for which = 2 . Nu-
merical examples indicate that is close to2 for many source–
channel pairs. This gain translates into a power saving larger than
2 dB for a binary source transmitted over additive white Gaussian
noise (AWGN) channels and Rayleigh-fading channels with finite
output quantization. Finally, we study the computation of the lossy
JSCC error exponent under the Hamming distortion measure.

Index Terms—Discrete memoryless sources and channels,
error exponent, Fenchel’s duality, Hamming distortion measure,
joint source–channel coding, random-coding exponent, reliability
function, sphere-packing exponent, symmetric channels, tandem
source and channel coding.

I. INTRODUCTION

TRADITIONALLY, source and channel coding have been
treated independently, resulting in what we call a tandem

(or separate) coding system. This is because Shannon in 1948
[45] showed that separate source and channel coding incurs no
loss of optimality (in terms of reliable transmissibility) provided
that the coding block length goes to infinity. In practical imple-
mentations, however, there is a price to pay in delay and com-
plexity, for extremely long block length. To begin, we note that
joint source–channel coding (JSCC) might be expected to offer
improvements for the combination of a source with significant
redundancy and a channel with significant noise, since, for such
a system, tandem coding would involve source coding to remove
redundancy and then channel coding to insert redundancy. It is
a natural conjecture that this is not the most efficient approach

Manuscript received October 20, 2004; revised December 15, 2005. This
work was supported in part by the Natural Sciences and Engineering Research
Council of Canada and the Premier’s Research Excellence Award of Ontario.
The material in this paper was presented in part at the 22nd Biennial Sympo-
sium on Communications, Kingston, ON, Canada, June 2004 and the IEEE In-
ternational Symposium on Information Theory, Chicago, IL, June/July 2004.

The authors are with the Department of Mathematics and Statistics,
Queen’s University, Kingston, ON K7L 3N6, Canada (e-mail: yangfan@mast.
queensu.ca; fady@mast.queensu.ca; campbell@mast.queensu.ca).

Communicated by A. Lapidoth, Associate Editor for Shannon Theory.
Digital Object Identifier 10.1109/TIT.2006.871608

(even if the block length is allowed to grow without bound). In-
deed, Shannon [45] made this point as follows:

However, any redundancy in the source will usually
help if it is utilized at the receiving point. In particular, if
the source already has a certain redundancy and no attempt
is made to eliminate it in matching to the channel, this re-
dundancy will help combat noise. For example, in a noise-
less telegraph channel one could save about 50% in time by
proper encoding of the messages. This is not done and most
of the redundancy of English remains in the channel sym-
bols. This has the advantage, however, of allowing consid-
erable noise in the channel. A sizable fraction of the letters
can be received incorrectly and still reconstructed by the
context. In fact this is probably not a bad approximation to
the ideal in many cases

The study of JSCC dates back to as early as the 1960s. Over
the years, many works have introduced JSCC techniques and
illustrated (analytically or numerically) their benefits (in terms
of both performance improvement and increased robustness to
variations in channel noise) over tandem coding for given source
and channel conditions and fixed complexity and/or delay con-
straints. In JSCC systems, the designs of the source and channel
codes are either well coordinated or combined into a single step.
Examples of (both constructive and theoretical) previous loss-
less and lossy JSCC investigations include the following:

a) JSCC theorems and the separation principle [6], [10],
[15], [20], [23], [26], [28], [29], [32], [51];

b) source codes that are robust against channel errors such as
optimal (or suboptimal) quantizer design for noisy chan-
nels [4], [9], [21], [22], [25], [33]–[35], [39], [41], [47],
[48], [50];

c) channel codes that exploit the source’s natural redundancy
(if no source coding is applied) or its residual redundancy
(if source coding is applied) [3], [27], [38], [44], [58];

d) zero-redundancy channel codes with optimized codeword
assignment for the transmission of source encoder indices
over noisy channels (e.g., [21], [54]);

e) unequal error protection source and channel codes where
the rates of the source and channel codes are adjusted to
provide various levels of protection to the source data de-
pending on its level of importance and the channel condi-
tions (e.g., [30], [40]);

f) uncoded source–channel matching where the source is un-
coded, directly matched to the channel and optimally de-
coded (e.g., [2], [24], [46], [53]).

0018-9448/$20.00 © 2006 IEEE



ZHONG et al.: ON THE JOINT SOURCE–CHANNEL CODING ERROR EXPONENT FOR DISCRETE MEMORYLESS SYSTEMS 1451

The above references are far from exhaustive as the field
of JSCC has been quite active, particularly over the last 20
years.

In order to learn more about the performance of the best codes
as a function of block length, much research has focused on
the error exponent or reliability function for source or channel
coding (see, e.g., [13], [19], [23], [31], [37], [52]). Roughly
speaking, the error exponent is a number with the property
that the probability of decoding error of a good code is approx-
imately for codes of large block length . Thus, the error
exponent can be used to estimate the tradeoff between error
probability and block length. In this paper, we use the error ex-
ponent as a tool to compare the performance of tandem coding
and JSCC. While jointly coding the source and channel offers
no advantages over tandem coding in terms of reliable transmis-
sibility of the source over the channel (for the case of memory-
less systems as well as the wider class of stationary information
stable [15], [28] systems), it is possible that the same error per-
formance can be achieved for smaller block lengths via optimal
JSCC coding.

The first quantitative result on error exponents for lossless
JSCC was a lower bound on the error exponent derived in 1964
by Gallager [23, pp. 534–535]. This result also indicates that
JSCC can lead to a larger exponent than the tandem coding
exponent, the exponent resulting from separately performing
and concatenating optimal source and channel coding. In
1980, Csiszár [17] established a lower bound (based on the
random-coding channel error exponent) and an upper bound
for the JSCC error exponent of a communication
system with transmission rate source symbols/channel symbol
and consisting of a discrete memoryless source (DMS) with
distribution and a discrete memoryless channel (DMC) with
transition distribution . He showed that the upper bound,
which is expressed as the minimum of the sum of
and over , i.e.,

(1)

where is the source error exponent [13], [17], [31] and
is the channel error exponent [17], [23], [31], is tight

if the latter minimum is attained for an strictly larger than
the critical rate of the channel. Another (looser) upper bound
to directly results from (1) by replacing
by the sphere-packing channel error exponent. He extended
this work in 1982 [18] to obtain a new expurgated lower bound
(based on the expurgated channel exponent) for the above
system under some conditions, and to deal with lossy coding
relative to a distortion threshold. Our first objective in this
work is to recast Csiszár’s results in a form more suitable for
computation and to examine the connection between Csiszár’s
upper and lower bounds. After this, we go on to compare the
joint coding and tandem coding error exponents in order to dis-
cover how much potential for improvement there is via JSCC.
Since error exponents give only asymptotic expressions for
system performance, our results do not have direct application
to the construction of good codes. Rather, they point out certain

systems for which a search for good joint codes might prove
fruitful.

