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Abstract—We study the transmission of two discrete memoryless
correlated sources, consisting of a common and a private source,
over a discrete memoryless multiterminal channel with two trans-
mitters and two receivers. At the transmitter side, the common
source is observed by both encoders but the private source can only
be accessed by one encoder. At the receiver side, both decoders
need to reconstruct the common source, but only one decoder
needs to reconstruct the private source. We hence refer to this
system by the asymmetric two-user source–channel coding system.
We derive a universally achievable lossless joint source–channel
coding (JSCC) error exponent pair for the two-user system by
using a technique which generalizes Csiszár’s type-packing lemma
(1980) for the point-to-point (single-user) discrete memoryless
source–channel system. We next investigate the largest conver-
gence rate of asymptotic exponential decay of the system (overall)
probability of erroneous transmission, i.e., the system JSCC error
exponent. We obtain lower and upper bounds for the exponent.
As a consequence, we establish a JSCC theorem with single-letter
characterization and we show that the separation principle holds
for the asymmetric two-user scenario. By introducing common
randomization, we also provide a formula for the tandem (sepa-
rate) source–channel coding error exponent. Numerical examples
show that for a large class of systems consisting of two correlated
sources and an asymmetric multiple-access channel with additive
noise, the JSCC error exponent considerably outperforms the
corresponding tandem coding error exponent.

Index Terms—Asymmetric two-user source–channel system,
broadcast channel, common and private message, common
randomization, discrete memoryless correlated sources, error
exponent, multiple-access channel, lossless joint source-channel
coding (JSCC), separation principle, tandem coding, type packing
lemma.

I. INTRODUCTION

R ECENTLY, the study of the error exponent (reliability
function) for point-to-point (single-user) source–channel

coding systems (with or without memory) has illustrated
substantial superiority of joint source–channel coding (JSCC)
over the traditional tandem coding (i.e., separate source and
channel coding) approach (e.g., [8], [29], [30]). It is of natural
interest to study the JSCC error exponent for multiterminal
source–channel systems.
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In this work, we address the asymmetric two-user source–
channel coding system depicted in Fig. 1. Two discrete mem-
oryless correlated source messages drawn
from a joint distribution , consisting of a common
source messages and a private source message of length ,
are transmitted over a discrete memoryless asymmetric com-
munication channel described by

with block codes of length , where (measured in
source symbol/channel use) is the overall transmission rate. The
common source can be accessed by both encoders, but the pri-
vate source can only be observed by one encoder (say, Encoder
1). In this setup, the goal is to send the common information to
both receivers, and send the private information to only one re-
ceiver (say, Decoder 1).

This asymmetric two-user system can be used to model
[23] interference channels with cognitive radio, an emerging
and promising wireless technology where wireless systems,
equipped with flexible software, dynamically adapt to their
environment (by, for example, adjusting the modulation format
or the coding scheme) to harness unemployed spectral capa-
bilities [25]–[27], [12], [13]. For example, it can model the
practical situation where audio and video signals are modulated
and transmitted to two receivers over a cognitive interference
channel (without secrecy constraints) [23], with the cognitive
receiver needing to decode both audio and video signals while
the noncognitive receiver needing to only reconstruct the audio
signal. Furthermore, it is worthy to point out that the asym-
metric two-user system is a generalization of the following two
classical asymmetric multiterminal scenarios which have been
extensively studied in the literature.

i) The CS-AMAC system: If we remove Decoder 2 from
Fig. 1, and let , then the channel reduces to a mul-
tiple-access channel , and the coding problem re-
duces to transmitting two correlated sources (CS) over an
asymmetric multiple-access channel (AMAC) with one
receiver.

ii) The CS-ABC system: If we remove Encoder 2 from
Fig. 1, and let , then the channel reduces to
a broadcast channel , and the coding problem
reduces to transmitting two CS over an asymmetric
broadcast channel (ABC) with one transmitter.

The sufficient and necessary condition for the reliable trans-
mission of CS over the AMAC—i.e., the lossless JSCC theorem
for the CS-AMAC system—has been derived with single-letter
characterization in [4]. The capacity region of the ABC has been
determined in [21], and the JSCC theorem for CS-ABC system
with arbitrary transmission rate can also be analogously carried
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Fig. 1. Transmitting two CS over the asymmetric two-user communication channel.

out (e.g., [17]). In this work, we study a refined version of the
JSCC theorem for the general asymmetric two-user system (de-
picted in Fig. 1), by investigating the achievable JSCC error ex-
ponent pair (for two receivers) as well as the system JSCC error
exponent, i.e., the largest convergence rate of asymptotic expo-
nential decay of the system (overall) probability of erroneous
transmission. We also apply our results to the CS-AMAC and
CS-ABC systems.

We outline our results as follows. We first extend Csiszár’s
type packing lemma [8] from a single-letter (one-dimension)
type setting to a joint (two-dimensional) type setting. By
employing the joint type packing lemma and generalized
maximum mutual information (MMI) decoders, we establish
achievable exponential upper bounds for the probabilities of
erroneous transmission over an augmented two-user channel

for a given triple of -length sequences ;
see Theorem 1. Here, the augmented channel is in-
duced from the original two-user channel by adding
an auxiliary random variable (RV) such that , , and

, form a Markov chain in this order. We introduce the RV
because we will employ superposition encoding which maps

a source message pair to a codeword triplet ,
where is the auxiliary superposition codeword. For the asym-
metric two-user system, since one of the encoders has full
access to both sources, it knows the output of the other encoder.
By properly designing the two (superposition) encoders, we
apply Theorem 1 to establish a universally achievable error ex-
ponent pair for the two receivers (namely, the pair of exponents
can be achieved by a sequence of source–channel codes inde-
pendently of the statistics of the source and the channel); this
generalizes Körner and Sgarro’s exponent pair for ABC coding
(with uniformly distributed message sets) [22]. We also employ
Theorem 1 to establish a lower bound for the system JSCC
error exponent; see Theorem 2. Note that one consequence
of our results is a sufficient condition (forward part) for the
JSCC theorem. In addition, we use Fano’s inequality to prove
a necessary condition (converse part) which coincides with the
sufficient condition, and hence completes the JSCC theorem
(Theorem 3). We next demonstrate that the separation principle
holds for the two-user system, i.e., there exists a separate source
and channel coding system which can achieve optimality from
the point of view of reliable transmissibility.

Using an approach analogous to [8], we also obtain an upper
bound for the system JSCC error exponent (Theorem 4). As
applications, we then specialize these results to the CS-AMAC
and CS-ABC systems. The computation of the lower and upper
bounds for the system JSCC error exponent is partially studied
for the CS-AMAC system when the channel admits a symmetric
conditional distribution.

We next study the tandem coding error exponent for the
asymmetric two-user system, which is the exponent resulting
from separate and independent source and channel coding
under common randomization. We derive a formula for the
tandem coding error exponent in terms of the corresponding
two-user source error exponent and the asymmetric two-user
channel error exponent (Theorem 6). Finally, by numerically
comparing the lower bound of the JSCC error exponent and
the upper bound of the tandem coding error exponent, we
illustrate that, as for the point-to-point systems ([29], [30]),
JSCC can considerably outperform tandem coding in terms of
error exponent for a large class of binary CS-AMAC systems
with additive noise.

