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�

Abstrat

In [5℄, Csisz�ar established the onept of forward �-uto� rate for the error exponent

hypothesis testing problem based on independent and identially distributed (i.i.d.) ob-

servations. Given � < 0, he de�ned the forward �-uto� rate as the number R

0

� 0 that

provides the best possible lower bound in the form �(E�R

0

) to the type 1 error exponent

funtion for hypothesis testing where 0 < E < R

0

is the rate of exponential onvergene

to 0 of the type 2 error probability. He then demonstrated that the forward �-uto� rate

is given by D

1=(1��)

(Xk

�

X), where D

�

(Xk

�

X) denotes the �-divergene [15℄, � > 0, � 6= 1.

Similarly, for � > 0, Csisz�ar also established the onept of reverse �-uto� rate for the

orret exponent hypothesis testing problem.

In this work, we extend Csisz�ar's results by investigating the forward and reverse �-

uto� rates for the hypothesis testing between two arbitrary soures with memory. We

demonstrate that the liminf �-divergene rate provides the expression for the forward �-

uto� rate. Under two onditions on the large deviation spetrum, �(R), we show that the

reverse �-uto� rate is given by the �-divergene rate, where � =

1

1��

and 0 < � < �

max

,

where �

max

is the largest � < 1 for whih the lim sup

1

1��

-divergene rate is �nite. In

partiular, we examine i.i.d. observations and soures that satisfy the hypotheses of the

G�artner-Ellis Theorem. Unlike [3℄ where the alphabet for the soure oding uto� rate

problem was assumed to be �nite, we assume arbitrary (ountable or ontinuous) soure

alphabet. We also provide several numerial examples to illustrate our forward and reverse

�-uto� rates results.

Index Terms: Hypothesis testing error and orret exponent, forward and reverse �-uto�

rates, information spetrum, �-divergene rate, arbitrary observations with memory.
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1 Introdution

In [5℄, Csisz�ar established the onept of forward �-uto� rate for the hypothesis testing problem

based on independent and identially distributed (i.i.d.) observations. Given � < 0, he de�ned

the forward �-uto� rate as the number R

0

� 0 that provides the best possible lower bound

in the form �(E � R

0

) to the type 1 error exponent funtion for hypothesis testing where

0 < E < R

0

is the rate of exponential onvergene to 0 of the type 2 error probability. He

then demonstrated that the forward �-uto� rate is given by D

1=(1��)

(Xk

�

X), where D

�

(Xk

�

X)

denotes the �-divergene, � > 0, � 6= 1. Similarly, Csisz�ar also established the onept of

reverse �-uto� rate for the hypothesis testing problem based on i.i.d. observations. Given

� > 0, he de�nes the reverse �-uto� rate as the number R

0

� 0 that provides the best

possible lower bound in the form �(E � R

0

) to the type 1 orret exponent (or reliability)

funtion for hypothesis testing where 0 < R

0

< E is the rate of exponential onvergene to 0

of the type 2 error probability. He then demonstrated that the reverse �-uto� rate is given by

D

1=(1��)

(Xk

�

X). These results provide a new operational signi�ane for the �-divergene.

The error exponent for the binary hypothesis testing problem has been thoroughly studied

for �nite state i.i.d. soures and Markov soures. The results for i.i.d. soures an be found

in [6℄, [9℄, [10℄, and for irreduible Markov soures in [1℄, [12℄. The error exponent for testing

between ergodi Markov soures with ontinuous state-spae under ertain additional restri-

tions was established in [11℄. In its full generality, i.e., for arbitrary soures (not neessarily

stationary, ergodi, et.), the error exponent was studied in [4℄, [7℄, [8℄.

In the sequel, we extend Csisz�ar's results by investigating the forward and reverse �-uto�

rates for the hypothesis testing between two arbitrary soures with memory. We demonstrate

that the liminf �-divergene rate provides the expression for the forward �-uto� rate. Our

proof relies in part on the formulas established in [7℄, and extensions of the tehniques used in

[3℄ that generalize Csisz�ar's soure oding uto� rate results for arbitrary disrete soures with

memory. Unlike [3℄ where the soure alphabet was assumed to be �nite, we assume arbitrary

(ountable or ontinuous) soure alphabet. The tehniques used in our proof are a mixture

of the tehniques used in deriving the forward and reverse �-uto� rates for soure oding [3℄.

However, some new tehniques are also needed to obtain our result.

We also investigate the reverse �-uto� rate problem for arbitrary soures with memory.

We show that if the log-likelihood ratio large deviation spetrum, �(R), is onvex and if there
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exists an R 2 R suh that �(R) + R = 0, then the �-divergene rate with � =

1

1��

provides

the expression for the reverse �-uto� rate for 0 < � < �

max

, where �

max

is the largest � < 1

for whih the lim sup

1

1��

-divergene rate is �nite. For 1 > � � �

max

, we only provide an

upper bound to the reverse �-uto� rate. However, our result does redue to Csisz�ar's result

for �nite-alphabet i.i.d. observations for 0 < � < 1. We also examine soures with memory

(ountable or ontinuous alphabet) whih satisfy the G�artner-Ellis Theorem. We show that in

this ase, the above onditions on �(R) are satis�ed and that the reverse �-uto� rate is given

by the

1

1��

-divergene rate.

The rest of the paper is organized as follows. In Setion 2, we briey reall previous results by

Han [7℄ on the general expression for the Neyman-Pearson type 2 error subjet to an exponential

bound on the type 1 error. In Setion 3, we establish the formula for the forward �-uto� rate

and illustrate it numerially in Setion 4. In Setion 5, we reall the general expression for the

reliability funtion of the type 2 probability of orret deoding [7℄ and formulate the reverse

�-uto� rate problem by arefully examining the inonsisteny of de�nitions in [5℄ and [7℄.

In Setion 6, we investigate the reverse �-uto� rate and illustrate it numerially. Finally, in

Setion 7, we onlude with a summary along with several diretions for future work.

2 Hypothesis Testing Error Exponent

Let us �rst de�ne the general soure as an in�nite sequene

X = fX

n

g

1

n=1

4

=

n

X

n

=

�

X

(n)

1

; : : : ; X

(n)

n

�o

1

n=1

of n-dimensional random variablesX

n

where eah omponent random variableX

(n)

i

(1 � i � n)

takes values in an arbitrary (ountable or ontinuous) set X that we all the soure alphabet.

Given two arbitrary soures X = fX

n

g

1

n=1

and

�

X = f

�

X

n

g

1

n=1

taking values in the same soure

alphabet fX

n

g

1

n=1

, we may de�ne the general hypothesis testing problem with X = fX

n

g

1

n=1

as the null hypothesis and

�

X = f

�

X

n

g

1

n=1

as the alternative hypothesis.

Let A

n

be any subset of X

n

, n = 1; 2; : : : that we all the aeptane region of the hypothesis

testing, and de�ne

�

n

4

= PrfX

n

62 A

n

g and �

n

4

= Prf

�

X

n

2 A

n

g

where �

n

; �

n

are alled type 1 error probability and type 2 error probability, respetively.
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De�nition 1 [5℄ Fix E > 0. A rate r is alled E-ahievable if there exists a sequene of

aeptane regions A

n

suh that

lim inf

n!1

�

1

n

log�

n

� r and lim inf

n!1

�

1

n

log�

n

� E:

De�nition 2 The supremum of all E-ahievable rates is denoted by D

e

(EjXk

�

X):

D

e

(EjXk

�

X)

4

= supfr > 0 : r is E-ahievableg;

and D

e

(EjXk

�

X) = 0 if the above set is empty (whih is a degenerate uninteresting ase). The

dual of the funtion D

e

(EjXk

�

X) is de�ned as:

B

e

(rjXk

�

X)

4

= supfE > 0 : E is r-ahievableg;

and B

e

(rjXk

�

X) = 0 if the above set is empty.

Proposition 1 [7℄ Fix r > 0. For the general hypothesis testing problem, we have that

B

e

(rjXk

�

X) = inf

R2R

fR + �(R) : �(R) < rg;

where

1

�(R)

4

= lim inf

n!1

�

1

n

logPr

�

1

n

log

P

X

n

(X

n

)

P

�

X

n
(X

n

)

� R

�

;

is the large deviation spetrum of the normalized log-likelihood ratio.

For the sake of simpliity, we assume throughout that the soure alphabet is ountable.