We first investigate the analytical computation of Csiszár’s
random-coding lower bound and sphere-packing upper bound
for the JSCC error exponent. By applying Fenchel’s Du-
ality Theorem [36] regarding the optimization of the sum
of two convex functions, we provide equivalent expressions
for these bounds which involve a maximization over a non-
negative parameter of the difference between the concave hull
of Gallager’s channel function and Gallager’s source func-
tion [23]; hence, they can be readily computed for arbitrary
source–channel pairs by applying Arimoto’s algorithm [8].
When the distribution of the channel is symmetric [23], our
bounds admit closed-form parametric expressions. We also
provide formulas for the rates for which the bounds are at-
tained and establish explicit computable conditions in terms of

and under which the upper and lower bounds coincide;
in this case, can be determined exactly. A byproduct of our
results is the observation that Csiszár’s JSCC random-coding
lower bound can be larger than Gallager’s earlier lower bound
obtained in [23].

We next employ our results to provide a systematic com-
parison of the JSCC exponent and the tandem
coding exponent for a DMS–DMC pair
with the same transmission rate . Since in gen-
eral (as tandem coding is a special case of JSCC), we are
particularly interested in investigating the situation where

. Indeed, this inequality, when it holds, provides
a theoretical underpinning and justification for JSCC design
as opposed to the widely used tandem approach, since the
former method will yield a faster exponential rate of decay
for the error probability, which may translate into substantial
reductions in complexity and delay for real-world communi-
cation systems. We establish sufficient (computable) condi-
tions for which for any given source–channel pair

, which are satisfied for a large class of memoryless
source–channel pairs. Furthermore, we show that .
Numerical examples show that can be nearly twice as
large as for many DMS–DMC pairs. Thus, for the same
error probability, JSCC would require around half the delay
of tandem coding. This potential benefit translates into more
than 2-dB power gain for binary DMS sent over binary-input
quantized-output additive white Gaussian noise and memory-
less Rayleigh-fading channels.

We also partially address the computation of Csiszár’s lower
and upper bounds for the lossy JSCC exponent with distortion
threshold , . Under the case of the Hamming dis-
tortion measure, and for a binary DMS and an arbitrary DMC,
we express the bounds for and the rates for which
the bounds are attained as in the lossless case.

The rest of this paper is arranged as follows. In Section II,
we describe the system, define the terminologies, and introduce
some material on convexity and Fenchel duality. Section III is
devoted to study the analytical computation of based on
Csiszár’s work [17], [18]. In Section IV, we assess the merits
of JSCC by comparing with . The computation of the
lossy JSCC exponent is partially studied in Section V. Finally,
we state our conclusions in Section VI.
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II. DEFINITIONS AND SYSTEM DESCRIPTION

A. System

We consider throughout this paper a communication system
consisting of a DMS with finite alphabet and dis-
tribution , and a DMC with finite input al-
phabet , finite output alphabet , and transition probability

. Without loss of generality, we assume that
for each . Also, if the source distribution is uniform, op-

timal (lossless) JSCC amounts to optimal channel coding which
has already been well studied. Therefore, we assume throughout
that is not the uniform distribution on except in Section V,
where we deal with JSCC under a fidelity criterion.

A joint source–channel (JSC) code with block length and
transmission rate (measured in source symbols/channel
use) is a pair of mappings and

. That is, blocks of source symbols
of length are encoded as blocks

of symbols from of length , transmitted, received
as blocks of symbols from of length ,
and decoded as blocks of source symbols of length .
The probability of erroneously decoding the block is

Here, and are the - and -dimensional product
distributions corresponding to and , respectively.

Throughout the paper, will denote a base logarithm,
will mean the number of elements in and similarly for the
other alphabets, and will denote the capacity of the DMC
given by

where is the mutual information between the channel
input and the channel output [23]. Finally, will denote the
entropy of a discrete probability distribution.

B. Error Exponents

Definition 1: The JSCC error exponent is de-
fined as the largest number for which there exists a sequence
of JSC codes with transmission rate and block length

such that

When there is no possibility of confusion, will be
written as . We know from the JSCC theorem (e.g., [16,
p. 216], [23]) that can be positive if and only if .

For future use, we recall the source and channel functions
used by Gallager [23] in his treatment of the JSCC theorem.
We also introduce some useful notation and some elementary

relations among these functions. Let Gallager’s source function
be

(2)

Let

(3)

where is an unspecified probability distribution on . Con-
nected with these functions are the source error exponent

(4)

and two intermediate channel error exponents

(5)

and

(6)

From these, we can form the random-coding lower bound for
the channel error exponent

(7)

and the sphere-packing upper bound

(8)

In other words, . Also,
we can form Gallager’s channel function

(9)

It should be noted that maximization over means maximiza-
tion over the closed bounded set

Thus, if the function involved is continuous, the maximum is
achieved for some distribution .

The functions and in (5) and
(6) are equal if the maximizing in (6) or equivalently, if

, where is the critical rate of the
channel under distribution , defined by

(10)

For all , and vanish for all
. Consequently, their maxima over , , and
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vanish for and are equal on some interval
where is the critical rate of the channel

and is defined by

(11)

Furthermore, it is known that meets on
its supporting line of slope [19, p. 171], which means that

is a straight line with slope for and
hence,

(12)

We remark that Csiszár [17] defines , ,
and using expressions involving constrained
minima of Kullback–Leibler divergences. Our expressions are
equivalent, as can be shown by the Lagrange multiplier method;
see also [19, pp. 192–193] and [13].