At this point, we pause to mention some related works in
the literature on the multiterminal JSCC of CS. The JSCC the-
orem for transmitting two CS over a (symmetric) multiple-ac-
cess channel (where each encoder can only access one source)
has been studied in [1], [7], [14], [19], [20], [28], and the JSCC
theorem for transmitting two CS over a (symmetric) broadcast
channel (where each decoder needs to reconstruct one source)
has been addressed in [5], [17]. These works focus on the case
when the overall transmission rate is and establish some suf-
ficient and/or necessary conditions for which the sources can be
reliably transmitted over the channel. However, for both (sym-
metric) systems, no matter whether the transmission rate is

or not, a tight sufficient and necessary condition (JSCC the-
orem) with single-letter characterization is still unknown.

The rest of the paper is organized as follows. In Section II,
we introduce the notation and some basic facts regarding the
method of types. A generalized joint type packing lemma is
presented in Section III. In Section IV, we establish a univer-
sally achievable error exponent pair for the two-user system,
as well as a lower and an upper bound for the system JSCC
error exponent. A JSCC theorem with single-letter characteri-
zation is also given and we demonstrate that the reliable trans-
missibility condition can be achieved by separately performing
source and channel coding. In Section V, we apply our results to
the CS-AMAC and CS-ABC systems. We partially address the
computation of the bounds for the system JSCC error exponent
in Section VI. In Section VII, we provide an expression for the
tandem coding error exponent for the two-user system and we
then show that the JSCC error exponent can be strictly larger
than the tandem coding error exponent for many CS-AMAC
systems. Finally, we state our conclusions in Section VIII.

II. PRELIMINARIES

The following notation and conventions are adopted from
[8]–[10]. For any finite set (or alphabet) , the size of is
denoted by . The set of all probability distributions on
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is denoted by . The type of an -length sequence
is the empirical probability distribution

defined by

(1)

where is the number of occurrences of in . Let
be the collection of all types of sequences in

. For any , the set of all with type
is denoted by , or simply by if is understood. We
also call or a type class.

Similarly, the joint type of -length sequences and
is the empirical joint probability

distribution defined by

Let be the collection of all joint types
of sequences in . The set of all and
with joint type is denoted by , or
simply by .

For any finite sets and , the set of all conditional distribu-
tions is denoted by . The conditional
type of given is the empirical conditional
probability distribution defined by

whenever ; otherwise (if ), define
.

Let be the collection of all conditional distribu-
tions which are conditional types of given an

. For any conditional type , the
set of all for a given satisfying
is denoted by , or simply by , which is also
called a conditional type class ( -shell) with respect to .

For finite sets with joint distribution
, we use etc., to denote the

corresponding marginal and conditional probabilities induced
by . Note that for a given joint type

. Note also that

In addition, we denote

To distinguish between different distributions (or types)
defined on the same alphabet, we use sub-subscripts, say,

, in , and so on. For example,
is the type class of the joint type .
For any distribution , we use

and to denote the entropy and mu-
tual information under , respectively, or simply by

and if is understood. de-
notes the Kullback–Leibler divergence between distributions

. denotes the
Kullback–Leibler divergence between stochastic matrices
(conditional distributions) condi-
tional on distribution . For
and , since the types and can also be
represented as distributions of dummy RVs, we define the em-
pirical entropy and mutual information by

and .
Given distributions and , let

and be their -dimensional product distributions.
All logarithms and exponentials throughout this paper are in
base . The following facts will be frequently used throughout
this paper.

Lemma 1 [10]:
i) .

ii) For any , we have

and

iii) For any and
, we have

and hence

III. A JOINT TYPE PACKING LEMMA

Let us first recall Csiszár’s type packing lemma for JSCC [8],
which is an essential tool to establish an exponentially achiev-
able upper bound for the JSCC probability of error over a dis-
crete memoryless channel.

Lemma 2 [6, Lemma 6]: Given finite set and a sequence
of positive integers , for arbitrary (not necessarily distinct)
types , and positive integers
with

(1)

where

there exist disjoint subsets
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such that

(2)

for every and , with the exception of
the case when both and is the conditional distribu-
tion such that is if and otherwise.

Note that Lemma 2 is a generalization of the packing lemma
in [10, p. 162, Lemma 5.1], where the later one is used for
channel coding, while Lemma 2 is used for JSCC. Roughly and
intuitively, if is a transmitted codeword, then the possible se-
quences decoded as can be seen as elements in the “sphere”

“centered” at for some . Equation (2) in
the packing lemma states that there exist disjoint sets with
bounded cardinalities such that the size of the intersection be-
tween the sphere for every and every set
is “exponentially small” compared with the size of each . So
the packing lemma can be used to prove the existence of good
codes that have an exponentially small probability of error.

We herein extend Csiszár’s above type packing lemma from
the (one-dimensional) single-letter type setting to a (two-dimen-
sional) joint type setting. This lemma will play a key role in
establishing an exponentially achievable upper bound (in The-
orem 1) for the probability of erroneous transmission for our
asymmetric two-user source–channel system.

Lemma 3 (Joint Type Packing Lemma): Given finite sets
and , a sequence of positive integers , and a sequence of
positive integers associated with every ,
for arbitrary (not necessarily distinct) types and
conditional types , and positive integers

and and
with

(3)

and

(4)

where

there exist disjoint subsets

such that

(5)

for every and , with the exception of
the case when both and is the conditional distri-
bution such that is if and otherwise;

furthermore, for every and every , there exist
disjoint subsets

such that and

(6)

(7)

for any and , with
the exception of the case when both and
is the conditional distribution such that is

if and otherwise.

The proof of the packing lemma is lengthy and is deferred to
Appendix A. Compared with Lemma 2, it is seen that Csiszár’s
type packing lemma (5) is incorporated in our extended packing
lemma, and we emphasize that here we need (6) and (7) to hold
in addition to (5).

Similarly, for the two-user channel, if is a pair of
transmitted codewords, then the possible sequences decoded as

can be seen as elements in the “sphere”
“centered” at for some . As depicted in
Fig. 2, (6) (similarly to (7)) states that there exist disjoint sets

with bounded cardinalities such that
the size of the intersection between the sphere
for every and every set is “exponentially
small” compared with the size of each . Note also that the
extended packing lemma is analogous to, but different from the
one introduced by Körner and Sgarro in [22], which is used to
prove a lower bound for the channel coding ABC exponent.
Lemma 3 here is used for the asymmetric two-user JSCC
problem.

IV. TRANSMITTING CS OVER THE ASYMMETRIC

TWO-USER CHANNEL

A. System

Let be a two-user dis-
crete memoryless channel with finite input alphabet ,
finite output alphabet , and a transition distribution

such that the -tuple transition probability
is

where
and

. Denote the marginal transition
distributions of at its -output (respectively,

-output) by (respectively,
). The marginal distributions of

are denoted by and , respectively.
Consider two discrete memoryless CS with a generic

joint distribution defined on the finite al-
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Fig. 2. A graphical illustration of the (two-dimensional) joint type packing lemma (Lemma 3): there exist disjoint subsets � ’s with bounded cardinalities in the
“two-dimensional” space � � � such that for any ����� ���� � � (say, ����� ���� � � ), the size of the intersection between the sphere ����� ���� and
every set � is “exponentially small” compared with the size of each � .

phabet such that the -tuple joint distribution is
, where , and

. For each pair of
source messages drawn from the above joint distribution,
we need to transmit the common message over the channel

to Receivers and and transmit the private
message only to Receiver . A joint source–channel (JSC)
code with block length and positive transmission rate
(source symbol/channel use) for transmitting through

is a quadruple of mappings, , where
and are called

encoders, and and
are referred to as -decoder and -decoder, respectively; see
Fig. 1.

