ON BOUNDING THE UNION PROBABILITY USING PARTIAL WEIGHTED INFORMATION - SUPPLEMENTARY MATERIAL

Jun Yang, Fady Alajaji, and Glen Takahara

1. Relation to the Cohen-Merhav bound. Let $f_{i}(B)>0$ and $m_{i}\left(\omega_{B}\right)$ be nonnegative real functions. Then by the Cauchy-Schwarz inequality,

$$
\begin{equation*}
\left[\sum_{B: i \in B} f_{i}(B) p_{B}\right]\left[\sum_{B: i \in B} \frac{p_{B}}{f_{i}(B)} m_{i}^{2}\left(\omega_{B}\right)\right] \geq\left[\sum_{B: i \in B} p_{B} m_{i}\left(\omega_{B}\right)\right]^{2} \tag{1}
\end{equation*}
$$

Thus, using

$$
\begin{equation*}
P\left(\bigcup_{i=1}^{N} A_{i}\right)=\sum_{B \in \mathscr{B}}\left(\sum_{i=1}^{N} f_{i}(B)\right) p_{B}=\sum_{i=1}^{N} \sum_{B \in \mathscr{B}: i \in B} f_{i}(B) p_{B} . \tag{2}
\end{equation*}
$$

we have

$$
\begin{equation*}
P\left(\bigcup_{i=1}^{N} A_{i}\right)=\sum_{i=1}^{N} \sum_{B: i \in B} f_{i}(B) p_{B} \geq \sum_{i=1}^{N} \frac{\left[\sum_{B: i \in B} p_{B} m_{i}\left(\omega_{B}\right)\right]^{2}}{\sum_{B: i \in B} \frac{p_{B}}{f_{i}(B)} m_{i}^{2}\left(\omega_{B}\right)} \tag{3}
\end{equation*}
$$

If we define $f_{i}(B)$ by

$$
f_{i}(B)= \begin{cases}\frac{1}{|B|}=\frac{1}{\operatorname{deg}\left(\omega_{B}\right)} & \text { if } i \in B \tag{4}\\ 0 & \text { if } i \notin B\end{cases}
$$

so that

$$
\begin{equation*}
P\left(\bigcup_{i=1}^{N} A_{i}\right)=\sum_{i=1}^{N} \sum_{B \in \mathscr{B}: i \in B} \frac{p_{B}}{\operatorname{deg}\left(\omega_{B}\right)}=\sum_{i=1}^{N} \sum_{\omega \in A_{i}} \frac{p(\omega)}{\operatorname{deg}(\omega)} \tag{5}
\end{equation*}
$$

then the inequality reduces to

$$
\begin{equation*}
P\left(\bigcup_{i=1}^{N} A_{i}\right) \geq \sum_{i=1}^{N} \frac{\left[\sum_{B: i \in B} p_{B} m_{i}\left(\omega_{B}\right)\right]^{2}}{\sum_{B: i \in B} p_{B} m_{i}^{2}\left(\omega_{B}\right)|B|}=\sum_{i} \frac{\left[\sum_{\omega \in A_{i}} p(\omega) m_{i}(\omega)\right]^{2}}{\sum_{j} \sum_{\omega \in A_{i} \cap A_{j}} p(\omega) m_{i}^{2}(\omega)} \tag{6}
\end{equation*}
$$

where the equality holds when $m_{i}(\omega)=\frac{1}{\operatorname{deg}(\omega)}$ (i.e., $m_{i}\left(\omega_{B}\right)=\frac{1}{|B|}$), which was first shown by Cohen and Merhav [1, Theorem 2.1].

When $m_{i}(\omega)=c_{i}>0$, (6) reduces to the DC bound

$$
\begin{equation*}
P\left(\bigcup_{i=1}^{N} A_{i}\right) \geq \sum_{i} \frac{\left[c_{i} P\left(A_{i}\right)\right]^{2}}{\sum_{j} c_{i}^{2} P\left(A_{i} \cap A_{j}\right)}=\sum_{i} \frac{P\left(A_{i}\right)^{2}}{\sum_{j} P\left(A_{i} \cap A_{j}\right)}=\ell_{\mathrm{DC}} \tag{7}
\end{equation*}
$$

Note that as remarked in [2], the DC bound can be seen as a special case of the lower bound

$$
\begin{equation*}
P\left(\bigcup_{i=1}^{N} A_{i}\right) \geq \frac{\left[\sum_{i} c_{i} P\left(A_{i}\right)\right]^{2}}{\sum_{i} \sum_{j} c_{i}^{2} P\left(A_{i} \cap A_{j}\right)} \tag{8}
\end{equation*}
$$

when $c_{i}=\frac{P\left(A_{i}\right)}{\sum_{j} P\left(A_{i} \cap A_{j}\right)}$. This is because

$$
\begin{align*}
\frac{\left[\sum_{i}\left(\frac{P\left(A_{i}\right)}{\sum_{j} P\left(A_{i} \cap A_{j}\right)}\right) P\left(A_{i}\right)\right]^{2}}{\sum_{i} \sum_{j}\left(\frac{P\left(A_{i}\right)}{\sum_{j} P\left(A_{i} \cap A_{j}\right)}\right)^{2} P\left(A_{i} \cap A_{j}\right)} & =\frac{\left(\sum_{i} \frac{P\left(A_{i}\right)^{2}}{\sum_{j} P\left(A_{i} \cap A_{j}\right)}\right)^{2}}{\sum_{i}\left\{\left(\frac{P\left(A_{i}\right)}{\sum_{j} P\left(A_{i} \cap A_{j}\right)}\right)^{2} \sum_{j} P\left(A_{i} \cap A_{j}\right)\right\}} \tag{9}\\
& =\frac{\ell_{\mathrm{DC}}^{2}}{\ell_{\mathrm{DC}}}=\ell_{\mathrm{DC}} .
\end{align*}
$$

Note that although $c_{i}>0$ is not assumed in (8), one can always replace c_{i} by $\left|c_{i}\right|$ in (8) if $c_{i}<0$ to get a sharper bound.