However, we will point out the neessary modi�ations in the proofs for the ase of a ontinuous

alphabet. The above proposition is the main tool for our key lemma in the following setion.

1

If the soure alphabet X is ontinuous, then P

X

n

(X

n

) plays the role of the density funtion f

X

n

(X

n

).
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3 Forward �-Cuto� Rate Between Arbitrary Hypothe-

ses

De�nition 3 [5℄ Fix � < 0. R

0

� 0 is a forward �-ahievable rate for the general hypothesis

testing problem if

D

e

(EjXk

�

X) � �(E � R

0

)

for every E > 0, or equivalently,

B

e

(rjXk

�

X) � R

0

+

r

�

;

for every r > 0. The forward �-uto� rate is de�ned as the supremum of all forward �-ahievable

rates, and is denoted by R

(f)

0

(�jXk

�

X).

Note that in the degenerate ase whereD

e

(EjXk

�

X) is identially 0, we have thatR

(f)

0

(�jXk

�

X) =

0. We herein assume that D

e

(EjXk

�

X) is not 0 for all values of E. A graphial illustration of

the forward �-uto� rate, R

(f)

0

(�jXk

�

X), for testing between two arbitrary soures X and

�

X is

given in Figure 1.

Before stating our main result, we �rst observe in the next lemma that the forward �-uto�

rate R

(f)

0

(�jXk

�

X) is indeed the R-axis interept of a support line of slope

�

1��

to the large

deviation spetrum �(R).

Lemma 1 Fix � < 0. The following onditions are equivalent.

(8R 2 R) �(R) �

�

� � 1

(R

0

� R) (1)

and

(8r > 0) B

e

(rjXk

�

X) � R

0

+

r

�

: (2)

Proof:

a) (1) ) (2). For any r > 0, we obtain by Proposition 1 that

(8Æ > 0)(9R

Æ

with �(R

Æ

) < r) B

e

(rjXk

�

X) + Æ � R

Æ

+ �(R

Æ

):
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Therefore

B

e

(rjXk

�

X) � R

Æ

+ �(R

Æ

)� Æ

� R

Æ

� Æ +

�

� � 1

(R

0

� R

Æ

) (3)

= �Æ +

�

� � 1

R

0

�

R

Æ

� � 1

� �Æ +

�

� � 1

R

0

�

R

0

� � 1

+

r

�

(4)

=

r

�

+R

0

� Æ; (5)

where (3) follows from (1), and (4) holds beause

r > �(R

Æ

) �

�

� � 1

(R

0

� R

Æ

):

Sine Æ an be made arbitrarily small, the proof of the forward part is ompleted.

b) (2) ) (1). Inequality (1) holds trivially for those R satisfying �(R) = 1. For any R 2 R

with �(R) <1, let r

Æ

4

= �(R) + Æ for some Æ > 0. Then (by Proposition 1)

B

e

(r

Æ

jXk

�

X) � R + �(R):

Therefore

�(R) � B

e

(r

Æ

jXk

�

X)� R

� R

0

+

r

Æ

�

� R (6)

= R

0

+

�(R)

�

+

Æ

�

�R;

where (6) follows by (2). Thus,

�(R) �

�

� � 1

(R

0

� R) +

Æ

� � 1

:

Sine Æ an be made arbitrarily small, the proof of the onverse part is ompleted.
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Theorem 1 (Forward �-uto� rate formula). Fix � < 0. For the general hypothesis

testing problem,

R

(f)

0

(�jXk

�

X) = lim inf

n!1

1

n

D

1

1��

(X

n

k

�

X

n

);

where

D

�

(X

n

k

�

X

n

)

4

=

1

�� 1

log

 

X

x

n

2X

n

[P

X

n

(x

n

)℄

�

[P

�

X

n
(x

n

)℄

1��

!

is the n-dimensional �-divergene.

2

Proof: Note that �(R) > 0 for some

3

R 2 R.

1. Forward part: R

(f)

0

(�jXk

�

X) � lim inf

n!1

1

n

D

1

1��

(X

n

k

�

X

n

).

By the equivalene of onditions (1) and (2), it suÆes to show that

(8R 2 R) �(R) �

�

� � 1

�

lim inf

n!1

1

n

D

1

1��

(X

n

k

�

X

n

)� R

�

:

Indeed, we have the following.

Pr

�

1

n

log

P

X

n

(X

n

)

P

�

X

n
(X

n

)

� R

�

= Pr

�

e

�t log

P

X

n

(X

n

)

P

�

X

n

(X

n

)

� e

�ntR

�

; for t > 0

� e

ntR

 

X

x

n

2X

n

[P

X

n

(x

n

)℄

1�t

[P

�

X

n
(x

n

)℄

t

!

(7)

= exp

�

�nt

�

1

n

D

1�t

(X

n

k

�

X

n

)� R

��

;

for 0 < t < 1, where (7) follows by Markov's inequality. Therefore

�(R) � t

�

lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

)�R

�

=

�

� � 1

�

lim inf

n!1

1

n

D

1

1��

(X

n

k

�

X

n

)�R

�

; for �

4

=

t

t� 1

< 0:

2

If the soure alphabet is ontinuous, i.e., it admits a density f

X

n

(�), then the n-dimensional �-divergene

is given by

D

�

(X

n

k

�

X

n

)

4

=

1

�� 1

log

�

Z

[f

X

n

(x

n

)℄

�

[f

�

X

n

(x

n

)℄

1��

dx

n

�

:

3

If �(R) = 0 for all R 2 R, then

B

e

(rjXk

�

X) = inf

R2R

fR+ �(R)j�(R) < rg = inf

R2R

fRg = �1;

ontraditing that B

e

(rjXk

�

X) is, by de�nition, an exponent and should be always non-negative.
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2. Converse part: R

(f)

0

(�jXk

�

X) � lim inf

n!1

1

n

D

1

1��

(X

n

k

�

X

n

).

The onverse holds trivially if lim inf

n!1

1

n

D

1

1��

(X

n

k

�

X

n

) is in�nite. Hene we an as-

sume that lim inf

n!1

1

n

D

1

1��

(X

n

k

�

X

n

) < K, where K is some onstant. By the equivalene

of onditions (1) and (2), it suÆes to show that for any Æ > 0 arbitrarily small, there exists

R = R(Æ) 2 R suh that

�(R) �

�

� � 1

�

3Æ + lim inf

n!1

1

n

D

1

1��

(X

n

k

�

X

n

)�R

�

:

Consider the twisted distribution de�ned as:

P

(t)

X

n

(x

n

)

4

=

[P

�

X

n

(x

n

)℄

t

[P

X

n

(x

n

)℄

1�t

P

x̂

n

2X

n

[P

�

X

n
(x̂

n

)℄

t

[P

X

n

(x̂

n

)℄

1�t

= exp

�

t

�

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

+D

1�t

(X

n

k

�

X

n

)

��

P

X

n

(x

n

); (8)

where t = �=(� � 1). Note that 0 < t < 1. Let N be a set of positive integers suh that

lim

n2N ;n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

) = lim inf

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

); (9)

and de�ne

�

4

= supfR 2 R : �

(t)

(R) > 0g;

where

�

(t)

(R)

4

= lim inf

n2N ;n!1

�

1

n

logP

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� R

�

;

is the twisted large deviation spetrum of the normalized log-likelihood ratio with parameter t,

and � satis�es (f. Lemmas 5 and 6 in Appendix A) that

�1 < � � lim

n2N ;n!1

1

n

D

1�t

(X

n

k

�

X

n

) = lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

) < K:

We then note by de�nition of �

(t)

(�) and the �niteness property of � that for any Æ > 0, there

exists " > 0 suh that:

�

(t)

(� � Æ) = lim inf

n2N ;n!1

�

1

n

logP

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

� � � Æ

�

> " > 0:

As a result,

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

> � � Æ

�

� 1� e

�n"

for n 2 N suÆiently large:
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On the other hand, de�ne

��

(t)

(R)

4

= lim inf

n2N ;n!1

�

1

n

logP

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� R

�

and

��

4

= inffR 2 R : ��

(t)

(R) > 0g:

Then by noting that

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

= D

1�t

(X

n

k

�

X

n

)�

1

t

log

P

(t)

X

n

(x

n

)

P

X

n

(x

n

)

;

we have:

��

(t)

(R) = �

�

�tR +

t

n

D

1�t

(X

n

k

�

X

n

)