The probabilities of - and -error are given by

(8)

and

(9)

where and are the corresponding code-
words of the source message pair and the source message
, and and are the received codewords at the Receivers and
, respectively. Since we will study the exponential behavior of

these probabilities using the method of types, it might be a better

way to rewrite the probabilities of - and - error as a sum of
probabilities of types

(10)

where , and

(11)

and

(12)

We say that the JSCC error exponent pair is
achievable with respect to if there exists a sequence of
JSC codes with transmission rate such that
the probabilities of -error and -error are simultaneously
bounded by

(13)

for sufficiently large and any . As the point-to-point
system, we denote the system (overall) probability of error by

(14)

where are drawn according to .

Definition 1: Given and , the system
JSCC error exponent is defined as the
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supremum of the set of all numbers for which there exists a
sequence of JSC codes with block length and
transmission rate such that

(15)

Since the system probability of error must be larger than
and defined by (8) and (9), and is also upper-bounded by
the sum of the two, it follows that for any sequence of JSC codes

(16)

B. Superposition Encoding for Asymmetric Two-User
Channels

Given an asymmetric two-user channel , at
the encoder side, we can artificially augment the channel
input alphabet by introducing an auxiliary (arbitrary and
finite) alphabet , and then look at the channel as a dis-
crete memoryless channel with
marginal distributions and such that

for any
and . In other words, we

introduce a dummy RV such that , and
form a Markov chain in this order, i.e., .

The idea of superposition coding is described as follows. The
encoder first maps the source message to a pair of -length
sequences with a fixed type, say , and
then sends the codeword over the channel, i.e., .
The encoder first maps each pair to a triple of sequences

such that , then
sends the codeword over the channel, i.e., .

In other words, and map to a tuple of sequences
with a joint type , although only and are

sent to the channel, where plays the role of a dummy codeword.
Since is equal to

and is independent of , transmit-
ting the codewords through the channel can
be viewed as transmitting the codewords over the
augmented channel . Here, the common outputs of

and ’s, are called auxiliary cloud centers according
to the traditional superposition coding notion [3], which convey
the information of the common message , and the codewords

’s corresponding to the same are called satellite
codewords of , which contain both the common and
private information, see Fig. 3. At the decoding stage, Receiver

only needs to figure out which cloud was transmitted,
and Receiver needs to estimate not only the cloud but also
the satellite codeword . The introduction of the auxiliary RV

is made to enlarge the channel input alphabet from
to , and the use of the superposition codeword
renders the cloud centers more distinguishable by both
receivers. We next employ superposition encoding to derive the
achievable error exponent pair and the lower bound of system
JSCC error exponent.

Fig. 3. Relation between clouds and satellite codewords in superposition
coding.

C. Achievable Exponents and a Lower Bound for

Given arbitrary and finite alphabet , for any joint distribu-
tion and every , define

(17)

and

(18)

where , and the outer minimum in (17) (re-
spectively, (18)) is taken over all conditional distributions on

(respectively, ). It immedi-
ately follows by definition that
is zero if and only if at least one of the following is satisfied:

(19)

(20)

and is zero if and only if

(21)

Using Lemma 3 and employing generalized MMI decoders at
the two receivers, we can prove the following auxiliary bounds.

Theorem 1: Given finite sets , a sequence
of positive integers , and a sequence of positive integers

associated with every with

and

for any sufficiently large, arbitrary (not necessarily
distinct) types and conditional types

, and positive integers and
and with
, and ,

where and , there exist
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disjoint subsets disjoint
subsets

with for every
and every , and a pair of mappings (decoding functions)

and , where , where

such that the probabilities of erroneous transmission of a triplet
over the augmented channel using

decoders are simultaneously bounded by

(22)

and

(23)

if for every .
Proof: We apply the packing lemma (Lemma 3) and a gen-

eralized MMI decoding rule.1 In the sequel of the proof, we
look at the superletter (respectively, ) as the RV
(respectively, ) in Lemma 3. For the

given in Theorem 1, according to Lemma 3, there

exist pairwise disjoint subsets and satisfying
(5), (6), and (7) for every

and
, with the exception of the two

cases that and is the conditional distribution
such that is if and
otherwise, and that and is the con-
ditional distribution such that
is if and otherwise. Let

and

We shall show that for such , there exists a pair of mappings
such that (22) and (23) are satisfied.

1Note that for the symmetric multiple-access channel, it has been shown in
[24] that the minimum conditional entropy (MCE) decoder leads to a larger
channel error exponent than the MMI decoder; however, for the asymmetric
two-user channel with superposition coding, MMI decoding is equivalent to
MCE decoding.

We first show that there exists a -decoder such that (22)
holds. For any and , let

where and if
. Define -decoder by

Using the decoder , we can upper-bound the probability
of error (assuming that is sent through the
channel) as follows:

(24)

For any particular , since

we can upper-bound

(25)

It can be shown by the type packing lemma (Lemma 3) and a
standard counting argument (see Appendix B) what is displayed
in (26) and (27) at the top of the following page. Using the
identity (cf. Lemma 1) when
and , and as shown by the second
expression at the top of the following page, we obtain (28)
and (29) at the bottom of the following page.Substituting (28)
and (29) back into (25) and (24) successively, and noting that

is polynomial in by Lemma 1, we obtain

that, for any , there exists a -decoder such that,
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(26)

and

(27)

given , the probability of -error is bounded
by

(30)

for sufficiently large .
Similarly, we can design a decoder for Receiver as follows.

For any and , let

where if . Note that
is independent of . Let . The -decoder

is defined by the last equation at the bottom of
the page. It can be shown in a similar manner by using (5) in
Lemma 3 that, under the decoder , the probability of the

-error is bounded by

(31)

for sufficiently large . Finally, we remark that Lemma 3 en-
sures that there exist mappings such that (31) holds
simultaneously with (30).

Theorem 1 is an auxiliary result for the channel coding
problem for the two-user asymmetric channel. To apply it

to our two-user source–channel system, we need to design
encoders which can map a pair of correlated source messages
to a particular with a joint type, so that the total
probabilities of error still vanish exponentially. We hence can
establish the following bounds.

Theorem 2: Given an arbitrary and finite alphabet , for any
, the following exponent pair is uni-

versally achievable:

(32)

and

(33)

where and are marginal distributions of
, which is the augmented conditional distribution

from . Furthermore, given , and , the
system JSCC error exponent satisfies

(34)

(28)

and

(29)

such that
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where

(35)

where the supremum is taken over all finite alphabets , and the
maximum is taken over all the joint distributions on

and is given by

where and are given by (17) and (18), respectively.
We remark that (32) and (33) can be achieved by a sequence

of codes without the knowledge of and , but the
lower bound (34) is achieved by a sequence of codes that needs
to know the statistics of the channel.