However, the lower bound in (8) is looser than the following two (left-most) lower bounds (which we later derive in (16) and (18)):

$$
\begin{equation*}
\sum_{i=1}^{N} \frac{c_{i}^{2} P\left(A_{i}\right)^{2}}{c_{i} \sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right)} \geq \frac{\left[\sum_{i} c_{i} P\left(A_{i}\right)\right]^{2}}{\sum_{i} \sum_{k} c_{i} c_{k} P\left(A_{i} \cap A_{k}\right)} \geq \frac{\left[\sum_{i} c_{i} P\left(A_{i}\right)\right]^{2}}{\sum_{i} \sum_{j} c_{i}^{2} P\left(A_{i} \cap A_{j}\right)} \tag{10}
\end{equation*}
$$

where $c_{i}>0$ for all i and the last inequality can be proved using $2 c_{i} c_{j} \leq c_{i}^{2}+c_{j}^{2}$.
2. Relation to the Gallot-Kounias bound. By the Cauchy-Schwarz inequality, or assuming $m_{i}(\omega)=1$ in (1), we have

$$
\begin{equation*}
\left[\sum_{B: i \in B} f_{i}(B) p_{B}\right]\left[\sum_{B: i \in B} \frac{p_{B}}{f_{i}(B)}\right] \geq\left[\sum_{B: i \in B} p_{B}\right]^{2}=P\left(A_{i}\right)^{2} \tag{11}
\end{equation*}
$$

Using $f_{i}(B)$ defined using \boldsymbol{c} (note that $f_{i}(B)>0$ is equivalent to $c_{i}>0$ for all i), we have

$$
\begin{equation*}
\left[\sum_{B: i \in B} \frac{c_{i} p_{B}}{\sum_{k \in B} c_{k}}\right]\left[\sum_{B: i \in B}\left(\frac{\sum_{k \in B} c_{k}}{c_{i}}\right) p_{B}\right] \geq P\left(A_{i}\right)^{2} . \tag{12}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\sum_{B: i \in B}\left(\frac{\sum_{k \in B} c_{k}}{c_{i}}\right) p_{B}=\frac{1}{c_{i}} \sum_{k=1}^{N} \sum_{B: i \in B, k \in B} c_{k} p_{B}=\frac{\sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right)}{c_{i}} \tag{13}
\end{equation*}
$$

Therefore, we have

$$
\begin{equation*}
\left[\sum_{B: i \in B} \frac{c_{i} p_{B}}{\sum_{k \in B} c_{k}}\right]\left[\frac{\sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right)}{c_{i}}\right] \geq P\left(A_{i}\right)^{2} \tag{14}
\end{equation*}
$$

Then for all i,

$$
\begin{equation*}
\sum_{B: i \in B} \frac{c_{i} p_{B}}{\sum_{k \in B} c_{k}} \geq \frac{c_{i}^{2} P\left(A_{i}\right)^{2}}{c_{i} \sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right)} \tag{15}
\end{equation*}
$$

By summing (15) over i, we get another new lower bound:

$$
\begin{equation*}
P\left(\bigcup_{i} A_{i}\right) \geq \sum_{i=1}^{N} \frac{c_{i}^{2} P\left(A_{i}\right)^{2}}{c_{i} \sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right)} \tag{16}
\end{equation*}
$$

Note that we can use Cauchy-Schwarz inequality again:

$$
\begin{equation*}
\left[\sum_{i=1}^{N} \frac{c_{i}^{2} P\left(A_{i}\right)^{2}}{c_{i} \sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right)}\right]\left[\sum_{i} c_{i} \sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right)\right] \geq\left[\sum_{i} c_{i} P\left(A_{i}\right)\right]^{2} \tag{17}
\end{equation*}
$$

which yields

$$
\begin{equation*}
P\left(\bigcup_{i} A_{i}\right) \geq \sum_{i=1}^{N} \frac{c_{i}^{2} P\left(A_{i}\right)^{2}}{c_{i} \sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right)} \geq \frac{\left[\sum_{i} c_{i} P\left(A_{i}\right)\right]^{2}}{\sum_{i} \sum_{k} c_{i} c_{k} P\left(A_{i} \cap A_{k}\right)} \tag{18}
\end{equation*}
$$

Since the above inequality holds for any positive \boldsymbol{c}, we have

$$
\begin{equation*}
P\left(\bigcup_{i} A_{i}\right) \geq \max _{c \in \mathbb{R}_{+}^{N}} \sum_{i=1}^{N} \frac{c_{i}^{2} P\left(A_{i}\right)^{2}}{c_{i} \sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right)} \geq \max _{\boldsymbol{c} \in \mathbb{R}_{+}^{N}} \frac{\left[\sum_{i} c_{i} P\left(A_{i}\right)\right]^{2}}{\sum_{i} \sum_{k} c_{i} c_{k} P\left(A_{i} \cap A_{k}\right)} . \tag{19}
\end{equation*}
$$

One can show that by computing the partial derivative with respect to c_{i} and set it to zero that

$$
\begin{equation*}
\max _{c \in \mathbb{R}^{N}} \sum_{i=1}^{N} \frac{c_{i}^{2} P\left(A_{i}\right)^{2}}{c_{i} \sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right)}=\max _{c \in \mathbb{R}^{N}} \frac{\left[\sum_{i} c_{i} P\left(A_{i}\right)\right]^{2}}{\sum_{i} \sum_{k} c_{i} c_{k} P\left(A_{i} \cap A_{k}\right)}=: \ell_{\mathrm{GK}} \tag{20}
\end{equation*}
$$

where ℓ_{GK} is the Gallot-Kounias bound (see [2]), and the optimal $\tilde{\boldsymbol{c}}$ can be obtained from

$$
\begin{equation*}
\boldsymbol{\Sigma} \tilde{c}=\alpha \tag{21}
\end{equation*}
$$

where $\boldsymbol{\alpha}=\left(P\left(A_{1}\right), P\left(A_{2}\right), \ldots, P\left(A_{N}\right)\right)^{T}$ and $\boldsymbol{\Sigma}$ is a $N \times N$ matrix whose (i, j)-th element equals to $P\left(A_{i} \cap A_{j}\right)$. Thus, we conclude that the lower bounds in (19) are equal to the GK bound as shown in [2] if $\tilde{\boldsymbol{c}} \in \mathbb{R}_{+}^{N}$; otherwise, the lower bounds in (19) are weaker than the GK bound.

