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Abstract

Lower bounds on the finite union probability are established in terms of the

individual event probabilities and a weighted sum of the pairwise event prob-

abilities. The lower bounds have at most pseudo-polynomial computational

complexity and generalize recent analytical bounds.

Keywords: Probability of a finite union of events, lower and upper bounds,
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1. Introduction

Lower and upper bounds on the union probability P
(⋃N

i=1Ai

)
in terms of

the individual event probabilities P (Ai)’s and the pairwise event probabilities

P (Ai∩Aj)’s have been actively investigated in the recent past. Optimal bounds

can be obtained numerically by solving linear programming (LP) problems with

2N variables (for instance, see [1, 2]). Since the number of variables is expo-

nential in the number of events, N , some suboptimal but numerically efficient

bounds have been proposed, such as the algorithmic Bonferroni-type bounds in

[3, 4].

Among the established analytical bounds is the Kuai-Alajaji-Takahara lower

bound (for convenience, hereafter referred to as the KAT bound) [5] that was
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shown to be better than the Dawson-Sankoff (DS) [6] and the D. de Caen (DC)

bounds [7]. Noting that the KAT bound is expressed in terms of {P (Ai)} and

only the sums of the pairwise event probabilities, i.e., {
∑
j:j 6=i P (Ai ∩ Aj)},

in order to fully exploit all pairwise event probabilities, it is observed in [8,

9, 10] that the analytical bounds can be further improved algorithmically by

optimizing over subsets. Furthermore, in [1], the KAT bound is extended by

using additional partial information such as the sums of joint probabilities of

three events, i.e., {
∑
j,l P (Ai ∩ Aj ∩ Al), i = 1, . . . , N}. Recently, using the

same partial information as the KAT bound, i.e., {P (Ai)} and {
∑
j:j 6=i P (Ai ∩

Aj)}, the optimal lower/upper bound as well as a new analytical bound which

is sharper than the KAT bound were developed by Yang-Alajaji-Takahara in

[11, 12] (these two bounds are respectively referred to as the YAT-I and YAT-II

bounds).

In this work, we extend the existing analytical lower bounds, the KAT and

YAT-II bounds, and establish two new classes of lower bounds on P
(⋃N

i=1Ai

)
using {P (Ai)} and {

∑
j cjP (Ai ∩ Aj)} for a given weight or parameter vector

c = (c1, . . . , cN )
T

. These lower bounds are shown to have at most pseudo-

polynomial computational complexity and to be sharper in certain cases than

the Gallot-Kounias (GK) [13, 14] and Prékopa-Gao (PG) bounds [1] even though

the latter bounds employ more information on the events joint probabilities.

More specifically, we first propose a novel expression for the union proba-

bility given a weight vector c. Using the Cauchy-Schwarz inequality, several

existing bounds, such as the bound in [15], and the DC and GK bounds, can be

directly derived from this new expression. Next, we derive two new classes of

lower bounds as functions of the weight vector c by solving linear programming

problems. The KAT and YAT-II analytical bounds are shown to be special cases

of the new classes of lower bounds. Furthermore, it is noted that the proposed

lower bounds can be sharper than the GK bound under some conditions.

We emphasize that our bounds can be applied to any general estimation

problem involving the probability of a finite union of events. In particular,

they can be applied to effectively estimate and analyze the error performance
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of communication systems (e.g., see [12, 3, 8, 15, 16, 17]). Such bounds are

also pertinently useful in the analysis of asymptotic problems such as the Borel-

Cantelli Lemma and its generalization [18, 19, 20, 21]. Finally, we note that

the proposed bounds provide useful tools for chance-constrained stochastic pro-

grams (e.g., see [22, 23]) in operations research. More specifically, using par-

tial information of uncertainty, the proposed bounds on the union probability

can be applied to formulate tractable conservative approximations of chance-

constrained stochastic problems, which can be solved efficiently and produce

feasible solutions for the original problems (see, for instance, [24, 25, 26]). An

example of such application is the work in [27] on the probabilistic set covering

problem with correlations, where the KAT bound is used for the case where

only partial information on the correlation is available.