Proof of Theorem 2: We first prove the achievable error
exponent pair (32) and (33). We need to show that, for any given

and , there exists a sequence of
JSC codes such that both the probabilities of decoding error are
upper-bounded by

where and are given by (32) and (33).
To apply Theorem 1, set . For each type

denote to be the car-
dinalities of these type classes, , and set

. For each conditional type
, denote be the cardinalities of these type

classes, where is an arbitrary sequence in
. Note that is constant for all . and
are, respectively, given by and .

Now no matter whether the given belongs to
or not, we always can find a sequence of joint types

such that uni-
formly2 as . Thus, we can choose, by the continuity of

with respect to , for each
, and , the joint type

such that the following are satisfied:

for sufficiently large. Since the type can also be re-
garded as a joint distribution, let
be the marginal distribution on induced by
for all and let

be the corresponding conditional distribu-
tion for all and ,
i.e., for any

.

2We say that a sequence of distributions �� � ��� �� uniformly con-
verges to � � ��� � if the variational distance [10] between � and �
converges to zero as � � �.

Without loss of generality, we assume, for the choice of
and , the following conditions are sat-

isfied for :

(36)

and

(37)

where and . Then according to Theorem
1, there exist pairwise disjoint subsets with

and
a pair of mappings , such that the probabilities of
erroneous transmission of a are simultaneously
bounded for the channel as

(38)

and

(39)

For the and violating
(36) or (37) (i.e., for or ), (38) and
(39) trivially hold for arbitrary choice of disjoint sub-
sets since or

would be less than .
In fact, the functions and are trivially bounded by the
following linear functions of and with slope by
definition:

(40)

and

(41)

If ,

then by (41) . Sim-
ilarly, if , then by (40)

.
Therefore, we may construct the JSC code

for CS and the two-user channel as follows.
Without the loss of generality, we assume that the alphabets
and contain the element .

Encoder : For the message such that ,
let . Denote . For the
such that , let be a bijection that maps
each to the corresponding , by noting that

. Finally, let be the second component
of .
Encoder : For the message pair such that

or , let . For the
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such that and , noting that

, if , let

be a bijection such that
. Let be the third component of .

Clearly, the JSC encoders , although working inde-
pendently, they map each to a unique pair
when and , and to , otherwise (in this case
an error is declared).

Y-Decoder : The -decoder is defined by the first expres-
sion at the bottom of the page.

Z-Decoder : The -decoder is defined by the second ex-
pression at the bottom of the page.

For such JSC code ( ), the probabilities of
-error and -error are bounded by

if (42)

and

if (43)

Substituting (42) and (43) into (10) and using the fact
(Lemma 1) , we ob-
tain, for sufficiently large, and

, shown in (44) and (45) at the bottom
of the page, where

and

Finally, the bounds (32) and (33) follow from (44) and (45), and
the fact that the cardinality of set of joint types is
upper-bounded by .

To prove the lower bound (34), we slightly modify the above
approach by choosing which achieves
the maximum and the supremum of in
(35) for every and .
Then the probabilities of -error and -error in (42) and (43)
are bounded by

if

(46)

and

if

(47)

for sufficiently large. The rest of the proof is similar to the
proofs of (32) and (33).

By examining the positivity of the lower bound to , we
obtain a sufficient condition for reliable transmissibility for the
asymmetric two-user system. For the sake of completeness, we
also prove a converse by using Fano’s inequality, and hence es-
tablish the JSCC theorem for this system. Given , de-
fine

(48)

if such that
otherwise.

if such that is equal to the first two components of
otherwise.

(44)

and

(45)

Authorized licensed use limited to: Queens University. Downloaded on April 1, 2009 at 00:03 from IEEE Xplore.  Restrictions apply.



ZHONG et al.: ERROR EXPONENTS FOR ASYMMETRIC TWO-USER DISCRETE MEMORYLESS SOURCE-CHANNEL CODING SYSTEMS 1497

Fig. 4. Tandem source–channel coding system—encoders.

where

where the mutual informations are taken under the joint distri-
bution . Note that
is convex and we denote be the closure of

.

Theorem 3: (JSCC Theorem) Given and
, the following statements hold.

1) The sources can be transmitted over the channel
with probability of error as

if .
2) Conversely, if the sources can be transmitted over the

channel with an arbitrarily small probability of

error as , then
.

Proof: See Appendix C.

Observation 1: Theorem 3 implies that is ac-
tually the capacity region for the asymmetric two-user channel

, as the JSCC reduces to the asymmetric two-user
channel coding if the sources come with a uniform joint dis-
tribution. It is shown in Appendix C that can be
equivalently written as

(49)

where is given in the first expression at
the bottom of the page. Recently, Liang et al. [23] also showed
(using a different approach) that the capacity region for the
asymmetric two-user channel is given by

(50)

where is given in the second expression
at the bottom of the page, where the mutual informations are
taken under the joint distribution .
They state that our capacity region, , is a
subset of their region described above
by (50); this holds since .
However, this is only partially correct, since noting that

and that
(as shown in Appendix C), one directly obtains

that . Thus, the regions are all
identical: .

D. Separation Principle for the Asymmetric Two-User System

It can be verified that the condition
of Theorem 3 can be achieved by separate source

and channel coding. The separate coding system of rate
(source symbol/channel symbol) (we refer to it by the tandem
coding system) is depicted in Figs. 4 and 5 (with and
being identity mappings).

The encoder is composed of two source encoders
and

with private source coding rate and
common source coding rate and a
channel encoder .
Similarly, the encoder is composed of a source encoder
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Fig. 5. Tandem source–channel coding system—decoders.

with common coding rate and
a channel encoder .

At the receiver side, the decoder is composed of a channel
decoder , and
a source decoder

which outputs the approximation of the source mes-
sages and . Similarly, the decoder is composed of a
channel decoder , and a source
decoder .

To show that the condition

can be achieved by the above tandem system, we need to apply
the following two-user source and channel coding theorems (we
only state the forward parts of the theorems). Note that both of
these theorems are special case of Theorem 3.

Let be a sequence of source codes for CS
with common source rate and private source rate as

defined above. The probability of the overall two-user source
coding error is given by

(51)

Then by the two-user source coding theorem, there exists a se-
quence of source codes with rates and

such that as if the rates
satisfy and , i.e., lies in
the upper-right infinite rectangle with vertex given by the point

.
We next state the forward part of channel coding theorem for

the asymmetric two-user channel. Let the (common and private)
message pair be uniformly drawn from the finite set

, where and ,
and let be an asymmetric two-user channel
code with block length and common and private message sets

and . Let and be the
common and private rates of the channel code, respectively. The
average probability of error for asymmetric two-user channel
coding is given by

(52)

where are uniformly drawn from . The max-
imum probability for error of asymmetric two-user channel
coding is given by

(53)

Then there exists a sequence of channel codes
such that

as if . Furthermore, it can
be readily shown by a standard expurgation argument [6, p.
204] that as if

.
Now by (14), the overall probability of error for the tandem

system is given by

By the union bound, it is easy to see that is upper-bounded
by

where is the maximum channel
coding probability of error with common rate and private
rate . Clearly, by combining the two-user source coding the-
orem and the asymmetric two-user channel coding theorem, if
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, then there exist a se-
quence of source codes and a sequence of
channel codes such that the overall tandem
system probability of error as . Therefore,
separation of source and channel coding is optimal from the
point of view of reliable transmissibility.