3. Complete Results and Proof of Theorem 1.

Theorem. For any given \boldsymbol{c} that satisfies

$$
\begin{equation*}
\sum_{k \in B} c_{k} \neq 0, \quad \text { for all } \quad B \in \mathscr{B} \tag{22}
\end{equation*}
$$

a new lower bound on the union probability is given by

$$
\begin{equation*}
P\left(\bigcup_{i=1}^{N} A_{i}\right) \geq \sum_{i=1}^{N} \ell_{i}(\boldsymbol{c})=: \ell_{N E W-I}(\boldsymbol{c}) \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
\ell_{i}(\boldsymbol{c})=P\left(A_{i}\right)\left(\frac{c_{i}}{\sum_{k \in B_{1}^{(i)}} c_{k}}+\frac{c_{i}}{\sum_{k \in B_{2}^{(i)}} c_{k}}-\frac{c_{i} \sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right)}{P\left(A_{i}\right)\left(\sum_{k \in B_{1}^{(i)}} c_{k}\right)\left(\sum_{k \in B_{2}^{(i)}} c_{k}\right)}\right) \tag{24}
\end{equation*}
$$

where $B_{1}^{(i)}$ and $B_{2}^{(i)}$ are subsets of $\{1, \ldots, N\}$ that satisfy the following conditions.

1. If $\frac{\sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right)}{c_{i} P\left(A_{i}\right)} \geq 0$ and $\min _{\{B: i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}}<0$, then

$$
\begin{align*}
& B_{1}^{(i)}=\arg \max _{\{B: i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}} \quad \text { s.t. } \quad \frac{\sum_{k \in B} c_{k}}{c_{i}}<0, \tag{25}\\
& B_{2}^{(i)}=\arg \max _{\{B: i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}}
\end{align*}
$$

2. If $\frac{\sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right)}{c_{i} P\left(A_{i}\right)} \geq 0$ and $\min _{\{B: i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}} \geq 0$, then

$$
\begin{align*}
& B_{1}^{(i)}=\arg \max _{\{B: i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}} \text { s.t. } \frac{\sum_{k \in B} c_{k}}{c_{i}} \leq \frac{\sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right)}{c_{i} P\left(A_{i}\right)}, \\
& B_{2}^{(i)}=\arg \min _{\{B: i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}} \text { s.t. } \frac{\sum_{k \in B} c_{k}}{c_{i}} \geq \frac{\sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right)}{c_{i} P\left(A_{i}\right)} \tag{26}
\end{align*}
$$

3. If $\frac{\sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right)}{c_{i} P\left(A_{i}\right)}<0$ and $\frac{\sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right)}{c_{i} P\left(A_{i}\right)}<\left\{\max _{\left\{B: i \in B, \frac{\sum_{k \in B} c_{k}}{c_{i}}<0\right\}} \frac{\sum_{k \in B} c_{k}}{c_{i}},\right\}$, then

$$
\begin{align*}
& B_{1}^{(i)}=\arg \max _{\{B: i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}}, \quad \text { s.t. } \frac{\sum_{k \in B} c_{k}}{c_{i}}<0 \\
& B_{2}^{(i)}=\arg \min _{\{B: i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}} \tag{27}
\end{align*}
$$

4. If $\frac{\sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right)}{c_{i} P\left(A_{i}\right)}<0$ and $\frac{\sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right)}{c_{i} P\left(A_{i}\right)} \geq\left\{\max _{\left\{B: i \in B, \frac{\sum_{k \in B} c_{k}}{c_{i}}<0\right\}} \frac{\sum_{k \in B} c_{k}}{c_{i}}\right\}$, then

$$
\begin{align*}
& B_{1}^{(i)}=\arg \max _{\{B: i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}}, \\
& B_{2}^{(i)}=\arg \max _{\{B: i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}} \text { s.t. } \frac{\sum_{k \in B} c_{k}}{c_{i}} \leq \frac{\sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right)}{c_{i} P\left(A_{i}\right)} \tag{28}
\end{align*}
$$

Proof. Note that for the third and fourth cases, under the condition $\frac{\sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right)}{c_{i} P\left(A_{i}\right)}<$ 0 , the elements of \boldsymbol{c} cannot be all positive or negative, so the set $\left\{B: i \in B, \frac{\sum_{k \in B} c_{k}}{c_{i}}<\right.$ $0\}$ is not empty. Therefore, the solutions of $B_{1}^{(i)}$ and $B_{2}^{(i)}$ always exist.