�

and

�� = �

1

t

supfR 2 R : � (R) > 0g+

1

n

D

1�t

(X

n

k

�

X

n

)

�

1

n

D

1�t

(X

n

k

�

X

n

) (10)

< K for n 2 N suÆiently large; (11)

where

�(R)

4

= lim inf

n2N ;n!1

�

1

n

logP

(t)

X

n

(

x

n

2 X

n

:

1

n

log

P

(t)

X

n

(x

n

)

P

X

n

(x

n

)

� R

)

;

(10) follows from Lemma 7 in Appendix A, and (11) holds by de�nition of K. This indiates the

existene of �" > 0 suh that ��

(t)

(K) > �", whih immediately gives that for n 2 N suÆiently

large,

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� K

�

� e

�n�"

:

Therefore, for n 2 N suÆiently large,

P

(t)

X

n

�

x

n

2 X

n

: K >

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

> � � Æ

�

= P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

> � � Æ

�

�P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

� K

�

� 1� e

�n"

� e

�n�"

: (12)
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Let I

1

4

= (� � Æ; b

1

); and

I

k

4

= [b

k�1

; b

k

) for 2 � k � L

4

=

�

K � � + Æ

2Æ

�

;

where b

k

4

= (� � Æ) + 2kÆ for 1 � k < L, and b

L

4

= K. By (12), there exists 1 � k(n) � L suh

that

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

2 I

k(n)

�

�

1� e

�n"

� e

�n�"

L

; (13)

for n 2 N suÆiently large. Then, by letting R

1

4

= lim sup

n2N ;n!1

b

k(n)

+ Æ, we obtain that for

n 2 N suÆiently large

P

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

� R

1

�

� P

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

2 I

k(n)

�

:

However, for suÆiently large n 2 N , we have that

P

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

2 I

k(n)

�

=

X

�

x

n

2X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

2I

k(n)

�

P

X

n

(x

n

)

=

X

�

x

n

2X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

2I

k(n)

�

e

�t

�

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

+D

1�t

(X

n

k

�

X

n

)

�

P

(t)

X

n

(x

n

) (14)

> e

�nt

(

�b

k(n)�1

+

1

n

D

1�t

(X

n

k

�

X

n

)

)

X

�

x

n

2X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

2I

k(n)

�

P

(t)

X

n

(x

n

)

= e

�nt

(

�b

k(n)�1

+

1

n

D

1�t

(X

n

k

�

X

n

)

)

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

2 I

k(n)

�

�

1� e

�n"

� e

�n�"

L

e

�nt

(

�b

k(n)�1

+

1

n

D

1�t

(X

n

k

�

X

n

)

)

; (15)

where (14) follows from (8), and (15) follows from (13). Consequently
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�(R

1

) = lim inf

n!1

�

1

n

logP

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� R

1

�

� lim inf

n2N ;n!1

�

1

n

logP

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� R

1

�

� t

�

� lim sup

n2N ;n!1

b

k(n)�1

+ lim inf

n2N ;n!1

1

n

D

1�t

(X

n

k

�

X

n

)

�

� t

�

� lim sup

n2N ;n!1

b

k(n)

+ 2Æ + lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

)

�

= t

�

3Æ + lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

)� R

1

�

:

Sine Æ an be made arbitrarily small, the proof is ompleted.

Observations:

A. While the proof of the forward part is straightforward, the proof of the onverse part

is onsiderably more omplex. The objetive of the onverse part is to demonstrate that if

lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

) is slightly shifted to the right (by a fator of 3Æ), then there exists

a oordinate R suh that a straight line of slope �=(1� �) given by

y =

�

� � 1

�

3Æ + lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

)� R

�

lies above the urve of �(R) at R = R, thus violating its status of support line for �(R).

This proof is established by observing that the desired oordinate R lies in a small neigh-

borhood of � , where � is the smallest point for whih �

(t)

(R) vanishes. A key point is to hoose

the twisted parameter t to be equal to �=(�� 1) whih is the negative slope of the support line

to �(R). We graphially illustrate this observation (based on a true example involving binary

memoryless soures) in Figure 2. The omputational details are desribed in Example 1 (f.

Setion 4).

B. Note also that the proof holds if the alphabet is ountable or ontinuous as opposed to the

soure oding forward and reverse �-uto� rates results [3℄ where the �niteness property of the

alphabet is neessary. The modi�ations in the proof for the ontinuous ase are lear. Simply,

replae the probability mass funtion by the probability density funtion and the summation

by integration. We graphially illustrate this observation (based on a true example involving

11



memoryless Gaussian soures) in Figure 3. The omputational details are desribed in Example

2 (f. Setion 4).

C. The proof of the hypothesis testing forward �-uto� rate is more involved than the proof

of the soure oding forward �-uto� rate result given in [3℄. The main diÆulty arises from

the formula in Proposition 1 where the in�mum for R is taken over the entire real line ontrary

to Proposition 1 in [3℄ for soure oding where R ranges from 0 to 1. This requires us to

deal separately with the degenerate ase � = �1 (f. Lemma 6 in Appendix A). Also, the

tehnique used to prove the forward �-uto� rate for hypothesis testing relies on the proofs of

both the soure oding forward and reverse �-uto� rates, but in major parts though similar to

the reverse soure oding �-uto� rate.

D. If the soures X and

�

X are arbitrary (not neessarily stationary, irreduible) time-invariant

�nite-alphabet Markov soures of arbitrary order, then we know that the �-divergene rate

exists and an be omputed [13℄, [14℄. Thus in this ase, the forward �-uto� rate for testing

between Markov soures an be obtained. Also, from the de�nition of D

e

(EjXk

�

X), it follows

diretly that for all E > 0,

D

e

(EjXk

�

X) � sup

�<0

h

�(E �R

(f)

0

(�jXk

�

X))

i

:

Note that this onvex lower bound is omputable for the entire lass of Markov soures, while

D

e

(EjXk

�

X) is not neessarily omputable in general (it is omputable for irreduible Markov

soures [1℄, [12℄, see Figure 4). We graphially illustrate this observation for testing between

irreduible Markov soures in Figure 4 and arbitrary Markov soures (not neessarily stationary,

irreduible) in Figure 5. The omputational details are desribed in Examples 3 and 4 (f.

Setion 4).

4 Numerial Examples for the Forward �-uto� rate

Throughout this setion, the natural logarithm is used.

Example 1 Finite-alphabet memoryless soures: Consider the binary hypothesis testing be-

tween two memoryless soures X = fX

i

g

1

i=1

and

�

X = f

�

X

i

g

1

i=1

under the distributions (1=2; 1=2)

and (1=4; 3=4) respetively. Then the log-likelihood ratio Z = log

P

X

(X)

P

�

X

(X)

has the following dis-

12



tribution:

PrfZ = log(2)g = 1� PrfZ = log(2=3)g = 1=2:

By Cramer's theorem [2, p. 9℄, we get that

�(R) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

1; R < � log(3=2)

log(2); R = � log(3=2)

log(log(3=2)+R)�log(log(2)�R)

log(3)

R

+

log(3=2)

log(3)

log(log(3=2) +R)

+

log(2)

log(3)

log(log(2)� R)

+ log(2)� log(log(3)); � log(3=2) < R < E[Z℄ = log(2)� log(3)=2

0; otherwise;

where E[Z℄ denotes the expetation of the random variable Z. Let R

0

be the rate at whih the

line of slope �=(1� �) is tangent to �(R). By straightforward alulations, we get that

R

0

= log 2�

log 3

1 + 3

�

1��

;

and that the forward �-uto� rate, R

(f)

0

(�jXk

�

X), whih is the R-axis interept of the tangent

line of slope �=(1� �) to �(R), is given by

R

(f)

0

(�jXk

�

X) =

2� � 1

�

log 2�

� � 1

�

log

�

1 + 3

�

1��

�

� log 3:

On the other hand, the �-divergene between X under

�

X is given by

D

�

(Xk

�

X) =

1

�� 1

�

(�� 2) log 2 + log(1 + 3

1��

)

�

;

whih yields

D

1

1��

(Xk

�

X) =

2� � 1

�

log 2�

� � 1

�

log

�

1 + 3

�

1��

�

� log 3:

Note that the forward �-uto� rate, R

(f)

0

(�jXk

�

X), and the lim inf �-divergene rate (whih

is equal to the �-divergene sine the soures are DMS) of order � = 1=(1 � �) are equal as

expeted from Theorem 1. Let us now derive � in order to hek that � = R

0

. First, we

need to ompute �

(t)