E. The Upper Bound to

In [8], Csiszár also established an upper bound for the JSCC
error exponent for the point-to-point discrete memoryless
source–channel system in terms of the source and channel error
exponents by a simple type counting argument. He shows that
the JSCC error exponent is always less than the infimum of the
sum of the source and channel error exponent, even though the
channel error exponent is only partially known for high rates.
This conceptual bound cannot currently be computed as the
channel error exponent is not yet fully known for all achievable
coding rates, but it directly implies that any upper bound for the
channel error exponent yields a corresponding upper bound for
the JSCC error exponent. For the asymmetric two-user channel,
a similar bound can be shown.

Definition 2: The asymmetric two-user channel coding error
exponent , for any and

, is defined by the supremum of the set of all numbers
for which there exists a sequence of asymmetric channel codes

with block length , the common rate no
less than , and the private rate no less than , such that

(54)

Denote the probabilities of - and -error of the channel
coding by

(55)

and

(56)

where and . Clearly, for any sequence of
channel codes

must be larger than and

but less than the sum of the
two, so we have

(57)

Our upper bound for the system JSCC error exponent (de-
fined in Definition 1) is stated as follows.

Theorem 4: Given and , the system JSCC
error exponent satisfies

(58)

where is the corresponding channel coding
error exponent for the asymmetric two-user channel as defined
above in Definition 2.

Proof: First, from (10) we can write

(59)

where and are given by (11) and (12), re-
spectively. Comparing (11) with (55), and comparing (12) with
(56), we note that and can be interpreted
as the probabilities of -error and -error of the asymmetric
two-user channel coding with (common and private) message
sets , since are uniformly distributed on . For
any , let and be the marginal and
conditional distributions induced by . Recall that for each

and that is the same set for all . Hence, we can
write by the product of two sets . Set-
ting and , it follows
that, by the definition of asymmetric two-user channel coding
error exponent and (57)

(60)

for any sequence of JSC codes , recalling from
Lemma 1 that

and

According to (16), we write
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(61)

By Lemma 1, for any

which implies

(62)

Now assume that

is finite (the upper bound is trivial if it is infinity) and the
infimum actually becomes a minimum. Let the minimum be
achieved by distribution , then there must
exists a sequence of types such that

uniformly.3 It then follows from (61)—(62) that

(63)

Since the above bound holds for any sequence of JSC codes, we
complete the Proof of Theorem 4.

V. APPLICATIONS TO CS-AMAC AND CS-ABC SYSTEMS

As pointed out in the Introduction, our results obtained in the
previous section can be directly applied to the CS-AMAC and
CS-ABC source–channel systems.

A. CS-AMAC System

Setting and removing the decoder , the two-user
asymmetric channel reduces to an AMAC .
Since the CS-AMAC system is a special case of the two-user
system, the quantities defined before, including the system
(overall) probability of error, the system JSCC error exponent,

3The sequence � �� � � �� � ��� here denotes a sequence for
� � � � �� � �� � � � �, where � is the smallest integer such that �� is also
an integer.

and the channel error exponent still hold for the CS-AMAC
system. Note that there is only one decoder, so we do not have
the -error probability (nor exponent) here. The first union in
(48) can be removed since the largest region is given by .
In fact, for any
and . Thus, Theorem 3 reduces
to the same JSCC theorem established in [4] for the CS-AMAC
system. Choosing the auxiliary alphabet , we specialize
Theorems 2 and 4 to the following corollary.

Corollary 1: Given and , the system JSCC
error exponent satisfies

(64)

and

(65)

where is the channel error
exponent of the AMAC defined in (54) with ,
and

(66)
where is defined in (17) with

.

It has been shown in [2] that for any and , the
channel exponent for AMAC satisfies

where

(67)

where the minimum is taken over such
that

or

As a consequence, we obtain that

(68)

In Section VI, we investigate the evaluation of lower bound
(64) and upper bound (68) when the AMAC has a symmetric
distribution.

Authorized licensed use limited to: Queens University. Downloaded on April 1, 2009 at 00:03 from IEEE Xplore.  Restrictions apply.



ZHONG et al.: ERROR EXPONENTS FOR ASYMMETRIC TWO-USER DISCRETE MEMORYLESS SOURCE-CHANNEL CODING SYSTEMS 1501

B. CS-ABC System

Setting and removing the encoder , the two-user
asymmetric channel reduces to an ABC .
The quantities defined before, including the probabilities of
error at -decoder and -decoder, the achievable error ex-
ponent pair, system (overall) probability of error, the system
JSCC error exponent, and the channel error exponent still hold
for the CS-ABC system. Given an arbitrary and finite auxiliary
alphabet , we augment the channel to
by introducing an RV such that .
Similarly, the marginal distributions of the augmented channel
are denoted by and . We then specialize Theo-
rems 2–4 to the following corollaries.

Given of (48) reduces to
given by

(69)
where

where the mutual informations are taken under the joint distri-
bution . We remark that the closure of

, denoted by , is the capacity region of
the ABC [21].

Corollary 2: (JSCC Theorem for CS-ABC system) Given
and , the following statements hold.

1) The sources can be transmitted over the ABC
with as if

2) Conversely, if the sources can be transmitted over
the ABC with an arbitrarily small probability of

error as , then
.

Corollary 3: Given an arbitrary and finite alphabet , for any
, the following exponent pair is universally

achievable:

(70)

and

(71)

where and are defined in (17) and (18) by setting
. Furthermore, given and , the system

JSCC error exponent satisfies

(72)

and

(73)

where is given by
in (35) with , and is the channel
error exponent for the ABC .

VI. EVALUATION OF THE BOUNDS FOR :
CS OVER SYMMETRIC AMAC

We established the lower and upper bounds for the JSCC
error exponent of the asymmetric two-user JSCC system.
However, we are not able to simplify these bounds for general
two-user JSCC systems (not even for general CS-AMAC and
CS-ABC systems) into computable parametric forms as we
did for the point-to-point systems [29], [30]. In the following,
we only address a special case of CS-AMAC systems where
the channel admits a symmetric transition probability distri-
bution. We first introduce the parametric forms of functions

and defined in
(66) and (67), respectively. For any , rewrite

where

(74)

and

(75)
Also, rewrite

where
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where

(76)

and

(77)

Note that and (respectively, and ) are the
random-coding (respectively, sphere-packing) type exponents
expressed in terms of constrained Kullback–Leibler divergences
and mutual informations [10]. In fact, it has been shown in [2]
that

where

(78)

and

(79)

Analogously to [10, Lemma 5.4, Corollary 5.4, p. 168], we can
prove the following results; some of them has been proved in [2].

Lemma 4: Let . coincides

with if
where

and is a straight-line tangent on

with slope if , i.e.,

is given in the expression at the

bottom of the page. Furthermore, has
the parametric form

where and are
given in (78) and (79), respectively.

Therefore, we can write the functions
in (66) and in (67) as follows.

(80)

and

(81)

where and . Since it is in general
hard to find the optimizing solution for and above,
we next confine our attention to multiple-access channels with
some symmetric distributions.

Definition 3 [2]: We say that the multiple-access channel
is -symmetric if for every the transition ma-

trix is symmetric in the sense that the rows (re-
spectively, columns) are permutations of each other. An -sym-
metric multiple-access channel is defined similarly. We then
say that is symmetric if it is both -symmetric and

-symmetric.