We note that $\ell_{i}(\boldsymbol{c})$ is the solution of

$$
\begin{align*}
\min _{\left\{p_{B}: i \in B\right\}} \sum_{B: i \in B} \frac{c_{i} p_{B}}{\sum_{k \in B} c_{k}} \text { s.t. } & \sum_{B: i \in B} p_{B}=P\left(A_{i}\right), \\
& \sum_{B: i \in B}\left(\frac{\sum_{k \in B} c_{k}}{c_{i}}\right) p_{B}=\frac{1}{c_{i}} \sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right), \tag{29}\\
& p_{B} \geq 0, \quad \text { for all } B \in \mathscr{B} \text { such that } i \in B .
\end{align*}
$$

From (29) we have that

$$
\begin{equation*}
\sum_{B: i \in B} \frac{c_{i} p_{B}}{\sum_{k \in B} c_{k}} \geq \ell_{i}(\boldsymbol{c}) \tag{30}
\end{equation*}
$$

Summing (30) over i and using

$$
\begin{equation*}
P\left(\bigcup_{i=1}^{N} A_{i}\right)=\sum_{i=1}^{N} \sum_{B \in \mathscr{B}: i \in B} \frac{c_{i} p_{B}}{\sum_{k \in B} c_{k}}=\sum_{i=1}^{N} \sum_{\omega \in A_{i}} \frac{c_{i} p(\omega)}{\sum_{\left\{k: \omega \in A_{k}\right\}} c_{k}} . \tag{31}
\end{equation*}
$$

we directly obtain $P\left(\bigcup_{i=1}^{N} A_{i}\right) \geq \sum_{i=1}^{N} \ell_{i}(\boldsymbol{c})$.
Note that we can solve (29) using the same technique used in [4, 5]. Consider two subsets B_{1} and B_{2} such that $p_{B_{1}} \geq 0$ and $p_{B_{2}} \geq 0$, then denoting

$$
\begin{equation*}
b:=\frac{\sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right)}{c_{i} P\left(A_{i}\right)}, b_{1}:=\frac{\sum_{k \in B_{1}} c_{k}}{c_{i}}, b_{2}:=\frac{\sum_{k \in B_{2}} c_{k}}{c_{i}} \tag{32}
\end{equation*}
$$

then problem (29) reduces to

$$
\begin{align*}
\ell_{i}(\boldsymbol{c})=\min _{\left\{p_{B_{1}}, p_{B_{2}}\right\}} \frac{p_{B_{1}}}{b_{1}}+\frac{p_{B_{2}}}{b_{2}} \text { s.t. } & p_{B_{1}}+p_{B_{2}}=P\left(A_{i}\right) \\
& b_{1} p_{B_{1}}+b_{2} p_{B_{2}}=b P\left(A_{i}\right) \tag{33}\\
& p_{B_{1}} \geq 0, \quad p_{B_{2}} \geq 0
\end{align*}
$$

According to [4, Appendix B], one can get that

$$
\begin{equation*}
\ell_{i}(\boldsymbol{c})=\min _{\left\{b_{1}, b_{2}: b_{1} \leq b \leq b_{2}\right\}} \quad P\left(A_{i}\right)\left(\frac{1}{b_{1}}+\frac{1}{b_{2}}-\frac{b}{b_{1} b_{2}}\right) \tag{34}
\end{equation*}
$$

and the partial derivative of $P\left(A_{i}\right)\left(\frac{1}{b_{1}}+\frac{1}{b_{2}}-\frac{b}{b_{1} b_{2}}\right)$ with respect to b_{1} and b_{2} are (see [4, Appendix B, Eq. (B.3)]):

$$
\begin{align*}
& \frac{\partial\left[P\left(A_{i}\right)\left(\frac{1}{b_{1}}+\frac{1}{b_{2}}-\frac{b}{b_{1} b_{2}}\right)\right]}{\partial b_{1}}=\frac{P\left(A_{i}\right)}{b_{1}^{2}}\left(\frac{b-b_{2}}{b_{2}}\right), \\
& \frac{\partial\left[P\left(A_{i}\right)\left(\frac{1}{b_{1}}+\frac{1}{b_{2}}-\frac{b}{b_{1} b_{2}}\right)\right]}{\partial b_{2}}=\frac{P\left(A_{i}\right)}{b_{2}^{2}}\left(\frac{b-b_{1}}{b_{1}}\right) . \tag{35}
\end{align*}
$$

Note that the partial derivatives are not continuous at $b_{1}=0$ and $b_{2}=0$. Therefore, the solution depends on the following different scenarios.

1. If $b \geq 0$ and $\min _{\{B: i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}}<0$, the solutions of (34) are given by

$$
\begin{align*}
b_{1} & =\max _{\{B: i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}} \quad \text { s.t. } \quad \frac{\sum_{k \in B} c_{k}}{c_{i}}<0, \\
b_{2} & =\max _{\{B: i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}} \tag{36}
\end{align*}
$$

2. If $b \geq 0$ and $\min _{\{B: i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}} \geq 0$, the solutions of (34) are given by

$$
\begin{array}{lll}
b_{1} & =\max _{\{B: i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}} \quad \text { s.t. } & \frac{\sum_{k \in B} c_{k}}{c_{i}} \leq b \\
b_{2} & =\min _{\{B: i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}} \quad \text { s.t. } & \frac{\sum_{k \in B} c_{k}}{c_{i}} \geq b \tag{37}
\end{array}
$$

3. If $b<0$ and $b<\left\{\max _{\{B: i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}}\right.$, s.t. $\left.\frac{\sum_{k \in B} c_{k}}{c_{i}}<0\right\}$, the solutions of (34) are given by

$$
\begin{align*}
b_{1} & =\max _{\{B: i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}}, \quad \text { s.t. } \frac{\sum_{k \in B} c_{k}}{c_{i}}<0 \\
b_{2} & =\min _{\{B: i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}} \tag{38}
\end{align*}
$$

4. If $b<0$ and $b \geq\left\{\max _{\{B: i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}}\right.$, s.t. $\left.\frac{\sum_{k \in B} c_{k}}{c_{i}}<0\right\}$, the solutions of (34) are given by

$$
\begin{align*}
b_{1} & =\max _{\{B: i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}} \\
b_{2} & =\max _{\{B: i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}} \text { s.t. } \quad \frac{\sum_{k \in B} c_{k}}{c_{i}} \leq b . \tag{39}
\end{align*}
$$

4. Proof of Lemma 2.

Lemma. When $\boldsymbol{c} \in \mathbb{R}_{+}^{N}$, the lower bound $\ell_{N E W-I}(\boldsymbol{c})$ can be computed in pseudopolynomial time, and can be arbitrarily closely approximated by an algorithm running in polynomial time.