(R). The set N is equal to the set of natural numbers in this ase. Note

that the distribution of the random variable Z

(t)

under the twisted distribution with parameter

0 < t < 1 is given by

P

(t)

fZ = log 2g = 1=(1 + 3

t

) and P

(t)

fZ = log(2=3)g = 3

t

=(1 + 3

t

):

13



By Cramer's Theorem [2, p. 9℄, we get that

�

(t)

(R) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

1; R < � log(3=2)

log(1 + 3

t

); R = � log(3=2)

t(R � log 2)

+

log(log(3=2)+R)�log(log(2)�R)

log(3)

R

+

log(3=2)

log(3)

log(log(3=2) +R)

+

log(2)

log(3)

log(log(2)� R)

+ log(1 + 3

t

)� log(log(3)); � log(3=2) < R < E[Z

(t)

℄ =

log 2

1+3

t

+ log(2=3)

3

t

1+3

t

0; otherwise;

where E[Z

(t)

℄ denotes the expetation of the random variable Z

(t)

. Therefore

� =

log 2

1 + 3

t

+ log(2=3)

3

t

1 + 3

t

:

It is easy to hek that indeed we have � = R

0

when the twisted parameter t is hosen to be

�=(� � 1). This example is illustrated in Figure 2 for � = �7.

Example 2 Continuous alphabet memoryless soures: Consider the hypothesis testing problem

between two memoryless soures X = fX

i

g

1

i=1

and

�

X = f

�

X

i

g

1

i=1

under the Gaussian distribu-

tions N(�; 1) and N(��; 1) respetively, where N(a; b) represents a Gaussian distribution with

mean a and variane b. It is easy to hek that the log-likelihood ratio Z = log

f

X

(X)

f

�

X

(X)

is Gaussian

distributed with mean 2�

2

and variane 4�

2

, whih gives that the moment generating funtion

of Z is E[e

�Z

℄ = e

2�

2

�+2�

2

�

2

. By Cramer's Theorem, we get that

�(R) =

8

<

:

1

8�

2

(R� 2�

2

)

2

; R < 2�

2

0; otherwise:

Let R

0

be the rate at whih the line of slope �=(1� �) is tangent to �(R). We have that

R

0

= 2�

2

1 + �

1� �

�

Thus, the forward �-uto� rate, R

(f)

0

(�jXk

�

X), whih is the R-axis interept of the tangent line

of slope �=(1� �) to �(R), is given by

R

(f)

0

(�jXk

�

X) = 2�

2

1

1� �

�

14



On the other hand, the �-divergene between X under

�

X is given by D

�

(Xk

�

X) = 2�

2

�, whih

yields

D

1

1��

(Xk

�

X) = 2�

2

1

1� �

�

Note that the forward �-uto� rate, R

(f)

0

(�jXk

�

X), and the lim inf �-divergene rate (whih

is equal to the �-divergene sine the soures are DMS) of order � = 1=(1 � �) are equal as

expeted from Theorem 1.

Now, let us ompute �

(t)

(R). The set N in this ase is equal to the set of natural numbers.

For some normalization onstant C,

P

(t)

X

n

(x

n

) = C � exp

(

�

t

2

n

X

i=1

(x

i

+ �)

2

)

exp

(

�

1� t

2

n

X

i=1

(x

i

� �)

2

)

= C � exp

(

�

1

2

n

X

i=1

[t(x

i

+ �)

2

+ (1� t)(x

i

� �)

2

℄

)

= C � exp

(

�

1

2

n

X

i=1

(x

2

i

+ 2(2t� 1)�x

i

+ �

2

)

)

;

whih is a Gaussian distribution with mean (1� 2t)� and unit variane. Similarly, by invoking

Cramer's Theorem, we get that,

�

(t)

(R) =

8

<

:

1

8�

2

(R + (2t� 1)2�

2

)

2

; R < (1� 2t)2�

2

0; otherwise:

Hene, � = (1� 2t)2�

2

. It is straightforward to hek that � = R

0

when the twisted parameter

t is hosen to be �=(� � 1). This example is depited in Figure 3 for � = �0:5.

Example 3 Irreduible �nite-alphabet Markov soures: Suppose that X and

�

X are two irre-

duible Markov soures with arbitrary initial distributions and probability transition matries

P and Q de�ned as follows:

P =

0

�

1=3 2=3

1=4 3=4

1

A

; Q =

0

�

1=5 4=5

5=6 1=6

1

A

:

De�ne a new matrix R = (r

ij

) by

r

ij

= p

�

ij

q

1��

ij

; i; j = 0; 1:
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The �-divergene rate between X and

�

X exists and is given by

lim

n!1

1

n

D

�

(X

n

k

�

X

n

) =

1

�� 1

log�;

where � is the largest positive real eigenvalue of R [13℄, [14℄. Hene the omputation of the

onvex lower bound for D

e

(EjXk

�

X) is easily obtained as shown in Figure 4 for the values

� = �5;�3;�2;�4=3;�1;�2=3;�1=2;�2=5 (proeeding from left to right), where � =

1

1��

�

Note that in this ase the onvex lower bound is tight [1℄, [12℄.

Example 4 Arbitrary �nite-alphabet Markov soures: Suppose that X and

�

X are two arbitrary

Markov soures with arbitrary initial distributions and probability transition matries P and

Q de�ned as follows:

P =

0

B

B

B

B

B

B

B

B

�

1=2 1=2 0 0 0

1=4 3=4 0 0 0

0 0 3=5 2=5 0

0 1=6 5=6 0 0

1=4 0 1=4 0 1=2

1

C

C

C

C

C

C

C

C

A

; Q =

0

B

B

B

B

B

B

B

B

�

1=5 4=5 0 0 0

2=3 1=3 0 0 0

0 0 1=2 1=2 0

0 1=6 5=6 0 0

1=8 0 1=2 0 3=8

1

C

C

C

C

C

C

C

C

A

:

De�ne a new matrix R = (r

ij

) by

r

ij

= p

�

ij

q

1��

ij

; i; j = 0; 1; 2; 3; 4:

The �-divergene rate between X and

�

X an be omputed [13℄, [14℄. Hene, the onvex

lower bound for D

e

(EjXk

�

X) an be easily derived as shown in Figure 5 for the values � =

�5;�3;�2;�1;�2=3;�1=2;�2=5;�1=6 (proeeding from left to right), where � =

1

1��

�

5 Hypothesis Testing Corret Exponent and Problem

Formulation

In [5℄, Csisz�ar investigated the hypothesis testing problem between i.i.d. observations by onsid-

ering the �-uto� rate for the exponent of the best orret probability of type 1 with exponential

onstraint on the probability of type 2 error. More formally, he used the following de�nitions.
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De�nition 4 Fix E > 0. A rate r is alled E-unahievable if there exists a sequene of

aeptane regions A

n

suh that

lim sup

n!1

�

1

n

log(1� �

n

) � r and lim inf

n!1

�

1

n

log�

n

� E;

where �

n

and �

n

are type 1 and type 2 error probabilities respetively. The in�mum of all

E-unahievable rates is de�ned as:

D

�

e

(EjXk

�

X)

4

= inffr > 0 : r is E-unahievableg;

and D

�

e

(EjXk

�

X) =1 if the above set is empty.

For 0 < r < D

�

e

(EjXk

�

X), every aeptable region A

n

with lim inf

n!1

�

1

n

log�

n

� E

satis�es �

n

> 1� e

�nr

for n in�nitely often.

De�nition 5 Fix � > 0. R

0

� 0 is a reverse �-ahievable rate for the general hypothesis

testing problem if

D

�

e

(EjXk

�

X) � �(E �R

0

)

for every E > 0. The reverse �-uto� rate is de�ned as the in�mum of all reverse �-ahievable

rates, and is denoted by R

(r)

0

(�jXk

�

X).

However, in [7℄, Han investigated the general hypothesis testing problem between arbitrary

soures with memory by onsidering the exponent of the best orret probability of type 2 with

exponential onstraint on the probability of type 1 error. More formally, he used the following

de�nition.