It follows that the multiple-access channel with additive noise
is symmetric (e.g., see the example below), where a multiple-
access channel with (modulo ) additive noise

is described as

where and are the channel’s
output, two input and noise symbols at time such that

, and is independent of
and .

It is shown in [2] that if the multiple-access channel
is -symmetric, then the outer maximum of (80)

and (81) is achieved by a joint distribution of the form
for every and . It then follows

that for the symmetric multiple-access channel, the maximum
of (80) and (81) is achieved by a uniform joint distribution

which is independent of . Substituting in (80) and (81)
yields

(82)

if

if
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and

(83)

where

and

We also can prove the following identities using a standard op-
timization method (cf. [29]).

Lemma 5:

(84)

(85)

where

and

Note that and are both concave in
. Clearly, if the marginal distribution is uniform, then

(84) and (85) are equal. Using (82) we now can write (64) as

(86)

and, similarly, using (83) we can write (65) as

(87)

Consequently, using an optimization technique based on
Fenchel duality [29] and (84) and (85), we obtain the following.

Theorem 5: Given , a symmetric , and the trans-
mission rate , the lower bound of the JSCC error exponent
given in (64) and the upper bound given in (68) can be equiva-
lently expressed as

(88)

Example 1: Now consider binary CS with distribution

where . Then

Consider a binary multiple-access channel with binary
additive noise . That is, the
transition probabilities are given by
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Fig. 6. The lower bound (solid line) and the upper bound (dash line) for the system JSCC error exponent for transmitting binary CS over the binary AMAC with
binary additive noise.

It follows that

In Fig. 6, we plot the lower and upper bounds for the JSCC
error exponent for different pairs with transmission
rate and . As illustrated, the upper and lower
bounds coincide (this can also be proved by checking that the
two outer minima in (88) are achieved by the same and that the
inner maximum in the upper bound is achieved by ) for
many pairs (e.g., when
and when ), and hence exactly
determine the exponent.

VII. TANDEM CODING ERROR EXPONENT FOR THE

ASYMMETRIC TWO-USER SYSTEM

A. Tandem System With Common Randomization

In Section IV-D, we showed that the reliable transmissibility
condition in Theorem
3 can be achieved by a tandem coding system where separately

designed source and channel coding operations are sequentially
applied; see Figs. 4 and 5 with and being identity map-
pings. By “separately designed” we mean that the source code is
designed without the knowledge of the channel statistics and the
channel code is designed without the knowledge of the source
statistics. Note, however, that as long as the source encoder is
directly concatenated by a channel encoder (i.e., if and
are identity mappings), the source statistics would be automat-
ically brought into the channel coding stage. Thus, the perfor-
mance of the channel code is affected by that of the source code
(since the compressed messages (indices) fed into the channel
encoders are not necessarily uniformly distributed). To statis-
tically decouple the source and channel coding operations, we
need to employ common randomization between the source and
channel coding components (e.g., [18]). This results in a “com-
plete” tandem coding system with fully separate source and
channel coding operations, and for which we can establish an
expression for its error exponent in terms of the source coding
and channel coding exponents.

The tandem coding system is depicted in Figs. 4 and 5. As
in Section IV-D, the encoder is composed of two source en-
coders and and one channel encoder . The difference
is that the indices and are separately
mapped to channel indices through permutation functions

and
, which are usually called index assignments (

and are assumed to be known at both the transmitter and the
receiver). Furthermore, the choice of ( , respectively) is as-
sumed random (independent from the source and the channel)
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and equally likely from all ( , respectively) different pos-
sible index assignments, so that the indices fed into the channel
encoder have a uniform distribution and are mutually indepen-
dent

for any . Hence,
common randomization achieves statistical separation between
the source and channel coding operations.

Similarly, the encoder is independently composed of a
source encoder , an index mapping

, and a channel encoder
.

At the receiver side, the decoder is composed of a channel
decoder , a pair of index mappings which maps
every channel index pair back to a source index
pair , and a source decoder which outputs the ap-
proximation of the source messages and . Similarly, the
decoder is composed of a channel decoder

, an index mapping , and a source decoder
.

B. A Formula for the Tandem Coding Error Exponent

We now can study the error performance and exponent of
tandem source–channel coding (with common randomization)
for the asymmetric two-user system. Since the tandem code
consists of a source code and a channel
code , we first define the corresponding
source coding error exponent (note that the corresponding
channel coding error exponent for the asymmetric two-user
channel was defined in Section IV-E).

Definition 4: The two-user source coding error exponent
, for any and , is defined by the

supremum of the set of all numbers for which there exists
a sequence of source codes with block
length , common rate no larger than , and private rate no
larger than , such that

(89)

where is the source coding probability of
error defined in (51).

Denote the probabilities of - and -error for the source
coding by

(90)

and

(91)

where and . Clearly, for any sequence
of source codes , the error probability

must be larger than
and but less than the sum of the two; so
we have

(92)

In what follows, we need to make three assumptions in
order to analyze the probability of error of the overall tandem
system. The first two assumptions (referred to as (A1) and
(A2)) are regarding the source codes. Let the source codebook
for (Receiver ) be ,
and let the source codebook for (Receiver )
be where .

• We assume that (A1) the source encoder satisfies the
condition (for every ): and

for every , where
. Clearly, the assumption has practical

meaning. If for some , then the code-
word is redundant, and we can remove it from the
codebook . If , we can map the index

to some source message such that and
, so that the source coding probability of error

is strictly reduced by setting as the
codeword (note that is indepen-
dent of ).

• Similarly, we assume that (A2) the source code sat-
isfies the condition (for every ):
and for every , where

. If
for some , then the codeword is redundant, and we

can remove it from the codebook . If ,
we can map the index to some source message
such that and , so that the
source coding error probabilities and

are strictly reduced by setting as the
codeword .

• We assume that the limits and
exist, i.e.,

and
. This assumption is used later to

upper-bound the tandem coding error exponent in The-
orem 6.
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We remark that the source code satisfying (A1) and (A2) does
not lose optimality in the sense of achieving the source error
exponent.

Denote . By introducing (A1)
and (A2), the error probability of the tandem code

is given by

and

or

(93)

is sent (94)

(95)

where (93) follows from assumptions (A1) and (A2), which
imply that a channel decoding error must cause an overall
system decoding error, (94) holds due to the statistical decou-
pling of source and channel coding.

Definition 5: The tandem coding error exponent
for source and channel

is defined as the supremum of the set of all numbers for
which there exists a sequence of tandem codes
satisfying (A1) and (A2) with transmission rate such that

When there is no possibility of confusion,
will often be written as .

The following lemma illustrates the relation between
and .

Lemma 6:

Proof: By definition, for any sequence of rate tandem
codes composed of a sequence of source codes

and a sequence of channel codes
, we have

and are fixed

and are fixed

Let the above minimum be achieved by and
. Obviously, there exists a sequence of JSC codes

where is composed of
is composed of and is composed

of and , and finally, is composed of
and (cf. Figs. 4 and 5), such that

for any

where is the probability of error in-
duced by the JSC codes . Since this holds
for any sequence of tandem codes (satisfying (A1) and (A2)), it
then follows from the definition of joint and tandem exponents
that .