Proof. The problems in (25) to (28) are exactly the $0 / 1$ knapsack problem with mass equals to value (see [3], the corresponding decision problem is also called subset sum problem). Unfortunately, the $0 / 1$ knapsack problem is NP-hard in general.

However, if $\boldsymbol{c} \in \mathbb{R}_{+}^{N}$, i.e, the case (26), there exists a dynamic programming solution which runs in pseudo-polynomial time, i.e., polynomial in N, but exponential in the number of bits required to represent $\frac{\sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right)}{c_{i} P\left(A_{i}\right)}$ (see [3]). Furthermore, there is a fully polynomial-time approximation scheme (FPTAS), which finds a solution that is correct within a factor of $(1-\epsilon)$ of the optimal solution (see [3]). The running time is bounded by a polynomial and $1 / \epsilon$ where ϵ is a bound on the correctness of the solution.

Therefore, if $\boldsymbol{c} \in \mathbb{R}_{+}^{N}$, one can get a lower bound for $\ell_{i}(\boldsymbol{c})$ in polynomial time which can be arbitrarily close to $\ell_{i}(\boldsymbol{c})$ by setting ϵ small enough, i.e.,

$$
\begin{equation*}
\ell_{i}(\boldsymbol{c}) \geq \ell_{i}^{L}(\boldsymbol{c}, \epsilon), \quad \lim _{\epsilon \rightarrow 0^{+}} \ell_{i}^{L}(\boldsymbol{c}, \epsilon)=\ell_{i}(\boldsymbol{c}) \tag{40}
\end{equation*}
$$

The details are as follows. First, assume \hat{B}_{1} and \hat{B}_{2} are obtained by the FPTAS which satisfy

$$
\begin{equation*}
(1-\epsilon) \sum_{k \in B_{1}^{(i)}} c_{k} \leq \sum_{k \in \hat{B}_{1}^{(i)}} c_{k} \leq \sum_{k \in B_{1}^{(i)}} c_{k}, \quad \sum_{k \in B_{2}^{(i)}} c_{k} \leq \sum_{k \in \hat{B}_{2}^{(i)}} c_{k} \leq(1+\epsilon) \sum_{k \in B_{2}^{(i)}} c_{k} \tag{41}
\end{equation*}
$$

Then we have

$$
\begin{align*}
& \sum_{k \in B_{1}^{(i)}} c_{k} \leq \min \left\{\frac{\sum_{k \in \hat{B}_{1}^{(i)}} c_{k}}{1-\epsilon}, \frac{\sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right)}{P\left(A_{i}\right)}\right\}=: b_{1}^{(i)}, \tag{42}\\
& \sum_{k \in B_{2}^{(i)}} c_{k} \geq \max \left\{\frac{\left.\sum_{k \in B_{2}^{(i)} c_{k}}^{1+\epsilon}, \frac{\sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right)}{P\left(A_{i}\right)}\right\}=: b_{2}^{(i)} .}{} .\right.
\end{align*}
$$

Then one can get the arbitrarily close lower bound for $\ell_{i}(\boldsymbol{c})$ as

$$
\begin{equation*}
\ell_{i}(\boldsymbol{c}) \geq \ell_{i}^{L}(\boldsymbol{c}, \epsilon):=P\left(A_{i}\right)\left(\frac{c_{i}}{b_{1}^{(i)}}+\frac{c_{i}}{b_{2}^{(i)}}-\frac{c_{i} \sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right)}{P\left(A_{i}\right) b_{1}^{(i)} b_{2}^{(i)}}\right) \tag{43}
\end{equation*}
$$

Therefore, we can get a lower bound for $P\left(\bigcup_{i=1}^{N} A_{i}\right)$ that is arbitrarily close to
$\ell_{\text {NEW-I }}(\boldsymbol{c})$ in polynomial time: $P\left(\bigcup_{i=1}^{N} A_{i}\right) \geq \sum_{i} \ell_{i}(\boldsymbol{c}) \geq \sum_{i} \ell_{i}^{L}(\boldsymbol{c}, \epsilon)$.

5. Proof of Corollary 1.

Corollary. (New class of upper bounds $\hbar_{N E W-I}(\boldsymbol{c})$): We can derive an upper bound for any given $\boldsymbol{c} \in \mathbb{R}_{+}^{N}$ by

$$
\begin{align*}
P\left(\bigcup_{i} A_{i}\right) \leq & \left(\frac{1}{\min _{k} c_{k}}+\frac{1}{\sum_{k} c_{k}}\right) \sum_{i} c_{i} P\left(A_{i}\right) \tag{44}\\
& -\frac{1}{\left(\min _{k} c_{k}\right) \sum_{k} c_{k}} \sum_{i} \sum_{k} c_{i} c_{k} P\left(A_{i} \cap A_{k}\right)=: \hbar_{N E W-I}(\boldsymbol{c})
\end{align*}
$$

Proof. We get the upper bound by maximizing, instead of minimizing, the objective function of (29). More specifically, for any given $\boldsymbol{c} \in \mathbb{R}^{+}$, a upper bound can be obtained by

$$
\begin{equation*}
\hbar(\boldsymbol{c})=\sum_{i=1}^{N} \hbar_{i}(\boldsymbol{c}) \tag{45}
\end{equation*}
$$

where $\hbar_{i}(\boldsymbol{c})$ is defined by

$$
\begin{align*}
& \hbar_{i}(\boldsymbol{c}):= \max _{\left\{p_{B}: i \in B\right\}} \sum_{B: i \in B} \frac{c_{i} p_{B}}{\sum_{k \in B} c_{k}} \text { s.t. } \\
& \sum_{B: i \in B} p_{B}=P\left(A_{i}\right), \\
& \sum_{B: i \in B}\left(\frac{\sum_{k \in B} c_{k}}{c_{i}}\right) p_{B}=\frac{1}{c_{i}} \sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right), \tag{46}\\
& p_{B} \geq 0, \text { for all } B \in \mathscr{B} \text { such that } i \in B .
\end{align*}
$$