De�nition 6 [7℄ Fix r > 0. A rate E is alled r-unahievable if there exists a sequene of

aeptane regions A

n

suh that

lim inf

n!1

�

1

n

log�

n

� r and lim sup

n!1

�

1

n

log(1� �

n

) � E:

The in�mum of all r-unahievable rates is denoted by B

�

e

(rjXk

�

X):

B

�

e

(rjXk

�

X)

4

= inffE > 0 : E is r-unahievableg;

and B

�

e

(rjXk

�

X) =1 if the above set is empty.
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Proposition 2 [7℄ Fix r > 0. For the general hypothesis testing problem, we have that

B

�

e

(rjXk

�

X) = inf

R2R

fR + ��(R) + [r � ��(R)℄

+

g;

where

��(R)

4

= lim

n!1

�

1

n

logP

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� R

�

;

[x℄

+

= maxfx; 0g, provided the limit in ��(R) exists, and for any M > 0, there exists K > 0

suh that

lim inf

n!1

�

1

n

logP

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� K

�

�M:

Remark 1: Note that Csisz�ar's and Han's de�nitions seem di�erent at �rst glane. In our

investigation, we realized that in order to establish our results on the reverse �-uto� rate for

general soures with memory, a formula for the reliability funtion of the type 1 probability

of orret deoding, D

�

e

(EjXk

�

X), is needed. However, in [7℄, Han provided a formula for the

reliability funtion of the type 2 probability of orret deoding, B

�

e

(rjXk

�

X). This turned out

to be an obstale, sine we were not able to derive the reverse �-uto� rate formula by diretly

using the formula for B

�

e

(rjXk

�

X). To overome this obstale, we observed that if we interhange

the role of the null and alternative hypotheses distributions (i.e., X $

�

X), and also r with E

(i.e., r $ E) in Han's de�nition (De�nitions 6), then a formula for D

�

e

(EjXk

�

X) an be readily

obtained from Han's result. More spei�ally, we have the following.

De�nition 7 Fix E > 0. A rate r is alled E-unahievable if there exists a sequene of

aeptane regions A

0

n

= A



n

(omplement of A

n

) suh that

lim inf

n!1

�

1

n

log�

n

� E and lim sup

n!1

�

1

n

log(1� �

n

) � r;

where

�

n

= Prf

�

X

n

62 A

0

n

g = Prf

�

X

n

2 A

n

g and �

n

= PrfX

n

2 A

0

n

g = PrfX

n

62 A

n

g:

The in�mum of all E-unahievable rates is given by

B

�

e

(Ej

�

XkX) = inffr > 0 : r is E-unahievableg;

and B

�

e

(Ej

�

XkX) =1 if the above set is empty.
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With De�nition 7, Proposition 2 beomes as follows.

Proposition 3 For any E > 0,

B

�

e

(Ej

�

XkX) = inf

R2R

�

R + �(R) + [E � �(R)℄

+

	

;

where

�(R)

4

= lim

n!1

�

1

n

logP

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� R

�

;

provided the limit in �(R) exists, and for any M > 0, there exists K > 0 suh that

lim inf

n!1

�

1

n

logP

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� K

�

�M:

Remark 2: We an now learly observe that De�nitions 7 and 4 are idential. This indiates

that Han'sB

�

e

(Ej

�

XkX) is in fat Csisz�ar'sD

�

e

(EjXk

�

X). Hene, using De�nition 4, Proposition 3

should be as follows.

Proposition 4 For any E > 0,

D

�

e

(EjXk

�

X) = inf

R2R

�

R + �(R) + [E � �(R)℄

+

	

;

where

�(R) = lim

n!1

�

1

n

logP

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� R

�

;

provided the limit in �(R) exists, and for any M > 0, there exists K > 0 suh that

lim inf

n!1

�

1

n

logP

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� K

�

�M: (16)

Condition (16) evidently holds in the unrestritive ase where P

X

n

(�) is absolutely ontinuous

with respet to P

�

X

n
(�). The above proposition is a key ingredient for our main results in the

following setion.
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6 Reverse �-Cuto� Rate Between Arbitrary Hypotheses

In the degenerate ase where D

�

e

(EjXk

�

X) = 0, we have that R

(r)

0

(�jXk

�

X) = 1. Similarly, if

D

�

e

(EjXk

�

X) = 1, then R

(r)

0

(�jXk

�

X) = 0. A graphial illustration of R

(r)

0

(�jXk

�

X) is given

in Figure 6. Without loss of generality, we herein assume that P

X

n

(�) is absolutely ontinuous

with respet to P

�

X

n

(�).

We �rst show the following lemmas, whih will provide us the key mehanism to establish

our reverse �-uto� rate result.

Lemma 2 Assume that the limit in �(R) exists. For all E > 0, we have that

D

�

e

(EjXk

�

X) � E + inffR 2 R : �(R) � Eg:

Proof: We have the following.

D

�

e

(EjXk

�

X) = inf

R2R

�

R + �(R) + [E � �(R)℄

+

	

(by Proposition 4)

= min

�

inf

�(R)�E

fR + Eg; inf

�(R)>E

fR + �(R)g

�

� inf

�(R)�E

fR + Eg

= E + inffR 2 R : �(R) � Eg:

Lemma 3 Assume that �(R) admits a limit and is onvex, and that there exists an R suh

that R + �(R) = 0. Then for those E satisfying D

�

e

(EjXk

�

X) > 0,

D

�

e

(EjXk

�

X) = E + inffR 2 R : �(R) � Eg:

Proof: Sine �(R) is dereasing by de�nition and it is assumed to be onvex, then it is ontin-

uous and stritly dereasing. Let R

�

be the smallest one that satis�es R+ �(R) = 0. Then for

E � �(R

�

),

D

�

e

(EjXk

�

X) = inf

R2R

�

R + �(R) + [E � �(R)℄

+

	

(by Proposition 4)

� R

�

+ �(R

�

) + [E � �(R

�

)℄

+

= 0:
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Hene, the set of values of E suh that D

�

e

(EjXk

�

X) > 0 does not inlude E � �(R

�

). Now as

�(R) is assumed onvex, its slope is stritly inreasing, whih implies that the slope of �(R) is

less than �1 for R < R

�

. This immediately gives that the slope of the funtion R + �(R) is

negative for R < R

�

. Consequently, for any E > �(R

�

) (whih orresponds to R < R

�

sine

�(R) is stritly dereasing),

inf

fR:�(R)>Eg

fR + �(R)g = fR + �(R)gj

R=�

�1

(E)

= �

�1

(E) + E = inf

�(R)�E

fR + Eg ;

where

�

�1

(E)

4

= inffa : �(a) � Eg;

is the quantile or inverse of �(�). Thus,

D

�

e

(EjXk

�

X) = inf

R2R

�

R + �(R) + [E � �(R)℄

+

	

= min

�

inf

�(R)�E

fR + Eg; inf

�(R)>E

fR + �(R)g

�

= inf

�(R)�E

fR + Eg

= E + inffR 2 R : �(R) � Eg:

Lemma 4 Fix t < 0. Also, assume that �(R) admits a limit and is onvex, and that there

exists an R suh that R + �(R) = 0. The following two onditions are equivalent.

(8 R 2 R) �(R) � �R(1� t) + tR

0

(17)

and

(8 E > 0) D

�

e

(EjXk

�

X) �

t

t� 1

(E �R

0

): (18)

Proof:

a) (17))(18). By Lemma 3, for those E satisfying D

�

e

(EjXk

�

X) > 0, we have that

D

�

e

(EjXk

�

X) = E + inffR 2 R : �(R) � Eg

� E + inffR 2 R : �R(1� t) + tR

0

� Eg

=

t

t� 1

(E � R

0

) ;
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where the inequality follows from (17). This implies that

inffE > 0 : D

�

e

(EjXk

�

X) > 0g � R

0

:

Hene, for these E satisfying D

�

e

(EjXk

�

X) = 0, the laim also holds sine D

�

e

(EjXk

�

X) is

inreasing.

b) (18))(17). By Lemma 2 and (18), for E > 0, we have that

inffR 2 R : �(R) � Eg �

t

t� 1

(E �R

0

)� E =

1

t� 1

E �

t

t� 1

R

0

:

Thus

E � �

�

1

t� 1

E �

t

t� 1

R

0

�

;

sine �(�) is stritly dereasing. Letting

R =

1

t� 1

E �

t

t� 1

R

0

;

or

E = �R(1� t) + tR

0

;

the above inequality an be rewritten as

�(R) � �R(1� t) + tR

0

;

where R 2 R.

We next employ Lemma 4 to show our main result regarding the reverse �-uto� rate.