C. Tilted Distributions

We associate with the source distribution a family of tilted
distributions defined by

(13)

Lemma 1 [19, p. 44]: The entropy is a strictly in-
creasing function of except in the case that for
all . Moreover, for , the equation

is satisfied by a unique value (where we de-
fine if and define ).

The proof that is increasing follows easily from dif-
ferentiation with respect to and a use of the Cauchy–Schwarz
inequality. The remainder of the proof follows from the facts
that , , and that

is a continuous function of .
It is easily seen that

(14)

where is defined by (2). From this we see that for
the supremum in (4) is achieved at .

D. Fenchel Duality

Although many of our results can be obtained by the use of
the Lagrange multiplier method, the Fenchel Duality Theorem
gives more succinct proofs and seems particularly well adapted
to the elucidation of the connection between error exponents on
the one hand, and source and channel functions on the other.1

We present here a simplified one-dimensional version which is
adequate for our purposes. For more detailed discussion, the
reader may consult [36, pp. 190–202], [12, Ch. 7], or [42].

1Another related application of Fenchel duality is carried out in [5] in the
context of guessing subject to distortion, where it is shown that the guessing
exponent is the Fenchel transform of the error exponent for source coding with
a fidelity criterion.

For any function defined on , define its convex
Fenchel transform (conjugate function, Legendre transform)
by

and let be the set . It is easy to see from
its definition that is a convex function on . Moreover, if

is convex and continuous, then . More generally,
and is the convex hull of , i.e., the largest convex

function that is bounded above by [42, Sec. 3], [12, Sec. 7.1].
Similarly, for any function defined on , define its

concave Fenchel transform by

and let be the set . It is easy to see from
its definition that is a concave function on . Moreover, if

is concave and continuous, then . More generally,
and is the concave hull of , i.e., the smallest

concave function that is bounded below by .

Fenchel Duality Theorem [36, p. 201]: Assume that
and are, respectively, convex and concave functions on the
nonempty intervals and in and assume that has in-
terior points. Suppose further that
is finite. Then

(15)

where the maximum on the right-hand side is achieved by some
. If the infimum on the left-hand side is achieved

by some , then

(16)

and

(17)

E. Properties of the Source and Channel Functions

Lemma 2: The source function defined by (2) is a
strictly convex function of .

Convexity follows directly from (14) and Lemma 1. Strict
convexity is a consequence of our general assumption that is
not the uniform distribution. It will be seen from (4) that
is the convex Fenchel transform of . In fact, it is easily
checked that (e.g., cf. [19, pp. 44–45])

if
if
if

(18)

where denotes the Kullback–Leibler divergence and
is the solution of . Note that (18) implies that

is strictly convex in on when the
source is nonuniform; otherwise, .

The relation between the Gallager’s channel function
and the random-coding and sphere-packing bounds
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is more complicated. First of all, recall that for each ,
as defined in (5) is a convex nonincreasing

function for all , and is a linear function of with slope
for [23, p. 143 ]. It will be convenient to
regard this linear function as defining for all
negative . The random coding bound , which is
the maximum of this family of convex functions, is a convex
strictly decreasing function of for , and is a linear
function of with slope for all below the critical rate

. For , . Since is
convex, then is concave. Let be the
concave transform of , i.e.,

(19)

It follows from the properties of noted above that
for and and that is

finite for .

Lemma 3: The function defined by (19) is the con-
cave hull on the interval of the channel function
defined in (9). Thus, for .

Proof: We form the concave transform of on
the interval to get

Now use, in succession, (9), (5), and (7) to get

Since is the concave transform of the concave func-
tion, , we have that

and so

Hence, is the concave hull on of .

Similarly to the above, recall that , defined in (8)
is convex, zero for , positive for , and finite if

[19], [23], where is given by

(20)

A computable expression for is given in [23, p. 158].
The normal situation is . (As shown by Gallager,

unless each channel output symbol is unreachable
from at least one input. In the latter case, .) We now
let be the concave transform of the concave function

, i.e.,

(21)

Fig. 1. Example of a 6-ary input, 4-ary output DMC (see [23, Fig. 5.6.5]) for
which E (�;W ) is not concave.

It follows that for and that
for .

Lemma 4: The function defined by (21) is the
concave hull on of the channel function de-
fined in (9).

Proof: We now form the concave transform of
on the interval to get

Now use (9), (6), and (8) to get

As in the previous proof, . Hence,
is the concave hull on of .

Observation 1: Note that the function is con-
cave in for each [23, p. 142]. Hence, if the maximizing

in (9) is independent of , is concave and thus,
and are equal to . This situation

holds if the channel is symmetric in the sense of Gallager [23,
p. 94] (also see Example 2). For this case, the maximizing distri-
bution is the uniform distribution for all .
However, there are channels for which is not con-
cave. One example of such a channel is provided by Gallager
[23, Fig. 5.6.5]. For this particular ( -ary input, -ary output)
channel, we plot against in Fig. 1. It is noted that the
derivative of has a positive jump increase at around

(see [23, Fig. 5.6.5]), and its concave hull is
strictly larger than in the interval .
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III. BOUNDS ON THE JSCC ERROR EXPONENT

A. Csiszár’s Random-Coding and Sphere-Packing Bounds

Csiszár [17] proved that for a DMS and a DMC the JSCC
error exponent in Definition 1 satisfies

(22)

where

(23)

and

(24)

are called the source–channel random-coding lower bound and
the source–channel sphere-packing upper bound, since they re-
spectively contain and in their expres-
sions. These bounds can be expressed in a form more adapted
to calculation as follows.

Theorem 1: Let and let .
Then

(25)

and

(26)

where and are the concave hulls of
on and defined in (19) and (21), re-

spectively. If the maximizing in (9) is independent of ,
and can be replaced by .