The resulting upper bound is given by

$$
\begin{align*}
P\left(\bigcup_{i} A_{i}\right) \leq & \sum_{i}\left\{P (A _ { i }) \left[\frac{c_{i}}{\min _{k} c_{k}}+\frac{c_{i}}{\sum_{k} c_{k}}\right.\right. \\
& \left.\left.-\frac{c_{i}^{2}}{\left(\min _{k} c_{k}\right) \sum_{k} c_{k}} \frac{\sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right)}{c_{i} P\left(A_{i}\right)}\right]\right\} \\
= & \left(\frac{1}{\min _{k} c_{k}}+\frac{1}{\sum_{k} c_{k}}\right) \sum_{i} c_{i} P\left(A_{i}\right) \\
& -\frac{1}{\left(\min _{k} c_{k}\right) \sum_{k} c_{k}} \sum_{i} \sum_{k} c_{i} c_{k} P\left(A_{i} \cap A_{k}\right) . \tag{47}
\end{align*}
$$

6. Proof of Theorem 2.

Theorem. Defining $\mathscr{B}^{-}=\mathscr{B} \backslash\{1, \ldots, N\}, \tilde{\gamma}_{i}:=\sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right)$, $\tilde{\alpha}_{i}:=P\left(A_{i}\right)$ and

$$
\begin{equation*}
\tilde{\delta}:=\max _{i}\left[\frac{\tilde{\gamma}_{i}-\left(\sum_{k} c_{k}-\min _{k} c_{k}\right) \tilde{\alpha}_{i}}{\min _{k} c_{k}}\right]^{+}, \tag{48}
\end{equation*}
$$

where $\boldsymbol{c} \in \mathbb{R}_{+}^{N}$, another class of lower bounds is given by

$$
\begin{equation*}
P\left(\bigcup_{i=1}^{N} A_{i}\right) \geq \tilde{\delta}+\sum_{i=1}^{N} \ell_{i}^{\prime}(\boldsymbol{c}, \tilde{\delta})=: \ell_{N E W-I I}(\boldsymbol{c}) \tag{49}
\end{equation*}
$$

where
$\ell_{i}^{\prime}(\boldsymbol{c}, x)=\left[P\left(A_{i}\right)-x\right]$.

$$
\begin{equation*}
\left(\frac{c_{i}}{\sum_{k \in B_{1}^{(i)}} c_{k}}+\frac{c_{i}}{\sum_{k \in B_{2}^{(i)}} c_{k}}-\frac{c_{i} \sum_{k} c_{k}\left[P\left(A_{i} \cap A_{k}\right)-x\right]}{\left[P\left(A_{i}\right)-x\right]\left(\sum_{k \in B_{1}^{(i)}} c_{k}\right)\left(\sum_{k \in B_{2}^{(i)}} c_{k}\right)}\right) \tag{50}
\end{equation*}
$$

and

$$
\begin{align*}
& B_{1}^{(i)}=\arg \max _{\{B \in \mathscr{B}-: i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}} \text { s.t. } \frac{\sum_{k \in B} c_{k}}{c_{i}} \leq \frac{\sum_{k} c_{k}\left[P\left(A_{i} \cap A_{k}\right)-x\right]}{c_{i}\left[P\left(A_{i}\right)-x\right]}, \\
& B_{2}^{(i)}=\arg \min _{\left\{B \in \mathscr{B}^{-}: i \in B\right\}} \frac{\sum_{k \in B} c_{k}}{c_{i}} \text { s.t. } \frac{\sum_{k \in B} c_{k}}{c_{i}} \geq \frac{\sum_{k} c_{k}\left[P\left(A_{i} \cap A_{k}\right)-x\right]}{c_{i}\left[P\left(A_{i}\right)-x\right]} . \tag{51}
\end{align*}
$$

Proof. Let $x=p_{\{1,2, \ldots, N\}}$ and consider $\sum_{i} \ell_{i}^{\prime}(\boldsymbol{c}, x)+x$ as a new lower bound where where $\ell_{i}^{\prime}(\boldsymbol{c}, x)$ equals to the objective value of the problem

$$
\begin{align*}
& \min _{\left\{p_{B}: i \in B, B \in \mathscr{B}^{-}\right\}} \sum_{B: i \in B, B \in \mathscr{B}^{-}} \frac{c_{i} p_{B}}{\sum_{k \in B} c_{k}} \\
& \text { s.t. } \quad \sum_{B: i \in B, B \in \mathscr{B}^{-}} p_{B}=P\left(A_{i}\right)-x, \tag{52}\\
& \quad \sum_{B: i \in B, B \in \mathscr{B}^{-}}\left(\frac{\sum_{k \in B} c_{k}}{c_{i}}\right) p_{B}=\frac{1}{c_{i}} \sum_{k} c_{k}\left[P\left(A_{i} \cap A_{k}\right)-x\right], \\
& \quad p_{B} \geq 0, \quad \text { for all } B \in \mathscr{B}^{-} \quad \text { such that } \quad i \in B .
\end{align*}
$$