Theorem 2 (Reverse �-uto� rate formula). Assume that �(R) admits a limit and is

onvex, and that there exists an R suh that R+ �(R) = 0. For the general hypothesis testing

problem,

R

(r)

0

(�jXk

�

X) � lim inf

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

) for 0 < � < 1;

and

R

(r)

0

(�jXk

�

X) � lim sup

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

) for 0 < � < �

max

;

where

�

max

= sup

�

� 2 (0; 1) : lim sup

n!1

1

n

D

1=(1�)

(X

n

k

�

X

n

) <1 for every 0 <  < �

�

;
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and

D

�

(X

n

k

�

X

n

)

4

=

1

�� 1

log

 

X

x

n

2X

n

[P

X

n

(x

n

)℄

�

[P

�

X

n

(x

n

)℄

1��

!

is the n-dimensional R�enyi �-divergene. Note that the above two inequalities diretly imply

that

R

(r)

0

(�jXk

�

X) = lim

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

);

for 0 < � < �

max

.

Proof:

4

1. Forward part: R

(r)

0

(�jXk

�

X) � lim inf

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

) for 0 < � < 1.

By the equivalene of onditions (17) and (18), it suÆes to show that

(8R 2 R) �(R) � �R(1� t) + t � lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

):

Consider the twisted distribution de�ned as:

P

(t)

X

n

(x

n

)

4

=

[P

�

X

(x

n

)℄

t

[P

X

n

(x

n

)℄

1�t

P

x̂

n

2X

n

[P

�

X

(x̂

n

)℄

t

[P

X

n

(x̂

n

)℄

1�t

= exp

�

(t� 1) log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

+ tD

1�t

(X

n

k

�

X

n

)

�

P

�

X

n

(x

n

): (19)

Then for t < 0,

P

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� R

�

=

X

n

x

n

2X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

�R

o

P

�

X

n

(x

n

)

=

X

n

x

n

2X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

�R

o

exp

�

(1� t) log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� tD

1�t

(X

n

k

�

X

n

)

�

P

(t)

X

n

(x

n

)

� exp

�

nR(1� t)� tD

1�t

(X

n

k

�

X

n

)

	

X

n

x

n

2X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

�R

o

P

(t)

X

n

(x

n

)

� exp

�

nR(1� t)� tD

1�t

(X

n

k

�

X

n

)

	

:

4

For the proof of the ontinuous alphabet ase, the same remark given in Observation B (f. Setion 3)

applies.
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So, sine �(R) admits a limit, we have

�(R) = lim sup

n!1

�

1

n

logP

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� R

�

� �R(1� t) + t � lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

)

= �R(1� t) + t � lim inf

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

); for �

4

=

t

t� 1

2 (0; 1):

2. Converse part: R

(r)

0

(�jXk

�

X) � lim sup

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

) for 0 < � < �

max

.

By the equivalene of (17) and (18), it suÆes to show the existene of

�

R for any Æ > 0 suh

that

�(

�

R) � �

�

R(1� t) + t

�

lim sup

n!1

1

n

D

1�t

(X

n

k

�

X

n

) +

(1� t)

t

3Æ

�

;

where t = �=(� � 1) < 0. Let N be the set of positive integers suh that

lim

n2N ;n!1

1

n

D

1�t

(X

n

k

�

X

n

) = lim sup

n!1

1

n

D

1�t

(X

n

k

�

X

n

) (20)

and de�ne

�

4

= supfR 2 R : �

(t)

(R) > 0g;

where

�

(t)

(R)

4

= lim inf

n2N ;n!1

�

1

n

logP

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� R

�

;

is the twisted large deviation spetrum of the normalized log-likelihood ratio with parameter

t. It an be shown that � satis�es �1 < � � 0 (f. Lemmas 8 and 9 in Appendix B). We

then note by de�nition of �

(t)

(�) and the �niteness property of � that for any Æ > 0, there exists

� > 0 suh that

�

(t)

(�� Æ) = lim inf

n2N ;n!1

�

1

n

logP

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n
(x

n

)

P

X

n

(x

n

)

� �� Æ

�

> � > 0:

As a result,

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

> �� Æ

�

� 1� e

�n�

for n 2 N suÆiently large:

On the other hand, de�ne

��

(t)

(R)

4

= lim inf

n2N ;n!1

�

1

n

logP

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n
(x

n

)

P

X

n

(x

n

)

� R

�

and

�

�

4

= inffR 2 R : ��

(t)

(R) > 0g:
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Then by noting that

log

P

�

X

n
(x

n

)

P

X

n

(x

n

)

= �D

1�t

(X

n

k

�

X

n

) +

1

t

log

P

(t)

X

n

(x

n

)

P

X

n

(x

n

)

;

we have:

��

(t)

(R) = �

�

tR +

t

n

D

1�t

(X

n

k

�

X

n

)

�

;

where

�(R)

4

= lim inf

n2N ;n!1

�

1

n

logP

(t)

X

n

(

x

n

2 X

n

:

1

n

log

P

(t)

X

n

(x

n

)

P

X

n

(x

n

)

� R

)

;

and

�

� =

1

t

supfR 2 R : � (R) > 0g �

1

n

D

1�t

(X

n

k

�

X

n

)

� 0; (21)

where (21) follows from Lemma 7 in Appendix A, and the non-negativity [5℄ of the R�enyi

divergene D

1�t

(X

n

k

�

X

n

). This indiates the existene of �� > 0 suh that ��

(t)

(Æ) > ��, whih

immediately gives that for n 2 N suÆiently large,

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� Æ

�

� e

�n��

:

Therefore, for n 2 N suÆiently large,

P

(t)

X

n

�

x

n

2 X

n

: Æ >

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

> �� Æ

�

� P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

> �� Æ

�

�P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

� Æ

�

� 1� e

�n�

� e

�n��

: (22)

Let I

1

4

= (�� Æ; b

1

), and

5

I

k

4

= [b

k�1

; b

k

) for 2 � k � L

4

=

�

2Æ � �

2Æ

�

;

where b

k

4

= (�� Æ) + 2kÆ for 1 � k < L, and b

L

4

= Æ. By (22), there exists 1 � k(n) � L suh

that

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

2 I

k(n)

�

�

1� e

�n�

� e

�n��

L

; (23)

5

Note that when � < 0, L � 2; so the de�nition is well-established. However, in ase � = 0, we just take

L = 1, and I

1

= (�Æ; Æ).
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for n 2 N suÆiently large. Then, by letting R

1

4

= lim sup

n2N ;n!1

b

k(n)

+ Æ, we obtain that for

n 2 N suÆiently large,

P

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n
(x

n

)

P

X

n

(x

n

)

� R

1

�

� P

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n
(x

n

)

P

X

n

(x

n

)

2 I

k(n)

�

:

However, for suÆiently large n 2 N , we have that:

P

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

2 I

k(n)

�

=

X

n

x

n

2X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

2I

k(n)

o

P

�

X

n

(x

n

)

=

X

n

x

n

2X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

2I

k(n)

o

e

�tD

1�t

(X

n

k

�

X

n

)

e

(1�t) log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

P

(t)

X

n

(x

n

)

� e

�tD

1�t

(X

n

k

�

X

n

)

e

(1�t)nb

k(n)�1

X

n

x

n

2X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

2I

k(n)

o

P

(t)

X

n

(x

n

)

= e

�tD

1�t

(X

n

k

�

X

n

)

e

(1�t)nb

k(n)�1

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n
(x

n

)

P

X

n

(x

n

)

2 I

k(n)

�

�

1� e

�n�

� e

�n��

L

e

�tD

1�t

(X

n

k

�

X

n

)

e

(1�t)nb

k(n)�1

:

Consequently,

�(R

1

)

(a)

= lim inf

n!1

�

1

n

logP

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n
(x

n

)

P

X

n

(x

n

)

� R

1

�

� lim inf

n2N ;n!1

�

1

n

logP

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� R

1

�

� lim sup

n2N ;n!1

�

t

1

n

D

1�t

(X

n

k

�

X

n

)

�

+ lim inf

n2N ;n!1

�

�(1� t)b

k(n)�1

�

= t lim inf

n2N ;n!1

1

n

D

1�t

(X

n

k

�

X

n

)� (1� t) lim sup

n2N ;n!1

b

k(n)�1

(b)

= t lim sup

n!1

1

n

D

1�t

(X

n

k

�

X

n

)� (1� t) lim sup

n2N ;n!1

b

k(n)�1

� t lim sup

n!1

1

n

D

1�t

(X

n

k

�

X

n

)� (1� t) lim sup

n2N ;n!1

b

k(n)

+ 2Æ(1� t)

= t lim sup

n!1

1

n

D

1�t

(X

n

k

�

X

n

)� (1� t)R

1

+ 3Æ(1� t);

where equality (a) holds sine �(R) admits a limit, and equality (b) follows from the de�nition

of N in (20).
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We observe that the onvexity ondition for �(R) given in the above theorem is not neessary

for the expression of the reverse �-uto� rate to be given by the

1

1��

-divergene rate. This is

illustrated in the following example, where we show that �(R) is not onvex while

R

(r)

0

(�jXk

�

X) = lim

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

) for 0 < � < 1:

Example 5: Let P

�

X

n

(a

n

) = 1 � e

�2n

and P

�

X

n

(b

n

) = e

�2n

, where a

n

6= b

n

and a

n

; b

n

2 X

n

.