The outline of this letter is as follows. In Section 2, we propose a new

expression of the union probability using weight vector c such that many existing

bounds can be directly derived from this expression. In Section 3, we develop two

new classes of lower bounds as functions of the weight vector c and discuss their

connection with existing bounds, including the KAT, YAT-II and GK bounds.

As by-products of the new lower bounds, two new classes of upper bounds are

also obtained. Finally, in Section 4, we compare via numerical examples existing

lower bounds with the proposed bounds under different choices of weight vectors.

2. A New Expression of the Union Probability

For simplicity, and without loss of generality, we assume that the events

{A1, . . . , AN} are in a finite probability space (Ω,F , P ), where N is a fixed posi-

tive integer. Let B denote the collection of all non-empty subsets of {1, 2, . . . , N}.

Given B ∈ B, we let ωB denote the atom in ∪Ni=1Ai such that for all i =

1, . . . , N , ωB ∈ Ai if i ∈ B and ωB /∈ Ai if i /∈ B (note that some of these

“atoms” may be the empty set). For ease of notation, for a singleton ω ∈ Ω, we

denote P ({ω}) by p(ω) and P (ωB) by pB . Since {ωB : i ∈ B} is the collection

of all the atoms in Ai, we have P (Ai) =
∑
ω∈Ai

p(ω) =
∑
B∈B:i∈B pB , and
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P

(
N⋃
i=1

Ai

)
=
∑
B∈B

pB . (1)

Suppose there are N functions fi(B), i = 1, . . . , N such that
∑N
i=1 fi(B) = 1

for any B ∈ B. If we further assume that fi(B) = 0 if i /∈ B, we can write

P

(
N⋃
i=1

Ai

)
=
∑
B∈B

(
N∑
i=1

fi(B)

)
pB =

N∑
i=1

∑
B∈B:i∈B

fi(B)pB . (2)

Note that if we define the degree of a subset A ⊂ Ω, deg(A), to be the number

of Ai’s that contain A, then by the definition of ωB , we have deg(ωB) = |B|.

Therefore,

fi(B) =

 1
|B| = 1

deg(ωB) if i ∈ B

0 if i /∈ B
(3)

satisfies
∑N
i=1 fi(B) = 1 and (2) becomes

P

(
N⋃
i=1

Ai

)
=

N∑
i=1

∑
B∈B:i∈B

pB
deg(ωB)

=

N∑
i=1

∑
ω∈Ai

p(ω)

deg(ω)
. (4)

Note that many of the existing bounds, such as the DC bound, the KAT bound

and the recent bounds in [11] and [12], are based on (4).

In the following lemma, we propose a generalized expression of (4).

Lemma 1. Suppose {ωB , B ∈ B} are all the 2N − 1 atoms in
⋃
iAi. If c =

(c1, . . . , cN )T ∈ RN satisfies

∑
k∈B

ck 6= 0, for all B ∈ B (5)

then we have

P

(
N⋃
i=1

Ai

)
=

N∑
i=1

∑
B∈B:i∈B

cipB∑
k∈B ck

=

N∑
i=1

∑
ω∈Ai

cip(ω)∑
{k:ω∈Ak} ck

. (6)
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Proof. If we define

fi(B) =


ci∑

k∈B ck
if i ∈ B

0 if i /∈ B

where the parameter vector c = (c1, c2, . . . , cN )T satisfies
∑
k∈B ck 6= 0 for all

B ∈ B (therefore ci 6= 0, i = 1, . . . , N), then
∑
i fi(ω) = 1 holds and we can get

(6) from (2).

Note that (6) holds for any c that satisfies (5) and is clearly a generalized

expression of (4).

Remark 1. Both the Cohen-Merhav [15] and Gallot-Kounias [13] bounds can

be derived from this new expression of the union probability in Lemma 1 using

the Cauchy-Schwarz inequality. We refer to [28, Sections 1 and 2] for further

details.