The solution of (52) exists if and only if $\min _{k} c_{k} \leq \frac{\tilde{\gamma}_{i}-\left(\sum_{k} c_{k}\right) x}{\tilde{\alpha_{i}-x}} \leq \sum_{k} c_{k}-\min _{k} c_{k}$, which gives $\max _{i}\left[\frac{\tilde{\gamma}_{i}-\left(\sum_{k} c_{k}-\min _{k} c_{k}\right) \tilde{\alpha}_{i}}{\min _{k} c_{k}}\right]^{+} \leq x \leq \min _{i}\left[\frac{\tilde{\gamma}_{i}-\left(\min _{k} c_{k}\right) \tilde{\alpha}_{i}}{\sum_{k} c_{k}-\min _{k} c_{k}}\right]$. Therefore, the new lower bound can be written as

$$
\begin{equation*}
\min _{x}\left[x+\sum_{i=1}^{N} \ell_{i}^{\prime}(\boldsymbol{c}, x)\right] \text { s.t. }\left[\frac{\tilde{\gamma}_{i}-\left(\sum_{k} c_{k}-\min _{k} c_{k}\right) \tilde{\alpha}_{i}}{\min _{k} c_{k}}\right]^{+} \leq x \leq \frac{\tilde{\gamma}_{i}-\left(\min _{k} c_{k}\right) \tilde{\alpha}_{i}}{\sum_{k} c_{k}-\min _{k} c_{k}}, \forall i \tag{53}
\end{equation*}
$$

Next, we can prove that the objective function of (53) is non-decreasing with x. First, we prove $\ell_{i}^{\prime}(\boldsymbol{c}, x)$ is continuous when $\exists B^{\prime} \in \mathscr{B}^{-}$such that $\frac{\sum_{k} c_{k}\left[P\left(A_{i} \cap A_{k}\right)-x\right]}{c_{i}\left[P\left(A_{i}\right)-x\right]}=$ $\frac{\sum_{k \in B^{\prime}} c_{k}}{c_{i}}$. This can be proved by $\lim _{h \rightarrow 0^{+}} \ell_{i}^{\prime}(\boldsymbol{c}, x+h)=\lim _{h \rightarrow 0^{+}} \ell_{i}^{\prime}(\boldsymbol{c}, x-h)=$ $\frac{c_{i}}{\sum_{k \in B^{\prime}} c_{k}}$. Then one can prove that when $\frac{\sum_{k \in B_{2}^{(i)}} c_{k}}{c_{i}}<\frac{\sum_{k} c_{k}\left[P\left(A_{i} \cap A_{k}\right)-x\right]}{c_{i}\left[P\left(A_{i}\right)-x\right]}<\frac{\sum_{k \in B_{1}(i)} c_{k}}{c_{i}}$, the partial derivative of $\ell_{i}^{\prime}(\boldsymbol{c}, x)+\frac{c_{i}}{\sum_{k} c_{k}} x$ w.r.t. x is non-negative:

$$
\begin{align*}
& \frac{\partial\left(\ell_{i}^{\prime}(\boldsymbol{c}, x)+\frac{c_{i}}{\sum_{k} c_{k}} x\right)}{\partial x}=\frac{c_{i}}{\sum_{k} c_{k}}-\frac{c_{i}}{\sum_{k \in B_{1}^{(i)}} c_{k}}-\frac{c_{i}}{\sum_{k \in B_{2}^{(i)}} c_{k}} \\
&+\frac{c_{i} \sum_{k} c_{k}}{\left(\sum_{k \in B_{1}^{(i)}} c_{k}\right)\left(\sum_{k \in B_{2}^{(i)}} c_{k}\right)} \\
&=\frac{c_{i}\left(\sum_{k} c_{k}-\sum_{k \in B_{1}^{(i)}} c_{k}\right)\left(\sum_{k} c_{k}-\sum_{k \in B_{2}^{(i)}} c_{k}\right)}{\left(\sum_{k} c_{k}\right)\left(\sum_{k \in B_{1}^{(i)}} c_{k}\right)\left(\sum_{k \in B_{2}^{(i)}} c_{k}\right)} \tag{54}\\
&=\frac{c_{i}\left(\sum_{\left.k \notin B_{1}^{(i)} c_{k}\right)\left(\sum_{k \notin B_{2}^{(i)}} c_{k}\right)}^{\left(\sum_{k} c_{k}\right)\left(\sum_{k \in B_{1}^{(i)}} c_{k}\right)\left(\sum_{k \in B_{2}^{(i)}} c_{k}\right)} \geq 0 .\right.}{} .
\end{align*}
$$

Therefore, the objective function of (53), $\sum_{i} \ell_{i}^{\prime}(\boldsymbol{c}, x)+x=\sum_{i}\left(\ell_{i}^{\prime}(\boldsymbol{c}, x)+\frac{c_{i}}{\sum_{k} c_{k}} x\right)$, is non-decreasing with x.

Finally, defining $\tilde{\delta}$ as in (48), the new lower bound can be written as $P\left(\bigcup_{i=1}^{N} A_{i}\right) \geq$ $\tilde{\delta}+\sum_{i=1}^{N} \ell_{i}^{\prime}(\boldsymbol{c}, \tilde{\delta})$, where $\ell_{i}^{\prime}(\boldsymbol{c}, \tilde{\delta})$ can be obtained using the solution for $\ell_{i}(\boldsymbol{c})$ with $b=\frac{\sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right)}{c_{i} P\left(A_{i}\right)}$ replaced by $\tilde{b}=\frac{\sum_{k} c_{k}\left[P\left(A_{i} \cap A_{k}\right)-\tilde{\delta}\right]}{c_{i}\left[P\left(A_{i}\right)-\tilde{\delta}\right]}$.

7. Proof of Corollary 2.

Corollary. (Improved class of upper bounds $\left.\hbar_{N E W-I I}(\boldsymbol{c})\right)$: We can improve the upper bound $\hbar_{N E W-I}(\boldsymbol{c})$ in (44) by

$$
\begin{align*}
P\left(\bigcup_{i} A_{i}\right) & \leq \min _{i}\left\{\frac{\sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right)-\left(\min _{k} c_{k}\right) P\left(A_{i}\right)}{\sum_{k} c_{k}-\min _{k} c_{k}}\right\} \\
& +\left(\frac{1}{\min _{k} c_{k}}+\frac{1}{\sum_{k} c_{k}-\min _{k} c_{k}}\right) \sum_{i} c_{i} P\left(A_{i}\right) \tag{55}\\
& -\frac{1}{\left(\min _{k} c_{k}\right)\left(\sum_{k} c_{k}-\min _{k} c_{k}\right)} \sum_{i} \sum_{k} c_{i} c_{k} P\left(A_{i} \cap A_{k}\right), \\
& =: \hbar_{N E W-I I}(\boldsymbol{c}) .
\end{align*}
$$

Note that the upper bound $\hbar_{N E W-I I}(\boldsymbol{c})$ in (55) is always sharper than $\hbar_{N E W-I}$ in (44).