Also, let P

X

n

(a

n

) = 1 � e

�n

and P

X

n

(b

n

) = e

�n

, where 0 <  < 2. Then, the log-likelihood

ratio, Z

n

, is given by

Z

n

= log

P

�

X

n

(

�

X

n

)

P

X

n

(

�

X

n

)

=

8

>

>

<

>

>

:

log

1� e

�2n

1� e

�n

; with probability (in P

�

X

n

) 1� e

�2n

�(2� )n; with probability (in P

�

X

n
) e

�2n

;

whih implies that

�(R) = lim

n!1

�

1

n

logPr

�

1

n

Z

n

� R

�

=

8

>

>

<

>

>

:

0; for R � 0

2; for � (2� ) � R < 0

1; for R < �(2� ):

Note that �(R) in not onvex but R + �(R) = 0 for R = 0. Note also that ondition (16)

is satis�ed sine P

X

n

(�) and P

�

X

n
(�) are absolutely ontinuous with respet to eah other. Let

us �rst ompute the �-divergene rate between X

n

and

�

X

n

, where � > 1. The normalized

n-dimensional �-divergene is given by

1

n

D

�

(X

n

k

�

X

n

) =

1

n(�� 1)

log

�

(1� e

�n

)

�

(1� e

�2n

)

1��

+ e

�n�

e

�2n(1��)

�

:

We have the following three ases.

1. �+2�2� > 0. Note that e

�n

and e

�2n

approah 0 as n!1 and that e

�n�

e

�2n(1��)

=

e

�n(�+2�2�)

; whih also approahes 0 as n ! 1. Hene, the �-divergene rate is equal

to 0 sine the argument of the logarithm! 1 as n!1.

2. � + 2 � 2� < 0. In this ase, sine e

�n(�+2�2�)

! 1 as n ! 1, the argument of the

logarithm, for large n, is dominated by e

�n(�+2�2�)

. Hene

lim

n!1

1

n

D

�

(X

n

k

�

X

n

) = lim

n!1

�

n(� + 2� 2�)

n(�� 1)

=

� + 2� 2�

1� �

�
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3. �+ 2� 2� = 0. Clearly, the �-divergene rate is equal to 0 in this ase.

Let us now ompute the reverse �-uto� rate. First, we need to ompute D

�

e

(EjXk

�

X) using

Proposition 4. We have the following ases.

� E > 2. We have that

R + �(R) + [E � �(R)℄

+

=

8

>

>

<

>

>

:

R + E; for R � 0

R + E; for � (2� ) � R < 0

1; for R < �(2� ):

Hene

D

�

e

(EjXk

�

X) = inf

R2R

�

R + �(R) + [E � �(R)℄

+

	

= E � 2 + :

� 0 <  < E � 2. In this ase

R + �(R) + [E � �(R)℄

+

=

8

>

>

<

>

>

:

R + E; for R � 0

R + 2; for � (2� ) � R < 0

1; for R < �(2� ):

Hene, D

�

e

(EjXk

�

X) = .

� 0 < E � . In this ase

R + �(R) + [E � �(R)℄

+

=

8

>

>

<

>

>

:

R + E; for R � 0

R + 2; for � (2� ) � R < 0

1; for R < �(2� ):

Hene, D

�

e

(EjXk

�

X) = E.

The reverse �-uto� rate is the E-axis interept of the line of slope � passing by the point

(2; ) as illustrated in Figure 7. By straightforward alulation, we get that

R

(r)

0

(�jXk

�

X) = �



�

+ 2:
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For � = 1=(1� �), we get that

R

(r)

0

(�jXk

�

X) =

� + 2� 2�

1� �

�

Sine, by de�nition, R

(r)

0

(�jXk

�

X) � 0, it is straightforward to hek that

R

(r)

0

(�jXk

�

X) = lim

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

) for 0 < � < 1:

Note that for this example, sine the �-divergene rate is always �nite , it follows diretly that

�

max

= 1.

We �nally present a lass of soures with memory (ountable or ontinuous alphabet) for

whih the reverse �-uto� rate is given by the R�enyi

1

1��

-divergene rate for all 0 < � < 1.

Corollary 1 Consider the hypothesis testing problem between soures with memory suh that

the log-likelihood ratio proess fZ

n

g where Z

n

= log

P

�

X

n

(

�

X

n

)

P

X

n
(

�

X

n

)

, satis�es both hypotheses of the

G�artner-Ellis Theorem [2, p. 15℄:

� �(�)

4

= lim

n!1

1

n

�

n

(�) exists for all � 2 R,

� � is di�erentiable on d

'

, where d

'

4

= f� : �(�) <1g;

where �

n

(�)

4

= logE

P

�

X

n

[e(�Z

n

)℄: Then the reverse �-uto� rate satis�es

R

(r)

0

(�jXk

�

X) = lim

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

) for 0 < � < 1:

Proof: We will prove the result for ountable alphabets. The required modi�ations for the

ontinuous alphabet ase are straightforward. We need to show that for soures satisfying the

G�artner-Ellis Theorem, the R�enyi divergene rate exists, that the onditions of Theorem 2

hold and that �

max

= 1. First, the R�enyi divergene rate exists and �

max

= 1 from the �rst

hypothesis of the G�artner-Ellis Theorem and the fat that

1

n

D

1

1��

(X

n

k

�

X

n

) =

1� �

�

1

n

�

n

�

1

� � 1

�

:

Next, by the G�artner-Ellis Theorem, we have that

�(R) = sup

��0

f�R� �(�)g :
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Clearly, �(R) admits a limit and is onvex in R. Let us show that there exists an R suh that

R + �(R) = 0. First, note that E

P

�

X

n

[e(�Z

n

)℄ = 1 for � = 0 and � = �1. Hene, �(�) = 0 for

� = 0 and � = �1. This implies that

�(R) +R = sup

��0

[(� + 1)R� �(�)℄ � [(� + 1)R� �(�)℄j

�=�1

= 0: (24)

Observe that

e

�

n

(�)

= E[e

�Z

n

℄ =

X

e

� log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

P

�

X

n

(x

n

)

=

X

e

(�+1) log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

P

X

n

(x

n

)

� e

(�+1)

P

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

P

X

n
(x

n

)

= e

(�+1)[�D(X

n

k

�

X

n

)℄

; (25)

where D(�k�) is the Kullbak-Leibler divergene and (25) follows by Jensen's inequality. This

implies that

�

(� + 1)R

n

�

1

n

�

n

(�)

�

� 0 for all � � 0;

where R

n

= �

1

n

D(X

n

k

�

X

n

). As a result,

8

<

:

lim sup

n!1

�

(� + 1)R

n

�

1

n

�

n

(�)

	

= (� + 1) lim inf

n!1

R

n

� �(�) � 0; for � < �1

lim inf

n!1

�

(� + 1)R

n

�

1

n

�

n

(�)

	

= (� + 1) lim inf

n!1

R

n

� �(�) � 0; for 0 � � � �1

Therefore

�(lim inf

n!1

R

n

) + lim inf

n!1

R

n

� 0:

On the other hand, by (24), we have that

�(lim inf

n!1

R

n

) + lim inf

n!1

R

n

� 0:

Hene

�(lim inf

n!1

R

n

) + lim inf

n!1

R

n

= 0:

Remark 3: By Corollary 1, for i.i.d. �nite-alphabet observations (in this ase, G�artner-Ellis

Theorem redues to Cramer's Theorem), our result in Theorem 2 redues to Csisz�ar's result

[5℄; i.e., the reverse �-uto� rate is given by the R�enyi divergene with parameter

1

1��

, for

0 < � < 1.
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Remark 4: The above orollary holds for the lass of �nite-alphabet irreduible Markov soures

sine the latter satisfy both hypotheses of the G�artner-Ellis Theorem. Indeed, the �-divergene

rate exists and is di�erentiable; furthermore, it admits a simple omputable expression [14℄.