3. New Bounds using {P (Ai)} and {
∑

j cjP (Ai ∩ Aj)}

Due to space limitations, we only present the results when c ∈ RN+ . Results

regarding more general c are available in the accompanying supplementary ma-

terial [28, Section 3].

3.1. New Class of Lower Bounds when c ∈ RN+ satisfies (5)

Theorem 1. For any given c ∈ RN+ that satisfies (5), a new lower bound on

the union probability is given by

P

(
N⋃
i=1

Ai

)
≥

N∑
i=1

`i(c) =: `NEW-I(c), (7)

where

`i(c) = P (Ai)

(
ci∑

k∈B(i)
1
ck

+
ci∑

k∈B(i)
2
ck
−

ci
∑
k ckP (Ai ∩Ak)

P (Ai)
(∑

k∈B(i)
1
ck

)(∑
k∈B(i)

2
ck

)
 ,

(8)
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where B
(i)
1 and B

(i)
2 are subsets of {1, . . . , N} that satisfy

B
(i)
1 = arg max

{B:i∈B}

∑
k∈B ck

ci
s.t.

∑
k∈B ck

ci
≤
∑
k ckP (Ai ∩Ak)

ciP (Ai)
,

B
(i)
2 = arg min

{B:i∈B}

∑
k∈B ck

ci
s.t.

∑
k∈B ck

ci
≥
∑
k ckP (Ai ∩Ak)

ciP (Ai)
.

(9)

Proof. The proof is given in [28, Section 3].

Remark 2 (The new bound `NEW-I(c) v.s. the GK bound `GK). For any

c ∈ RN+ , we have these relations between different lower bounds:

`NEW-I(c) ≥
N∑
i=1

c2iP (Ai)
2

ci
∑
k ckP (Ai ∩Ak)

≥
[
∑
i ciP (Ai)]

2∑
i

∑
k cickP (Ai ∩Ak)

≥
[
∑
i ciP (Ai)]

2∑
i

∑
j c

2
iP (Ai ∩Aj)

. (10)

Therefore, if the optimal weight vector obtained by the GK bound (see see [28,

Eq. (21)] and [29]), denoted by c̃, satisfies c̃ ∈ RN+ , then `NEW-I(c̃) ≥ `GK.

Remark 3 (The new bound `NEW-I(c) v.s. the KAT bound `KAT). One

can easily verify that `NEW-I(κ1) = `KAT, where 1 is the all-one vector of size

N and κ is any non-zero constant.

Lemma 2. When c ∈ RN+ , the lower bound `NEW-I(c) can be computed in

pseudo-polynomial time, and can be arbitrarily closely approximated by an algo-

rithm running in polynomial time.

Proof. See [28, Section 4].

Corollary 1. (New class of upper bounds ~NEW-I(c)): We can derive an upper

bound for any given c ∈ RN+ by

P

(⋃
i

Ai

)
≤
(

1

mink ck
+

1∑
k ck

)∑
i

ciP (Ai)

− 1

(mink ck)
∑
k ck

∑
i

∑
k

cickP (Ai ∩Ak) =: ~NEW-I(c).

(11)
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The proof is given in [28, Section 5]. According to the results from randomly

generated c, it is conjectured the optimal upper bound in this class is achieved

at c = κ1 where κ is any non-zero constant.

3.2. New Class of Lower Bounds when c ∈ RN+

We only consider c ∈ RN+ in this subsection. A new class of lower bounds,

`NEW-II, is given in the following theorem.

Theorem 2. Defining B− = B \ {1, . . . , N}, γ̃i :=
∑
k ckP (Ai ∩ Ak), α̃i :=

P (Ai) and

δ̃ := max
i

[
γ̃i − (

∑
k ck −mink ck) α̃i
mink ck

]+
, (12)

where c ∈ RN+ , another class of lower bounds is given by

P

(
N⋃
i=1

Ai

)
≥ δ̃ +

N∑
i=1

`′i(c, δ̃) =: `NEW-II(c), (13)

where

`′i(c, x) = [P (Ai)− x] · ci∑
k∈B(i)

1
ck

+
ci∑

k∈B(i)
2
ck
−

ci
∑
k ck [P (Ai ∩Ak)− x]

[P (Ai)− x]
(∑

k∈B(i)
1
ck

)(∑
k∈B(i)

2
ck

)
 ,

(14)

and

B
(i)
1 = arg max

{B∈B−:i∈B}

∑
k∈B ck

ci
s.t.