Proof. Letting $x=p_{\{1, \ldots, N\}}$. Defining $\mathscr{B}^{-}=\mathscr{B} \backslash\{1, \ldots, N\}$, then

$$
\begin{equation*}
\hbar^{\prime}(\boldsymbol{c})=\max _{x}\left[x+\sum_{i=1}^{N} \hbar_{i}^{\prime}(\boldsymbol{c}, x)\right] \tag{56}
\end{equation*}
$$

where $\hbar_{i}^{\prime}(\boldsymbol{c}, x)$ is defined by

$$
\begin{align*}
\hbar_{i}^{\prime}(\boldsymbol{c}, x):= & \max _{\left\{p_{B}: i \in B, B \in \mathscr{B}^{-}\right.} \\
\text {s.t. } & \sum_{B: i \in B, B \in \mathscr{B}^{-}} \frac{c_{i} p_{B}}{\sum_{k \in B} c_{k}} \\
& \sum_{B: i \in B, B \in \mathscr{B}^{-}} p_{B}=P\left(A_{i}\right)-x, \\
& \sum_{B: i \in B, B \in \mathscr{B}^{-}}\left(\frac{\sum_{k \in B} c_{k}}{c_{i}}\right) p_{B}=\frac{1}{c_{i}} \sum_{k} c_{k}\left[P\left(A_{i} \cap A_{k}\right)-x\right], \tag{57}\\
& p_{B} \geq 0, \quad \text { for all } B \in \mathscr{B}^{-} \quad \text { such that } \quad i \in B .
\end{align*}
$$

The solution of $\hbar_{i}^{\prime}(\boldsymbol{c}, x)$ is independent with x :

$$
\begin{align*}
\hbar_{i}^{\prime}(\boldsymbol{c}, x)= & \left(P\left(A_{i}\right)-x\right)\left(\frac{c_{i}}{\min _{k} c_{k}}+\frac{c_{i}}{\sum_{k} c_{k}-\min _{k} c_{k}}\right) \\
& -\frac{c_{i}}{\left(\min _{k} c_{k}\right)\left(\sum_{k} c_{k}-\min _{k} c_{k}\right)} \sum_{k} c_{k}\left(P\left(A_{i} \cap A_{k}\right)-x\right) \tag{58}\\
= & P\left(A_{i}\right)\left(\frac{c_{i}}{\min _{k} c_{k}}+\frac{c_{i}}{\sum_{k} c_{k}-\min _{k} c_{k}}\right) \\
& -\frac{c_{i}}{\left(\min _{k} c_{k}\right)\left(\sum_{k} c_{k}-\min _{k} c_{k}\right)} \sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right)
\end{align*}
$$

and the solution exists if and only if for all i

$$
\begin{equation*}
\min _{k} c_{k} \leq \frac{\sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right)-\left(\sum_{k} c_{k}\right) x}{P\left(A_{i}\right)-x} \leq \sum_{k} c_{k}-\min _{k} c_{k} \tag{59}
\end{equation*}
$$

Thus, we get

$$
\begin{align*}
& \left\{\max _{i} \frac{\sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right)-\left(\sum_{k} c_{k}-\min _{k} c_{k}\right) P\left(A_{i}\right)}{\min _{k} c_{k}}\right\}^{+} \tag{60}\\
& \leq x \leq \min _{i} \frac{\sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right)-\left(\min _{k} c_{k}\right) P\left(A_{i}\right)}{\sum_{k} c_{k}-\min _{k} c_{k}}
\end{align*}
$$

Therefore, we get the upper bound

$$
\begin{align*}
P\left(\bigcup_{i} A_{i}\right) & \leq \min _{i}\left\{\frac{\sum_{k} c_{k} P\left(A_{i} \cap A_{k}\right)-\left(\min _{k} c_{k}\right) P\left(A_{i}\right)}{\sum_{k} c_{k}-\min _{k} c_{k}}\right\} \\
& +\left(\frac{1}{\min _{k} c_{k}}+\frac{1}{\sum_{k} c_{k}-\min _{k} c_{k}}\right) \sum_{i} c_{i} P\left(A_{i}\right) \tag{61}\\
& -\frac{1}{\left(\min _{k} c_{k}\right)\left(\sum_{k} c_{k}-\min _{k} c_{k}\right)} \sum_{i} \sum_{k} c_{i} c_{k} P\left(A_{i} \cap A_{k}\right)
\end{align*}
$$

REFERENCES

[1] A. Cohen and N. Merhav, Lower bounds on the error probability of block codes based on improvements on de Caen's inequality, IEEE Transactions on Information Theory, 50 (2004), 290-310.
[2] C. Feng, L. Li and J. Shen, Some inequalities in functional analysis, combinatorics, and probability theory, The Electronic Journal of Combinatorics, 17 (2010), 1.
[3] V. V. Vazirani, Approximation Algorithms, Springer-Verlag New York, Inc., New York, NY, USA, 2001.
[4] J. Yang, F. Alajaji and G. Takahara, Lower bounds on the probability of a finite union of events, URL http://arxiv.org/abs/1401.5543, Submitted, 2014.
[5] J. Yang, F. Alajaji and G. Takahara, New bounds on the probability of a finite union of events, in 2014 IEEE International Symposium on Information Theory (ISIT), 2014, 1271-1275.

E-mail address: jun@utstat.toronto.edu
E-mail address: fady@mast.queensu.ca
E-mail address: takahara@mast.queensu.ca

