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Abstract

In [5], Csiszéar established the concept of forward S-cutoff rate for the error exponent
hypothesis testing problem based on independent and identically distributed (i.i.d.) ob-
servations. Given 8 < 0, he defined the forward S-cutoff rate as the number Ry > 0 that
provides the best possible lower bound in the form S(E — Ry) to the type 1 error exponent
function for hypothesis testing where 0 < E < Ry is the rate of exponential convergence
to 0 of the type 2 error probability. He then demonstrated that the forward S-cutoff rate
is given by Dy 1_g)(X|[|X), where Dy (X||X) denotes the a-divergence [15], a > 0, a # 1.
Similarly, for 8 > 0, Csiszar also established the concept of reverse g-cutoff rate for the
correct exponent hypothesis testing problem.

In this work, we extend Csiszar’s results by investigating the forward and reverse (-
cutoff rates for the hypothesis testing between two arbitrary sources with memory. We
demonstrate that the liminf a-divergence rate provides the expression for the forward [-
cutoff rate. Under two conditions on the large deviation spectrum, p(R), we show that the
reverse f-cutoff rate is given by the a-divergence rate, where a = ﬁ and 0 < 8 < Bmax,
where fpax is the largest 8 < 1 for which the lim sup ﬁ—divergence rate is finite. In
particular, we examine i.i.d. observations and sources that satisfy the hypotheses of the
Gértner-Ellis Theorem. Unlike [3] where the alphabet for the source coding cutoff rate
problem was assumed to be finite, we assume arbitrary (countable or continuous) source
alphabet. We also provide several numerical examples to illustrate our forward and reverse
B-cutoff rates results.

Index Terms: Hypothesis testing error and correct exponent, forward and reverse [3-cutoff
rates, information spectrum, a-divergence rate, arbitrary observations with memory.
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1 Introduction

In [5], Csiszar established the concept of forward S-cutoff rate for the hypothesis testing problem
based on independent and identically distributed (i.i.d.) observations. Given 8 < 0, he defined
the forward [-cutoff rate as the number Ry > 0 that provides the best possible lower bound
in the form B(E — Rp) to the type 1 error exponent function for hypothesis testing where
0 < E < Ry is the rate of exponential convergence to 0 of the type 2 error probability. He
then demonstrated that the forward S-cutoff rate is given by D) (X || X), where Do (X || X)
denotes the a-divergence, o > 0, o« # 1. Similarly, Csiszar also established the concept of
reverse [-cutoff rate for the hypothesis testing problem based on i.i.d. observations. Given
B > 0, he defines the reverse [-cutoff rate as the number Ry > 0 that provides the best
possible lower bound in the form S(E — Ry) to the type 1 correct exponent (or reliability)
function for hypothesis testing where 0 < Ry < E is the rate of exponential convergence to 0
of the type 2 error probability. He then demonstrated that the reverse S-cutoff rate is given by
D1 j1-p)(X]|X). These results provide a new operational significance for the a-divergence.

The error exponent for the binary hypothesis testing problem has been thoroughly studied
for finite state i.i.d. sources and Markov sources. The results for i.i.d. sources can be found
in [6], [9], [10], and for irreducible Markov sources in [1], [12]. The error exponent for testing
between ergodic Markov sources with continuous state-space under certain additional restric-
tions was established in [11]. In its full generality, i.e., for arbitrary sources (not necessarily
stationary, ergodic, etc.), the error exponent was studied in [4], [7], [8].

In the sequel, we extend Csiszar’s results by investigating the forward and reverse [-cutoff
rates for the hypothesis testing between two arbitrary sources with memory. We demonstrate
that the liminf a-divergence rate provides the expression for the forward [S-cutoff rate. Our
proof relies in part on the formulas established in [7], and extensions of the techniques used in
[3] that generalize Csiszar’s source coding cutoff rate results for arbitrary discrete sources with
memory. Unlike [3] where the source alphabet was assumed to be finite, we assume arbitrary
(countable or continuous) source alphabet. The techniques used in our proof are a mixture
of the techniques used in deriving the forward and reverse [-cutoff rates for source coding [3].
However, some new techniques are also needed to obtain our result.