∑
k∈B ck

ci
≤
∑
k ck [P (Ai ∩Ak)− x]

ci [P (Ai)− x]
,

B
(i)
2 = arg min

{B∈B−:i∈B}

∑
k∈B ck

ci
s.t.

∑
k∈B ck

ci
≥
∑
k ck [P (Ai ∩Ak)− x]

ci [P (Ai)− x]
.

(15)
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Proof. Let x = p{1,2,...,N} and consider
∑
i `
′
i(c, x) + x as a new lower bound

where where `′i(c, x) equals to the objective value of the problem

min
{pB :i∈B,B∈B−}

∑
B:i∈B,B∈B−

cipB∑
k∈B ck

s.t.
∑

B:i∈B,B∈B−

pB = P (Ai)− x,

∑
B:i∈B,B∈B−

(∑
k∈B ck

ci

)
pB =

1

ci

∑
k

ck [P (Ai ∩Ak)− x] ,

pB ≥ 0, for all B ∈ B− such that i ∈ B.

(16)

The solution of (16) exists if and only if

min
k
ck ≤

γ̃i − (
∑
k ck)x

α̃i − x
≤
∑
k

ck −min
k
ck. (17)

Therefore, the new lower bound can be written as

min
x

[
x+

N∑
i=1

`′i(c, x)

]

s.t.

[
γ̃i − (

∑
k ck −mink ck) α̃i
mink ck

]+
≤ x ≤ γ̃i − (mink ck)α̃i∑

k ck −mink ck
,∀i.

(18)

We can prove that the objective function of (18) is non-decreasing with x.

Therefore, defining δ̃ as in (12), the new lower bound can be written as (13)

where `′i(c, δ̃) can be obtained by solving (16), which is given in (14). We refer

to [28, Section 6] for more details for the proof.
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Remark 4 (`NEW-II(c) v.s. `NEW-I(c)). If c ∈ RN+ , `NEW-I(c) is the solu-

tion of a relaxed problem to the problem for obtaining `NEW-II(c); thus

`NEW-II(c) ≥ `NEW-I(c).

Also, since c ∈ RN+ , the solution of (15) can be computed in pseudo-polynomial

time and has a polynomial-time approximation algorithm.

Remark 5 (The new bound `NEW-II(c) v.s. the YAT-II bound `YAT-II).

One can easily verify that `NEW-II(κ1) = `YAT-II, where 1 is the all-one vector

of size N and κ is any non-zero constant.

Corollary 2. (Improved class of upper bounds ~NEW-II(c)): We can improve

the upper bound ~NEW-I(c) in (11) by

P

(⋃
i

Ai

)
≤ min

i

{∑
k ckP (Ai ∩Ak)− (mink ck)P (Ai)∑

k ck −mink ck

}
+

(
1

mink ck
+

1∑
k ck −mink ck

)∑
i

ciP (Ai)

− 1

(mink ck)(
∑
k ck −mink ck)

∑
i

∑
k

cickP (Ai ∩Ak) =: ~NEW-II(c).

(19)

Note that the upper bound ~NEW-II(c) in (19) is always sharper than ~NEW-I in

(11). The proof is given in [28, Section 7]. According to numerical examples

using randomly generated c, it is conjectured the optimal upper bound in this

class is achieved at c = κ1, where κ is any non-negative constant.