Remark 1: When ,

Observation 2: According to Lemma 3,
. Thus, the lower bound can be replaced

by the possibly looser lower bound2

(27)

This is the lower bound implied by Gallager’s work [23, p. 535].
As noted earlier, if the maximizing in (9) is independent of

2In [56], [55], we incorrectly stated that Csiszár’s random-coding lower
bound E (Q;W; t) given in (23) and Gallager’s lower bound given in (27) are
identical. This is indeed not always true; it is true if E (�;W ) is a concave
function of � (e.g., for symmetric channels) or tH(Q ) � R (W ) (see
Corollary 2). Thus, although both lower bounds are “random coding” type
bounds, Csiszár’s bound is in general tighter.

(e.g., for symmetric channels, see Example 2), the two lower
bounds are identical.

Proof of Theorem 1: We first apply Fenchel’s Duality The-
orem (15) to the lower bound . From Lemma 2,
(4), and (18), is convex on and has
convex transform on the set . Also, from the
discussion preceding Lemma 3, is concave on
and has concave transform which is bounded on .
Thus, by Fenchel’s Duality Theorem

(28)

Now, the convex function is nonin-
creasing for since in this region.
This implies that the infimum on the left-hand side of (28) can
be restricted to the interval . Since this
is now the infimum of a continuous function on a finite interval
this will be a minimum. Hence, (25) is an equivalent represen-
tation of .

Similarly, for the upper bound, recall from the discussion pre-
ceding Lemma 4 that is concave and finite for

and has a concave transform , which
is finite on . Thus, by Fenchel’s Duality Theorem

(29)

The assumption ensures that the infimum
on the left-hand side of (29) is taken over a set with interior
points. If , the infimum can be replaced by a
minimum on the interval by the same
argument as for the lower bound. If , we no
longer form the infimum of a continuous function, but it can
still be shown that there is a minimum point which lies in the
interval . Hence, (29) is an equivalent
representation of .

Observation 3: The parametric form of the lower and
upper bounds (25) and (26) indeed facilitates the computa-
tion of Csiszár’s bounds. In order to compute the bounds
for general nonsymmetric channels (when
and ), one could employ Arimoto’s al-
gorithm [8] to find the maximizing distribution and thus

. We then can immediately obtain the concave hulls
of , , and numerically (e.g.,
using Matlab) and thus the maxima of
and . This significantly reduces the
computational complexity since to compute (23) and (24), we
need to first compute and for each ,
which requires almost the same complexity as above, and then
we need to find the minima by searching over all ’s. For
symmetric channels, (25) and (26) are analytically solved; see
Example 2.
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Fig. 2. Csiszár’s random-coding and sphere-packing bounds for the system of Example 1.

Example 1: Consider a communication system with a binary
DMS with distribution and a DMC with ,

, and transition probability matrix

We then compute Csiszár’s random-coding and sphere-
packing bounds, and . For fixed
and transmission rate , we plot these bounds in terms of in
Fig. 2. Our numerical results show that could be deter-
mined exactly for a large class of triplets: when source

and rate , is exactly known for
; when and , is known

for ; and when and , is
known for . Since for this channel might
not be concave (e.g., when , reduces to the DMC
discussed in Observation 1 at the end of Section II), our results
indicate that Csiszár’s lower bound is slightly but strictly larger
(by ) than Gallager’s lower bound (27) for ,

, and around (cf. [57, Fig. 3]).

B. When Does ?

One important objective in investigating the bounds for the
JSCC error exponent is to ascertain when the bounds are
tight so that the exact value of is obtained. According
to Csiszár’s result (22), we note that if the minimum in the
expressions of or is attained for a
rate (strictly) larger than the critical rate , then the
two bounds coincide and thus is determined exactly. This

raises the following question: how can we check whether the
minimum in or is attained for a rate
larger than ? One may indeed wonder if there exist ex-
plicit conditions for which . The
answer is affirmative; furthermore, we can verify whether the
two bounds are tight in two ways: one is to compare
with , and the other is to compare the minimizer of

in (26), say, with . Before we present these
conditions, we first define the following quantities which
achieve the bounds and under the
assumptions and :

(30)

(31)

(32)

(33)

Since the functions between brackets to be minimized (or max-
imized) in (30)–(33) are strictly convex (or concave) functions
of (or ), , , , and are well defined and unique.
We then have the following relations.

Lemma 5: Let and let .
Then we have the following:

1) and are positive and finite;
2) ;
3) if ; if .

Proof: We first prove 1). Since is the concave
hull of , we have the following relation:
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where the last equality follows from [7, Lemma 2]. Since
by (14) and Lemma 1, we have

Note that the right-derivative of (at ) must
exist due to its concavity [43, pp. 113–114], and hence

exists. Next we denote

It follows from the definition of that

because of the finiteness of for . This
together with implies

Since is and has a positive right-slope
at and is negative for sufficiently large, by the strict
concavity of , the maximum in (33) must
be achieved by a positive finite . The positivity of can be
shown in the same way and is finite by its definition.

We next prove 2). If we now regard as and
as (by noting that ), then according to

(16) in Fenchel’s Duality Theorem

Setting the derivative of equal to , we
can solve for the stationary point3 , which gives

.
For the lower bound, using a similar argument, we obtain the

relation

Recalling that the function between the brackets to be maxi-
mized is strictly concave, if the above maximum is achieved by

, then we can solve for the stationary point as above
and obtain . If the maximum is achieved at

, then the stationary point is beyond (at least equal to) ,
and hence . Thus (3) follows.

In order to summarize the explicit conditions for the calcula-
tion of , it is convenient to define a critical rate for the source
by

(34)

recalling that , .

3The stationary points of a differentiable function f(x) are the solutions of
f (x) = 0.

Theorem 2: Let and let .
Then we have the following.

•

In this case

•

In this case,

Remark 2: Under the condition ,
is possible. However, if , then we defi-

nitely have and .

Remark 3: It can be shown that and
thus, when , the JSCC exponent is determined by

The proof of Theorem 2 involves a geometric argument
involving the left- and right-slopes of the convex functions

and and is tedious; we hereby provide
the proof when the channel is symmetric for the sake of sim-
plicity. For the full proof (involving nonsymmetric channels),
the reader may consult [57, Appendix A].