We next derive a formula for in terms of the corre-
sponding source and channel error exponents.

Theorem 6:

where is the two-user source coding error expo-
nent defined in (4) and is the asymmetric
two-user channel coding error exponent defined in (2).

Remark 1: As can be seen from the proof below, the common
randomization setup together with the assumptions regarding
the source and channel codes are essentially needed to prove the
converse part of the tandem coding error exponent; the forward
part (the proof of the lower bound on the exponent) is still valid
for tandem systems without these assumptions.

Proof: Forward Part: we show that there exists a sequence
of tandem codes satisfying (A1) and (A2) such that

Authorized licensed use limited to: Queens University. Downloaded on April 1, 2009 at 00:03 from IEEE Xplore.  Restrictions apply.



ZHONG et al.: ERROR EXPONENTS FOR ASYMMETRIC TWO-USER DISCRETE MEMORYLESS SOURCE-CHANNEL CODING SYSTEMS 1507

for any . It follows from (95) that

or equivalently

(96)

Fix and let and .
According to the definition of the two-user source coding
error exponent, there exists a sequence of source codes

satisfying (A1) and (A2) (since (A1) and
(A2) do not lose optimality) with common source rate and
private source rate such that

On the other hand, according to the definition of the asymmetric
two-user channel coding error exponent, there exists a sequence
of channel codes with common rate
and private rate such that

Finally, since the sequences of rates and can be arbitrarily
chosen, and so are and , we can take the supremum of

and , completing the proof of the forward part.
Converse Part: We show that for any sequence of tandem
codes with rate composed by source codes

satisfying assumptions (A1) and
(A2) and channel codes

(97)

Let the private index set for the tandem system be
(cf. Figs. 4 and 5). Thus, the private source

and channel code rates are given by
and , respectively. Let the common index set
be . Thus, the common source code rate
and channel code rate are given by and

, respectively.

We first assume that

for some positive independent of , which implies that there
exists a sequence such that

In this trivial case

and (97) holds. Next we assume that

It then follows from (95) that

(98)

and

(99)

Let

(100)

and

(101)

By definition, the source error exponent is
the largest (supremum) number such that there exists a
sequence of source codes with message
sets and satisfying

and
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This means that

holds for all source codes with

and

and hence holds for the sequence of block codes
with rates satisfying (A1)

and (A2).
Similarly, by the definition of the asymmetric two-user

channel error exponent and on account of (100) and (101) we
have

holds for all channel codes with common
and private message sets and
such that

and

and of course holds for the sequence of channel codes
with common rate and private

rate .
Putting things together, (98) and (99) yield

holds for all the source codes satisfying (A1) and (A2) and all
the channel codes with

and

Since the above is satisfied for any sequences of and
, and hence for all and , we take the

supremum over and obtain (97).

C. Comparison of Joint and Tandem Coding Error Exponents

Although tandem source–channel coding can achieve reliable
transmissibility, it might not achieve the system JSCC error ex-
ponent. In the following, we consider the tandem system con-
sisting of CS and AMAC . For the CS-AMAC
tandem system, we have only one receiver, Receiver , and the
source decoder (cf. Fig. 5) becomes a Slepian–Wolf de-
coder [6]. Furthermore

and

In this case, we can upper-bound the source error exponent by

(102)

which is obtained by viewing the two source encoders and
as a joint encoder [11], where is given by

Lemma 5. Therefore, we can upper-bound the tandem coding
error exponent for the CS-AMAC system by

(103)

where is an upper bound for the channel
error exponent and is given by (81).

Example 2: Now consider the same binary CS given in
Example 1 such that

and consider the same binary multiple-access channel
as in Example 1 with binary additive noise

such that

where and

It follows from (103) that the upper bound for only depends
on the sum rate and hence the upper bound can be
reduced to
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Fig. 7. The lower bound of � versus the upper bound of � .

In Fig. 7, we plot the lower bound for from (88), and
the above upper bound for for different source and channel
parameters. It is seen that for a large class of pairs with the
same transmission rate , there is a considerable gap between
the upper bound for and the lower bound for , which
implies that JSCC can substantially outperform tandem coding
in terms of error exponent for many binary CS-AMAC systems
with additive noise. In fact, from Fig. 7, we see that almost
doubles for many pairs. When holds, it
can be equivalently interpreted that, to achieve the same system
error performance, JSCC only requires around half delay of the
tandem coding, provided that the coding length is sufficiently
large.

VIII. CONCLUSION

In this paper, we study the error performance and exponents
of JSCC for a class of discrete memoryless communication
systems which transmit two correlated sources over a two-trans-
mitter two-receiver channel in an “asymmetric” way. For such
systems, we derive universally achievable error exponent pairs
for the two receivers by employing a generalized type-packing
lemma. We also establish a lower and an upper bound for the
system JSCC error exponent. We next specialize these results to
CS-AMAC and CS-ABC systems. As a special case, we study
the analytical computation of the lower and upper bounds for
CS-AMAC systems for which the channel admits a symmetric
conditional distribution. We show that the lower and upper

bounds coincide for many binary CS-AMAC source–channel
pairs with additive noise, and hence exactly determine the
JSCC error exponent.

As a consequence of our lower bound for the JSCC error ex-
ponent, we prove a JSCC theorem for the asymmetric two-user
system, i.e., a sufficient and necessary condition for the reliable
transmissibility of the two CS over the asymmetric channel is
provided. It is demonstrated that the condition can actually be
achieved by a tandem coding scheme, which combines separate
source and channel coding. This means that tandem coding does
not lose optimality from the point of view of reliable transmis-
sibility. Nevertheless, tandem coding might not be optimal in
terms of the error exponent. To exploit the advantage of JSCC
over tandem coding for the two-user system, we show that the
tandem coding exponent can never be larger than the JSCC ex-
ponent and we derive a formula for the tandem exponent in
terms of the source and channel coding exponents. The formula
holds under two basic assumptions on the source code and the
assumption that common randomization is used at the trans-
mitter and receiver sides to render the source and channel coding
operations statistically decoupled from one another. By numer-
ically comparing the upper bound for the tandem exponent and
the lower bound for the JSCC exponent, we note that there is a
considerable gain of the JSCC error exponent over the tandem
coding error exponent for a large class of binary CS-AMAC sys-
tems with additive noise. Note that this prospective benefit of
JSCC over tandem coding can also translate into substantial re-
ductions in system complexity and coding delay.
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APPENDIX A
PROOF OF LEMMA 3

Although the result (5) of Lemma 3 was already shown in
[8], we include its proof here since we need to show that (5)
holds simultaneously with (6) and (7). We employ a random
selection argument as used in [8]. For each ,
we randomly generate a set of sequences (according to a
uniform distribution) from the type class

i.e., each is randomly drawn from the type class with
probability . Each set has ele-
ments rather than because an expurgation operation will be
performed later. Also, we denote the set .

Now for each with associated , we
randomly generate sequences (according to a uniform
distribution)

such that the set

In other words, each is drawn from with prob-

ability , and hence each pair

is drawn from with probability .