Numerial Examples:

We briey present two examples of memoryless soures where we expliitly verify the existene

of R suh that R + �(R) = 0.

Example 6: Finite-alphabet memoryless soures: Consider Example 1 in Setion 4 where X

and

�

X are interhanged. Note that �(R) is equal to �(R) in this ase. It is straightforward to

hek that R + �(R) = 0 for R approximately �0:13.

Example 7: Continuous alphabet memoryless soures: Consider Example 2 in Setion 4 where

X and

�

X are interhanged. Note that �(R) is equal to �(R) in this ase. By straightforward

alulation we get that R + �(R) = 0 for R = �2�

2

.

7 Conlusions

We examined the forward and reverse �-uto� rates for the hypothesis testing problem be-

tween arbitrary soures with memory (not neessarily Markovian, ergodi, stationary, et.) of

arbitrary alphabet (ountable or ontinuous). We showed that the forward �-uto� rate is

given by the lim inf �-divergene rate, where � =

1

1��

and � < 0. Under two onditions on

the large deviation spetrum, �(R), we showed that the reverse �-uto� rate is given by the

�-divergene rate, where � =

1

1��

and 0 < � < �

max

. For �

max

� � < 1, we provided an

upper bound to the reverse �-uto� rate. We also investigated soures with memory (ountable

or ontinuous alphabet) that satisfy the hypotheses of the G�artner-Ellis Theorem. We showed

that the onditions on �(R) are satis�ed and that the reverse �-uto� rate is given by the R�enyi

divergene rate. A diret onsequene is that, for i.i.d. observations, our result indeed redues

to Csisz�ar's result, hene providing a simple expression for the reverse �-uto� rate in terms

of the R�enyi divergene. Another onsequene is that, for �nite-alphabet irreduible Markov

soures, the reverse �-uto� rate is given by the R�enyi divergene rate whih an be omputed

using Perron-Frobenius theory [14℄. We also provided several numerial examples to illustrate

our forward and reverse �-uto� rates results.
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Future work may inlude the study of Csisz�ar's hannel oding �-uto� rates [5℄ for arbitrary

disrete hannels with memory using our information spetrum tehniques.

Appendix A: Properties of � and �(R)

Lemma 5 For 0 < t < 1,

�

4

= supfR : �

(t)

(R) > 0g � lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

):

Proof: For any � > 0,

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

> lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

) + 2�

�

� P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

>

1

n

D

1�t

(X

n

k

�

X

n

) + �

�

for n 2 N suÆiently large;

where N is de�ned in (9). But

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

>

1

n

D

1�t

(X

n

k

�

X

n

) + �

�

= P

(t)

X

n

�

x

n

2 X

n

: �

1

n

�

log

P

�

X

n
(x

n

)

P

X

n

(x

n

)

+D

1�t

(X

n

k

�

X

n

)

�

> �

�

= P

(t)

X

n

�

x

n

2 X

n

:

t

n

�

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

+D

1�t

(X

n

k

�

X

n

)

�

< ��t

�

= P

(t)

X

n

(

x

n

2 X

n

:

1

n

log

P

(t)

X

n

(x

n

)

P

X

n

(x

n

)

< ��t

)

(26)

= P

(t)

X

n

n

x

n

2 X

n

: P

(t)

X

n

(x

n

) < e

�n�t

P

X

n

(x

n

)

o

� e

�n�t

P

X

n

n

x

n

2 X

n

: P

(t)

X

n

(x

n

) < e

�n�t

P

X

n

(x

n

)

o

� e

�n�t

;

where (26) follows from (8). Thus for n 2 N suÆiently large,

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

) + 2�

�

� 1� e

�n�t

;

whih implies

�

(t)

�

lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

) + 2�

�

= lim inf

n2N ;n!1

�

1

n

logP

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

) + 2�

�

� lim sup

n2N ;n!1

�

1

n

log

�

1� e

�n�t

�

= 0:
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Consequently,

sup

�

R : �

(t)

(R) > 0

	

� lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

) + 2�:

The proof is ompleted by noting that � an be made arbitrarily small.

Lemma 6 For 0 < t < 1, if lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

) < K, then

�

4

= supfR : �

(t)

(R) > 0g > �1:

Proof: By (8), we get that

P

(t)

X

n

(x

n

) = e

tD

1�t

(X

n

k

�

X

n

)

e

(1�t) log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

P

�

X

n

(x

n

):

Hene,

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� R

�

� e

tD

1�t

(X

n

k

�

X

n

)

e

(1�t)nR

P

�

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� R

�

� e

tD

1�t

(X

n

k

�

X

n

)

e

(1�t)nR

;

whih implies that

�

(t)

(R) � �t lim sup

n2N ;n!1

1

n

D

1�t

(X

n

k

�

X

n

)� (1� t)R:

Therefore,

� � �

t

1� t

lim sup

n2N ;n!1

1

n

D

1�t

(X

n

k

�

X

n

):

This shows that � = �1 implies that

lim sup

n2N ;n!1

1

n

D

1�t

(X

n

k

�

X

n

) = lim

n2N ;n!1

1

n

D

1�t

(X

n

k

�

X

n

) = lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

) =1;

ontraditing the assumption that lim inf

n!1

(1=n)D

1�t

(X

n

k

�

X

n

) < K.
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Lemma 7 We have the following:

supfR 2 R : � (R) > 0g � 0:

Proof: For any � > 0,

P

(t)

X

n

(

x

n

2 X

n

:

1

n

log

P

(t)

X

n

(x

n

)

P

X

n

(x

n

)

� ��

)

= P

(t)

X

n

n

x

n

2 X

n

: P

(t)

X

n

(x

n

) � e

�n�

P

X

n

(x

n

)

o

� e

�n�

P

X

n

n

x

n

2 X

n

: P

(t)

X

n

(x

n

) � e

�n�

P

X

n

(x

n

)

o

� e

�n�

;

whih implies �(��) � �. Hene, the lemma holds.

Appendix B: Properties of �

Lemma 8 For t < 0, � � 0.

Proof: Observe that for R > 0,

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n
(x

n

)

P

X

n

(x

n

)

> R

�

� e

�nR(1�t)+tD

1�t

(X

n

k

�

X

n

)

P

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

> R

�

� e

�nR(1�t)+tD

1�t

(X

n

k

�

X

n

)

� e

�nR(1�t)

;

where the last inequality follows from the non-negativity of D

1�t

(X

n

k

�

X

n

). This implies that

for R > 0,

�

(t)

(R) � lim inf

n2N ;n!1

�

1

n

log

�

1� e

�nR(1�t)

�

= 0;

whih immediately implies that � � 0.
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Lemma 9 For 0 > t > �

max

=(�

max

� 1), � > �1.

Proof: If � = �1, then �

(t)

(R) = 0 for every R 2 R. Hene, by hoosing any Æ > 0 satisfying

t > t� Æ > �

max

=(�

max

� 1), we have:

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� R

�

� e

tD

1�t

(X

n

k

�

X

n

)�(t�Æ)D

1�(t�Æ)

(X

n

k

�

X

n

)+ÆnR

P

(t�Æ)

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n
(x

n

)

P

X

n

(x

n

)

� R

�

� e

�(t�Æ)D

1�(t�Æ)

(X

n

k

�

X

n

)+ÆnR

;

whih implies that

0 = �

(t)

(R) � (t� Æ) lim sup

n2N ;n!1

1

n

D

1�(t�Æ)

(X

n

k

�

X

n

)� ÆR:

This indiates that

lim sup

n!1

1

n

D

1�(t�Æ)

(X

n

k

�

X

n

) � lim sup

n2N ;n!1

1

n

D

1�(t�Æ)

(X

n

k

�

X

n

) �

Æ

t� Æ

R for every R 2 R;

or equivalently,

lim sup

n!1

1

n

D

1�(t�Æ)

(X

n

k

�

X

n

) =1;

whih ontradits the assumption on �

max

.
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