Proof of Theorem 2 for Symmetric DMCs: When the
channel is symmetric, then is concave and differen-
tiable in . In this case, it is easy to see by definition
that and since

Furthermore, it follows from Lemma 5 and (17) in Fenchel’s
Duality Theorem (as in the last proof) that

where is decreasing in ([23, p. 142])
for symmetric DMCs. Now to show , we need
to show: (Forward) and (Converse).

1) Converse Part. When , from the above argument
along with Lemma 5 we have

by the monotonicity of and . Similarly,
when , it follows from the above argument,
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Lemma 5 and the monotonicity of and
that

Note that is strictly increasing in by Lemma 1.
2) Forward Part. Setting the auxiliary function

which is strictly increasing in (for ), yields via
Lemma 5 and the above argument that is the unique
root of equation . To determine the range of ,
we consider the following three cases.

• When , we consider the interval
. It is

seen that

and

If , which means ,
it follows by the strict monotonicity of that

. If , then ,
and the monotonicity of yields .

• If , we consider the in-
terval

Since is decreasing in , there must exist an
( ) such that . It follows
that for a nonuniform distribution

Observing (as above) that if
, it follows that . Likewise, if

, then , and we have
.

• If , then clearly we have

since is nonuniform. Under this case, we must
have , which implies that by the
strict monotonicity of .

Corollary 1: Let and let .
Then and .

For symmetric DMCs, Corollary 1 is trivial and has been
shown in the last proof. For general DMCs, the proof of Corol-
lary 1 is provided in [57, Appendix A].

We point out that, in both the computation and analysis as-
pects, the above conditions play an important role in verifying
whether can be determined exactly or not. For the class
of symmetric DMCs, we can use the conditions

and to derive explicit formulas
for , see Example 2. In Section IV, we apply Theorem 2 to
establish the conditions for which the JSCC exponent is larger
than the tandem coding exponent. Note that when

, the source–channel random-coding bound admits a
simple expression

(35)

Consequently, we have the following statement.

Corollary 2: If , then Csiszár’s
random-coding bound and Gallager’s lower bound (27) are
identical.

Example 2 (DMS and Symmetric DMC): Consider a DMS
and a symmetric4 DMC with rate ,

where the channel transition matrix can be partitioned along
its columns into submatrices , such that in each

with size , each row is a permutation of each other
row and each column is a permutation of each other column. De-
note the transition probabilities in any column of submatrix ,

, by . Then both
and the channel capacity are achieved by the uniform distribu-
tion and have the form

(36)
and

where the tilted distribution , , for each
, is defined on by

Since now is a concave and differentiable function of
, the bounds and can be analytically

obtained. If

(37)

and

(38)
then the source–channel exponent is positive and is exactly de-
termined by

(39)

4Here, symmetry is defined in the Gallager sense [23, p. 94]; it is a general-
ization of the standard notion of symmetry [16] (which corresponds to s = 1

above).
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where is the unique root of the equation

(40)

In the case when (37) does not hold, which means ,
. When (37) holds but (38) does not hold, the

right-hand side of (39) becomes the upper bound
and meanwhile, is lower-bounded by ,
where is given by (36).

Now we apply the conditions (37) and (38) to a communica-
tion system with a binary source with distribution ,
a binary-symmetric channel (BSC) with crossover probability
and transmission rates , and . Note that

and

where is the binary entropy function. In Fig. 3, we parti-
tion the set of possible points for the pairs into three re-
gions: , , and . If , where conditions (37) and
(38) hold, i.e., and , then the
corresponding is positive and exactly known.5 Furthermore,
if , then is bounded above (below, respectively)
by the right-hand side of (39) ( , respec-
tively). When , where , is zero, and
the error probability of this communication system converges to

for sufficiently large. So we are only interested in the cases
when .

Observation 4 (Csiszár’s Expurgated Lower Bound): Using
a similar approach (relying on Fenchel’s Duality Theorem), we
have also studied Csiszár’s expurgated lower bound [18] to
and obtained its equivalent expression in terms of Gallager’s
expurgated channel and source functions. We established the
condition when the random-coding lower bound to can be
improved by the expurgated bound. The reader may consult
[57, Sec. 3.3] for a detailed discussion. Moreover, closed-form
parametric expressions of the improved lower bound and its
corresponding condition are provided in [57] for systems with
equidistant DMCs.

5In light of the recent work in [11], where the random coding exponent
E (R;W ) of the BSC is shown to be indeed the true value of the channel
error exponent E(R;W ) for code rates R in some interval directly below the
channel critical rate (in other words, it is shown that for the BSC with its "
above a certain threshold, E (R;W ) = E(R;W ) for R � R � C where
R can be less than R (W ) [11]), we note via (1) and the lower bound in
(22) and (23) that region BBB where E is exactly known can be enlarged.

Fig. 3. The regions for the ("; q) pairs in the binary DMS fq;1�qg and BSC
(") system of Example 2 for different transmission rates t. Note that E = 0
on the boundary between AAA and BBB; E is exactly determined on the boundary
between BBB and CCC . In AAA, E = 0. In BBB, E is positive and known exactly. In
CCC , E is positive and can be bounded above and below.

IV. WHEN IS JSCC WORTHWHILE: JSCC VERSUS TANDEM

CODING EXPONENTS

A. Tandem Coding Error Exponent

A tandem code for
a DMS and a DMC with block
length and transmission rate (source symbols/channel
use) is composed independently by a block source
code defined by and

with source code rate

source code bits source symbol

and an block channel code defined by
and with

channel code rate

source code bits channel use

where “ ” means composition and and are independent
of . That is, blocks of source symbols of length are en-
coded as integers (indices) from , and
these integers are further encoded as blocks
of symbols from of length , transmitted, received as blocks

of symbols from of length . These received blocks
are decoded as integers from , and fi-
nally, these integers are decoded as blocks of source symbols

of length . Thus, the probability of
erroneously decoding the block is as shown in the equation at the
bottom of the page, where and are the - and -di-
mensional product distributions corresponding to and .
respectively.
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Definition 2: The tandem coding error exponent
is defined as the largest number for which there

exists a sequence of tandem codes

with transmission rate and block length such that

When there is no possibility of confusion, will
often be written as . In general, we know that
since by definition tandem coding is a special case of JSCC.
We are hence interested in determining the conditions for which

for the same transmission rate . Meanwhile, it imme-
diately follows (from the JSCC theorem) that can be positive
if and only if ; otherwise, both and are zero.