4. Numerical Examples

The same eight systems as in [11] are used in this section. For comparison,

we include bounds that utilize {P (Ai)} and {
∑
j P (Ai∩Aj), i = 1, . . . , N}, such

as `KAT, `YAT-II and the optimal lower bound `YAT-I in this class. Furthermore,

we included the GK bound `GK which fully exploits {P (Ai)} and {P (Ai ∩Aj)}
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and the PG bound [1], denoted as `PG, which extends the KAT bound by using

{P (Ai)}, {
∑
j P (Ai ∩Aj)} and {

∑
j,l P (Ai ∩Aj ∩Al)}.

In the numerical examples, c̃ is obtained by the GK bound (see [28, Eq.

(21)] or [29]); the elements of c̃+ are given by {c̃+i = max(c̃i, ε), i = 1, . . . , N}

where ε > 0 is small enough so that if c̃ ∈ RN+ then c̃+ = c̃.

We present `NEW-I(c̃
+), `NEW-II(c̃

+) and maxκ `NEW-I(c̃ + κ1) in Table 1.

In three examples (Systems II, III and VIII), c̃ ∈ RN+ ; therefore `NEW-I(c̃) =

`NEW-I(c̃
+). The lower bound maxκ `NEW-I(c̃ + κ1) is calculated by searching

κ from −1 to 1 with a fixed step length 0.005 (so that 401 points are used in

total). We also randomly generated 100, 000 samples of c ∈ RN+ to compute

`NEW-I(c) and `NEW-II(c) and the largest bounds were selected and denoted as

`NEW-I(c
+
Rand) and `NEW-II(c

+
Rand).

From the results, we note that `NEW-I(c̃
+) is sharper than `GK in most of

the examples except for System VI. The line search maxκ `NEW-I(c̃ + κ1) is

sharper than `NEW-I(c̃
+) in most of the examples except for Systems I and V.

Since c̃+ ∈ RN+ , the class of lower bounds `NEW-II(c̃
+) is at least as good as

`NEW-I(c̃
+), as observed in Remark 4 (in the examples shown in the table, both

bounds give identical results). Furthermore, the PG bound which uses sums

of joint probabilities of three events, may be even poorer (e.g., see Systems I

and VI) than the numerical bound `YAT-I which utilizes less information but is

optimal in the class of lower bounds using {P (Ai)} and {
∑
j P (Ai ∩Aj)}. It is

also weaker than the proposed lower bounds in several cases (see Systems I-IV).

In Table 2, we compared `NEW-I(c) and `NEW-II(c) with randomly generated

c ∈ RN+ . We remark that in System VI, the maximum `NEW-II(c) is 0.3203 which

is sharper than the maximum `NEW-I(c) which is 0.3022. Also, the percentage

that `NEW-II(c) is strictly larger than `NEW-I(c) and the averages of `NEW-II(c)
`NEW-I(c)

are shown in Table 2.

We close by noting that the new general lower and upper bounds established

in this work are applicable to the analytical or numerical study of any statistical

problem involving the probability of a finite union of events.
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`NEW-I(c̃
+
Rand) 0.7783 0.6633 0.7810 0.9501 0.3900 0.3022 0.4992 0.5666

`NEW-II(c̃
+) 0.7638 0.6517 0.7512 0.9231 0.3900 0.2951 0.4905 0.5412

`NEW-II(c̃
+
Rand) 0.7783 0.6633 0.7810 0.9501 0.3900 0.3203 0.4992 0.5666

Table 2: Comparison of `NEW-I(c) and `NEW-II(c) with randomly generated c ∈ RN
+ (a bold

number indicates max `NEW-II(c) > max `NEW-I(c).)

System V VI VII VIII

N 3 4 4 4

P
(⋃N

i=1Ai

)
0.3900 0.3252 0.5346 0.5854

max `NEW-I(c) 0.3900 0.3022 0.4992 0.5666
max `NEW-II(c) 0.3900 0.3203 0.4992 0.5666

Average `NEW-II(c)
`NEW-I(c)

1.0011 1.065 1.0006 1.0000

Percentage `NEW-II(c) > `NEW-I(c) 7.82 % 69.6% 3.87% 0.54 %
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