Furthermore, we denote the set . For
any and , define

and

Based on the above setup, the following inequalities hold.
i) For any and any

(104)

where the above expectation and probability are taken
over the uniform distribution

(105)

and (104) follows from the basic facts (Lemma 1) that

and that

noting that the marginal distribution of
for RVs is .

ii) For any and any , like-
wise

(106)

where the expectation is taken over the uniform distribu-
tion defined by (105).

iii) For any and , and any , similarly
we have

Using the identity

and assumption (3)
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we obtain another bound

(107)

where the expectation is taken over the uniform distribu-
tion .

iv) For any and , and any , likewise

(108)

where the expectation is taken over the uniform distribu-
tion .

v) For any and any

(109)

where the above expectation and probability are taken
over the uniform distribution

(110)

and (109) follows from the basic facts (Lemma 1) that

and that

noting that the marginal distribution of for the
RV is .

vi) For any and any , likewise

(111)

where the expectation is taken over the uniform distribu-
tion defined in (110).

Note also if

and if

Therefore, it follows from (104) and (106) that for any

(112)

Taking the sum over all , and
using the fact (Lemma 1)

and , we obtain

where

Immediately, normalizing by and taking the sum over
, yields

(113)

Similarly, it follows from (107) and (108) that

(114)

where
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and it follows from (109) and (111) that

(115)

where is actually independent of and and is given by

Summing (113), (114), and (115) together, we obtain

(116)

Therefore, there exists at least a selection of these sets

and such that

which implies that for all and
the following is satisfied:

(117)

We next proceed with an expurgation argument. Without loss of
generality, we assume

then we must have, for every

Similarly, suppose for each

the above implies that for each and each

(118)

We now let for

and for , let
such that

and denote also . Immedi-
ately, it follows from (118) that for every

and every
and
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(119)

(120)

(121)

(122)

(123)

(124)

where

Thus far, we proved the existence of the sets and
with elements selected uniformly from each and
satisfying the inequalities (119)–(124) for any and

. It remains to show that these sets are disjoint and
have distinct elements provided assumptions (3) and (4). In-
deed, since (123) and (124) hold for every ,
they of course hold when is a conditional distribution
such that is 1 if and otherwise. It then
follows from (3)

that or, equivalently,

, which means any elements in does not
belong to for , i.e., and are disjoint. Likewise,
using assumption (3) in (124), we see that

which means that has disjoint elements. Similarly,
setting to be the conditional distribution such that

is if and otherwise,
and using (4)

we see that for any ’s are disjoint and the
elements in are all distinct, i.e.,

for every . Finally, when is not the conditional
distribution such that is if and oth-
erwise, we can write (123) and (124) in the same way as (5),
and when is not the conditional distribution such that

is if and otherwise,
we can write (119)–(120) as (6), and write (121)–(122) as (7),
since

APPENDIX B
PROOF OF (26) AND (27)

A. Upper Bound on

If we fix a and an , then
is the set of all such that there exist some

, admits a joint type

and

(125)

Note that (125) can be represented as for dummy RVs
and , the

following holds under the joint distribution

where and are the corresponding mar-
ginal distributions induced by . Thus,

can be written as a union of subsets

(126)

where is fiven in the first equation at the bottom of
the page, where and , etc., are the
corresponding marginal and conditional distributions induced
by , and is
defined in the second expression at the bottom of the page,
where . Clearly, given
any and we get (127) at the top of
the following page, where the last inequality follows from
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(127)

Lemma 3. Meanwhile, when , the following
simple bound also holds:

(128)

since for each , we have
and hence

. Now substituting the
following inequality (cf. [8, Eq. (28)])

(129)

into (127), combining with (128) together, we obtain
(130) shown at the bottom of the page. Again recall

that for
and note that

This implies when , as shown
by the second expression at the bottom of the page,and hence the
third expression at the bottom of the page, since by Lemma 1

B. Upper Bound on

If we fix an and an , then
is the set of all such that there exist some

admits a joint type
and

(131)
Using the identity

on both sides of (131) we see it is equivalent to

(132)

(130)
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Note that (132) can be represented as for dummy RVs
and , the following holds under

the joint distribution :

where and are the corresponding
marginal distributions induced by . Thus,

can be written as a union of subsets

(133)

where is given in the last expression at the bottom of
the page, where and etc., are the
corresponding marginal and conditional distributions induced
by , and

where . Using a similar counting
argument, and applying Lemma 3, we can bound, for any

and we have
the first expression at the bottom of the page, and, finally, we
obtain the second expression at the bottom of the page, since

.

APPENDIX C
PROOF OF THEOREM 3

Forward Part (1): It follows from (19)–(21) that
if and only if

. It then follows that
if .

According to Theorem 2 and the definition of the system JSCC
error exponent, if the lower bound (34) is positive,
which needs

This means if the pair
.

Converse Part (2): The proof follows in a similar manner as
the converse part of [16, Theorem 1] for a broadcast channel. For
the sake of completeness, we also provide a full proof here since
we deal with a two-user channel. We first prove the following
lemma.

Lemma 7:

where is defined in (49).
Proof: It is straightforward to see that

. To complete the proof, it suffices to show
. We note that both

and are convex and closed.
Therefore, instead of verifying that all ’s in

belong to , we show that all
the boundary points of are in .
By the definition of , we note that any boundary
point of has to satisfy at least one of
the following conditions.

• Case 1: there exist RV and such that

This is true since if or
, we can increase or which contradicts

the boundary point assumption on .
• Case 2: there exist RV and such that

Now if the boundary point satisfies Case 1, clearly,
for the same and , we have
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This shows that . Similarly, if the
boundary point satisfies Case 2, for such and ,
we have

and thus, . Since the boundary points
of are in , we conclude that the
entire region of is in , and hence
Lemma 7 is proved.

By lemma 7, it suffices to show that, for any , if

as goes to infinity, then there exists an RV satisfying
, i.e., the joint distribution can be

factorized as , such that

i.e.,

Fix . Fano’s inequality gives

(134)

(135)

where ; similar definitions apply for the
other tuples. It follows from (134)–(135) that

where

and

Substituting the identity [11, Lemma 7]

into the above, and setting for
yields

(136)

where holds since is a deterministic function of and
hence of , follows from the data processing inequality,
and holds since is only determined by and due
to the memoryless property of the channel. On the other hand,

can also be bounded by

(137)

Likewise, it follows from (135) that

(138)

Note also that for all .
According to (136), (137), and (138), and recalling that ,
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it is easy to show (e.g., see [11]) that there exists an auxiliary RV
with such that

It remains to show that the alphabet of the RV can be limited
by ; i.e., we will show by applying the support
lemma below, which is based on the Carathéodory theorem (cf.
[10, p. 311]) that there exists an RV with
such that and

(139)

Lemma 8: ([10, Support lemma, p. 311]) Let
be real-valued continuous functions on . For any

probability measure on the Borel -algebra of , there
exist elements of and nonnegative
reals with such that for every

We first rewrite

and

where the last equality follows since
forms a Markov chain. To apply the support lemma, we define
the following real-valued continuous functions of distribution

on for fixed :

for all except one pair , so there are
functions; i.e., ranges from to .

Furthermore, we define real-valued continuous functions

and

According to the support lemma, there must exist a new RV
(jointly distributed with ) with alphabet size

such that the expectation of with respect

to , can be expressed in terms of the
convex combination of points, i.e.,

(140)

(141)

and

(142)

Clearly, forms a Markov chain and
(139) holds. The proof for the converse part is complete.
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