By definition, the tandem coding exponent results from sepa-
rately performing and concatenating optimal source and channel
coding, which can be expressed by (e.g., see [17])

(41)

where and are the source and channel error
exponents, respectively. Note that

where is the geometric mean of the source probabilities,
i.e.,

If , then the graphs of
and must have exactly one intersection

and by (41)

(42)

since is strictly increasing in
and is nonincreasing in . If

then there is no intersection between and .
Recall (18) that is infinite in the open interval

. In this case, we have that

(43)

by (41). Without loss of generality, we get (44) at the bottom
of the page, so that we can always write that

.

When the DMS is uniform, the optimal source coding op-
eration reduces to the trivial enumerating (identity) function
with as the source is incompressible. Hence, only
channel coding is performed in both JSCC and tandem coding
and . Thus, our
comparison of the two exponents is nontrivial only if the source
is nonuniform and . Even though we know that
is never worse than , the following theorem gives a limit on
how much can outperform .

Theorem 3: JSCC exponent can at most be equal to double
the tandem coding exponent, i.e.,

with equality if and

Remark 4: Equivalently, this upper bound also implies that
can at most exceed by , i.e.,

(45)

Proof: We first refer to the upper bound of
given by Csiszár [17, Lemma 2] in (1)

(46)

where is the source error exponent, which is strictly
convex and increasing in , and is the
channel error exponent, which is a positive and nonincreasing in

. Unlike the source exponent, the behavior of is
unknown for . Let be the zero-error capacity
of the channel , i.e., if and only if
[23]. If , obviously, we have

If , the upper bound in (46) is finite and the min-
imum must be achieved by some rate, say , in the interval

. Then

Here, the equality in holds if our computable upper and
lower bounds, and , are equal. To
ensure this, we need the condition
by Theorem 2. The equality in holds if by
definition of . The equality holds if and only if there

if
if

(44)
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is an intersection between and , i.e.,
. Now taking these considerations

together, and applying Theorem 2 again, we conclude that
if and

Observation 5: The condition for the equality states that, if
the minimum in the expression of given in (23) is
attained at the intersection of and which
is no less than the critical rate of the channel, then the JSCC
exponent is twice as large as the tandem coding exponent. In
that case, the rate of decay of the error probability for the JSCC
system is double that for the tandem coding system. In other
words, for the same probability of error , the delay of (op-
timal) JSCC is approximately half of the delay of (optimal)
tandem coding

for sufficiently large

B. Sufficient Conditions for Which

In the following, we will use our previous results to derive
computable sufficient conditions for which . We
first define in (47) at the bottom of the page, such that the
source error exponent has a parametric expression
at

(48)

Note that is well defined only if . Denote

(49)

Theorem 4: Let . If

(50)
then

More precisely, we have the following bounds.

a) If

then

(51)

where the two equalities in (51) cannot hold simultane-
ously.

b) If

then

(52)

c) If

then

(53)

Proof: We shall show that, in each of the three cases, a),
b), and c), we have .

a). Assume and

By definition of , we have

see (18) and (48). Thus, the latter condition is equivalent
to and by (12) and
the related discussion it guarantees that ,
where is defined in (44). According to Theorem 2,
when , is attained by

and is determined by

Since , is determined by .
If , we must have

because is strictly increasing and
is strictly decreasing at . Thus,

(54)

where equality holds if . If , then
immediately

(55)

where the above is positive since by Lemma
5, part 1). Note also that in this case

, so (54) and (55) can be summarized by (51).

the root of if
if

(47)



1462 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 4, APRIL 2006

b). In this case, we have . We can
upper-bound by

and hence,

The preceding lower bound must be nonnegative since

and it is equal to if .
c). In this case, we have and from (35)

is bounded by

On the other hand, by the monotonicity of , we
can upper-bound by

Thus, we obtain

The above is positive since

where the first inequality follows from the fact that
by Lemma 5 and Corollary 1.

As pointed out in the proof, the condition
means that the JSCC exponent is achieved at a rate

no less than . The second condition,

means that the tandem coding exponent is achieved at a rate
no less than . Hence, (50) in Theorem 4 states that
would be strictly larger than if either or is deter-
mined exactly. Conversely, if the conditions in Theorem 4 are
not satisfied, then neither nor are exactly known. Never-
theless, if the lower bound of is strictly larger than the upper
bound of , then we must have . Hence, we obtain
the following sufficient conditions.

Theorem 5: Let and let
, where is the expurgated channel error

exponent [23]. If

Fig. 4. The regions for binary DMS-BSC (q; ") pairs and binary DMS-BEC
(q; �) pairs under different transmission rates t. In region FFF (including the
boundary between FFF and HHH), E > E > 0; in region GGG (including the
boundary betweenGGG andFFF ),E = E = 0; and in regionHHH ,E � E > 0.

where

and

then .

Theorem 6: Let . If

where is defined in (47), then .

In Theorems 5 and 6, we establish the sufficient conditions by
comparing the source–channel random-coding bound derived
in Theorem 2, with the upper bound of tandem coding expo-
nent obtained by using the geometric characteristics of
and . For the proofs of Theorems 5 and 6, the reader
may refer to [57, Appendices B and C]. These conditions can
be readily computed since it only requires the knowledge of

and . Note that the condition
in Theorem 5 is satisfied by the DMCs with zero-error ca-

pacity equal to see [19, p. 187]. Thus, Theorem 5 applies to
equidistant channels, in particular, to every channel with binary
input alphabet. An expression of for the DMC with

zero-error capacity is given in [23, Problem 5.24].

Example 3 (When Does the JSCC Exponent Outperform the
Tandem Coding Exponent?): We apply Theorems 4–6 to the bi-
nary DMS with distribution and BSC with crossover
probability , and the binary DMS and the binary
erasure channel (BEC) with erasure probability , under dif-
ferent transmission rates . If any one of the conditions in these
theorems holds, then . The above conditions are sum-
marized by Region in Fig. 4. Indeed, Region shows that

for a wide range of or pairs. Region
consists of the pairs or such that ; in
this case, . Finally, when or falls
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TABLE I
E =E FOR THE BINARY DMS AND BSC PAIRS OF EXAMPLE 4. “N/A” MEANS THAT tH(Q) > C SUCH THAT E = E = 0. “y” MEANS THAT THIS

QUANTITY IS ONLY A LOWER BOUND FOR E =E

Fig. 5. Binary-input AWGN or Rayleigh-fading channel with finite output quantization.

in Region , we are not sure whether is still strictly larger
than .

Example 4 (By How Much can the JSCC Exponent be
Larger Than the Tandem Coding Exponent?): In the last
example, we have seen that holds for a wide large
class of source–channel pairs. Now we evaluate the perfor-
mance of over by looking at the ratio of the two
quantities. Recall that when Theorem 4 part a) is satisfied,
both and are exactly determined. In this case, we
can directly compute (using the results of Section III)
and (using (42) and (43)). When (respectively, )
is not known, i.e., when (respectively,

), we can calculate
the lower bound6 of (respectively, the upper bound of )
instead and thus obtain a lower bound for . Specifically,
when

or equivalently when , we can bound
by

where is the intersection of and if
any; otherwise, . When

and , we bound by

6Here we only use the random-coding lower bound of E . In [57, Example
5], we also calculated the expurgated lower bound of E , and chose the larger
one in the computation of the lower bound for E =E . In this case, a slight
improvement is noticed for some low values of " (see [57, Table I]).

Table I exhibits (or its lower bound, which must be no
less than ) for the binary DMS and BSC system
under transmission rates and . It is seen that
the ratio can be very close to (its upper bound) for
many pairs. For other systems, we have similar results:

substantially outperforms . For instance, for binary DMS
and BEC with , we note that

for a wide range of ’s; for ternary DMS and BSC or
for DMS and ternary symmetric channel, if transmission rate

is chosen suitably (such that ), we obtain that
for many source–channel pairs.

C. Power Gain Due to JSCC for DMS Over Binary-Input
AWGN and Rayleigh-Fading Channels With Finite Output
Quantization

It is well known that -ary modulated additive white
Gaussian noise (AWGN) and memoryless Rayleigh-fading
channels can be converted to a DMC when finite quantization
is applied at their output. For example, as illustrated in [4],
[41], we know that the concatenation of a binary phase-shift
keying (BPSK) modulated AWGN or Rayleigh-fading channel
with -bit soft-decision demodulation is equivalent to a bi-
nary-input, -output DMC (cf. Fig. 5). We next study the
JSCC and tandem coding exponent for a system involving such
channels to assess the potential benefits of JSCC over tandem
coding in terms of power or channel signal-to-noise ratio (SNR)
gains.

We assume that the BPSK signal corre-
sponding to the signal input is of unit energy, and is
a zero-mean independent and identically distributed (i.i.d.)
Gaussian random process with variance . The channel
SNR is defined by SNR and the
received signal is
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where is for the AWGN channel (no fading), and for the
Rayleigh-fading channel, is the amplitude fading process
assumed to be i.i.d. with probability density function (pdf)

if ,
otherwise

such that . We also assume for the Rayleigh-fading
channel that , , and are independent of each other, and
the values of are not available at the receiver. At the receiver,
as shown in Fig. 5, each is demodulated via an -bit
uniform scalar quantizer with quantization step to yield

. If the channel input alphabet is and the
channel output alphabet is , then the
transition probability matrix is given by

where

SNR

SNR

for the AWGN channel [41], and

for the Rayleigh-fading channel [4]. Here

is given by [4], [49]

where is the complementary error function

and are the thresholds of the receiver’s soft-decision quan-
tizer given by

if
if
if

(56)

with uniform step-size . For each channel SNR, the suitable
quantization step is chosen as in [41], [4] to yield the max-
imum capacity of the binary-input -output DMC.

We compute the JSCC and tandem coding exponents for the
binary source and the binary-input -output DMC converted
from the AWGN (Rayleigh-fading, respectively) channel under
transmission rate ( , respectively), and illustrate
the power gain due to JSCC. In Figs. 6 and 7, we plot and
for binary DMS and by varying the
channel SNR (in decibels). We point out that in both figures,
when SNR 6 dB for and when SNR 8 dB for

, and are determined exactly. We observe that for
the same SNR, is almost twice as large as Further-

Fig. 6. The power gain due to JSCC for binary DMS and binary-input
2 -output DMC (AWGN channel) with t = 0:75.

Fig. 7. The power gain due to JSCC for binary DMS and binary-input
2 -output DMC (Rayleigh-fading channel) with t = 1.

more, for the same exponent and the same (asymptotic) en-
coding length, JSCC would yield the same probability of error
as tandem coding with a power gain of more than 2 dB. Similar
behavior was noted for other values of transmission rate .

V. JSCC ERROR EXPONENT WITH HAMMING

DISTORTION MEASURE

Let be a finite set and be a distortion measure, i.e., a
nonnegative valued function defined on and extended
to by setting

A JSC code with block length and transmission rate
for a -length DMS and a DMC
with a threshold of tolerated distortion is a pair of mappings
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and . The probability of the
code exceeding the threshold is given by

where and are the - and -dimensional product
distributions corresponding to and , respectively.

is also called the probability of excess distortion.
We remark that for the JSCC with a distortion threshold, we
allow that the source has a uniform distribution.

Definition 3: The JSCC error exponent is de-
fined as the largest number for which there exists a sequence
of JSC codes with block length and transmission rate

such that

When there is no possibility of confusion, will
often be written . In [18], Csiszár proved that for a DMS

and a DMC , the JSCC error exponent under distortion
threshold satisfies

(57)

where

(58)

and

(59)

In the above

(60)

is the source error exponent with a fidelity criterion [37]
and is the rate distortion function (e.g., [16], [19]).

and are the random-coding and sphere-
packing bounds to the channel error exponent. Likewise, if the
infimum in (58) or (59) is attained for a rate larger than the
channel critical rate, then the lower and upper bounds coincide,
and we can determine exactly. Of course, the two bounds
are nontrivial if and only if by the JSCC
theorem.

It can be shown that is a nondecreasing function
in . However, unlike , is not necessarily
convex or even continuous in [1], [37]. Therefore, it is hard
to analytically compute the JSCC exponent in general. In
this section, we only address the computation of for a bi-
nary DMS and an arbitrary DMC under the Hamming distortion
measure , given by

if
if .

(61)

We first need to derive a parametric form of . Define

(62)

Lemma 6: For binary DMS under
the Hamming distortion measure (61) and distortion threshold

such that , the following hold:

(63)

where the rate-distortion function
and if ; otherwise, and is the
unique root of equation such that .

The proof of this lemma is given in Appendix A. It can be
easily verified that is continuous and convex in

if and is contin-
uous and convex in and has a jump at

if . According to Lemma 6, the
source error exponent is the convex transform
of in . Define the binary divergence by

(64)

Adopting the approach of Section III, we can apply Fenchel’s
Duality Theorem to and and obtain
equivalent computable bounds.

Theorem 7: Given a binary DMS and a DMC
under the Hamming distortion measure and distortion threshold

( ), the JSCC exponent satisfies the following.

1) Lower Bound: If , then
and

(65)
Otherwise, if , then

(66)

2) Upper Bound:

(67)

Since the above result is a simple extension of the results in
Section III, the proof is omitted and we hereby only provide the
following remarks.

a) Similar to the lossless case, if ,
then . If

, then .
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b) Note that when ,
in (58) is achieved at , and

c) In the special case where the binary source is uniform, i.e.,
, Theorem 7 reduces to

This is clearly equivalent to

(68)

by the definition of and . In other
words, is bounded by the channel random-coding
and sphere-packing bounds at rate . If

, then is exactly determined.
d) When the source is nonuniform,

is strictly concave in . In this case, the
maximizer

is strictly larger than if and
. Particularly, if

. As counterparts of Lemma 5
and Corollary 1, it can be shown that the upper bound

in (59) is attained at
and the lower bound in (58) is attained at

, where .
Consequently, other similar results to the lossless case
regarding these optimizers can be obtained.

Example 5: For a binary DMS ( ) and a
BSC under transmission rate , we compute the JSCC
error exponent under the Hamming distortion measure with dis-
tortion threshold ( ). In Fig. 8, if the pair is lo-
cated in region , then the corresponding JSCC exponent can
be determined exactly (the lower and upper bounds are equal).
If is located in region , then is bounded by (65)
and (67). If is located in region , then is bounded
by (66) and (67). When , is zero, and the error
probability of this communication system converges to for

sufficiently large. So we are only interested in the cases when
.

Fig. 9 shows the JSCC error exponent lower bound of the
binary DMS ( ) and BSC pairs under

Fig. 8. The regions for the ("; q) pairs in the binary DMS fq;1�qg and BSC
(") system of Example 5 with Hamming distortion for different values of the
distortion threshold � with t = 1. Note thatE = 0 on the boundary between
AAA and BBB, and E > 0 is determined on the boundary between BBB and CCC .

different distortion thresholds. We fix the BSC parameter
, and vary from to . In Fig. 9, Segment (or Section)

1 is determined by (66), and Segments 2 and 3 are determined
by (65). Furthermore, the lower bound coincides with the upper
bound (67) in Segment 3; i.e., the JSCC exponent is exactly
determined in Segment 3.

VI. CONCLUSION

In this work, we establish equivalent parametric representa-
tions of Csiszár’s lower and upper bounds for the JSCC expo-
nent of a communication system with a DMS and a DMC,
and we obtain explicit conditions for which the JSCC expo-
nent is exactly determined. As a result, the computation of the
bounds for is facilitated for arbitrary DMS–DMC pairs.
Furthermore, the bounds enjoy closed-form expressions when
the channel is symmetric. A byproduct of our result is the fact
that Csiszár’s random-coding lower bound for is in general
larger than Gallager’s lower bound [23].

We also provide a systematic comparison between and
, the tandem coding error exponent. We show that JSCC

can at most double the error exponent vis-a-vis tandem coding
by proving that and we provide the condition for
achieving this doubling effect. In the case where this upper
bound is not tight, we also establish sufficient explicit condi-
tions under which . Numerical results indicate that

for a large class of DMS–DMC pairs, hence illus-
trating the substantial potential benefit of JSCC over tandem
coding. This benefit is also shown to result into a power saving
gain of more than 2 dB for a binary DMS and a BPSK-modu-
lated AWGN/Rayleigh channel with finite output quantization.
Finally, we partially investigate the computation of Csiszár’s
lower and upper bounds for the lossy JSCC exponent underthe
Hamming distortion measure, and obtain equivalent represen-
tations for these bounds using the same approach as for the
lossless JSCC exponent.
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Fig. 9. Fix " = 0:2. The JSCC exponent lower bound of the binary DMS fq; 1� qg (q � 0:5) and BSC (") pairs under Hamming distortion with t = 1. For
� = 0, E is determined if q 2 [0:0001;0:0481], which is the same as the random-coding lower bound for the lossless JSCC error exponent. For � = 0:1, E
is determined if q 2 [0:0209; 0:2129]. For � = 0:2, E is determined if q 2 [0:0955;0:5]. For � = 0:3, E is determined if q 2 [0:2854;0:5].

APPENDIX A
PROOF OF LEMMA 6

Recall that the rate-distortion function for a binary
DMS under the Hamming distortion measure is
given by (e.g., [16])

.
(69)

Clearly, for since the infimum in (60)
is attained at . Similarly, since for
all , for . For the remainder
of the proof, we assume .

1) Case of . For ,
we have

For , we have

(70)

(71)

(72)

Here (70) follows from the facts that the continuous
function

is increasing for and given in (69) is
continuous and increasing in for . In (71),
we note that and that as the
source is binary. Equation (72) follows by the well-known
parametric form of source exponent function introduced
by Blahut [13] and noting that

.
2) Case of . For , similarly as

(71), we have

where such that

and

(73)

where is the unique root of equation
and . Here (73) follows from the monotone prop-
erty of . Therefore, we write

In fact, it can be shown that is the right-slope of
at .
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