We also investigate the reverse fJ-cutoff rate problem for arbitrary sources with memory.

We show that if the log-likelihood ratio large deviation spectrum, p(R), is convex and if there



exists an R € R such that p(R) + R = 0, then the a-divergence rate with o = ﬁ provides
the expression for the reverse [J-cutoff rate for 0 < 8 < Bmax, where Sy is the largest < 1
for which the limsup ﬁ—divergence rate is finite. For 1 > # > [Bax, we only provide an
upper bound to the reverse (-cutoff rate. However, our result does reduce to Csiszar’s result
for finite-alphabet i.i.d. observations for 0 < 8 < 1. We also examine sources with memory
(countable or continuous alphabet) which satisfy the Gértner-Ellis Theorem. We show that in
this case, the above conditions on p(R) are satisfied and that the reverse S-cutoff rate is given
by the ﬁ—divergence rate.

The rest of the paper is organized as follows. In Section 2, we briefly recall previous results by
Han [7] on the general expression for the Neyman-Pearson type 2 error subject to an exponential
bound on the type 1 error. In Section 3, we establish the formula for the forward g-cutoff rate
and illustrate it numerically in Section 4. In Section 5, we recall the general expression for the
reliability function of the type 2 probability of correct decoding [7] and formulate the reverse
[-cutoff rate problem by carefully examining the inconsistency of definitions in [5] and [7].
In Section 6, we investigate the reverse [-cutoff rate and illustrate it numerically. Finally, in

Section 7, we conclude with a summary along with several directions for future work.

2 Hypothesis Testing Error Exponent
Let us first define the general source as an infinite sequence

X = (g, & { = (kL x )

n=1

of n-dimensional random variables X" where each component random variable Xi(n) (1<i<n)
takes values in an arbitrary (countable or continuous) set X’ that we call the source alphabet.
Given two arbitrary sources X = {X"}>°, and X = {X"} taking values in the same source
alphabet {X"}2°,, we may define the general hypothesis testing problem with X = {X"}> |
as the null hypothesis and X = {X"}>° as the alternative hypothesis.

Let A, be any subset of X, n = 1,2,... that we call the acceptance region of the hypothesis
testing, and define

Lin 2 PriX"¢ A,} and )\, 2 PriX"e A,}

where pu,, A, are called type 1 error probability and type 2 error probability, respectively.



Definition 1 [5] Fix £ > 0. A rate r is called E-achievable if there exists a sequence of

acceptance regions A,, such that

1 1
liminf ——log pu, > r and liminf——log\, > F.
n

n—00 n n—00

Definition 2 The supremum of all E-achievable rates is denoted by D, (E|X||X):
D.(E|X]||X) 2 sup{r > 0 : r is E-achievable},

and D,(E|X]||X) = 0 if the above set is empty (which is a degenerate uninteresting case). The
dual of the function D,(E|X||X) is defined as:

B.(r|X||X) 2 sup{E > 0 : E is r-achievable},

and B,(r|X||X) = 0 if the above set is empty.

Proposition 1 [7] Fix r > 0. For the general hypothesis testing problem, we have that
B.(rIX[X) = inf{R +n(R) : n(R) <},

where!

_= _— —_ -~ 7 <
n(R) hgr_l)gjlf " log Pr {n log Pon(X7) = R,

is the large deviation spectrum of the normalized log-likelihood ratio.

For the sake of simplicity, we assume throughout that the source alphabet is countable.
However, we will point out the necessary modifications in the proofs for the case of a continuous

alphabet. The above proposition is the main tool for our key lemma in the following section.

If the source alphabet X is continuous, then Px» (X™) plays the role of the density function fx»(X").
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3 Forward (B-Cutoff Rate Between Arbitrary Hypothe-

ses

Definition 3 [5] Fix < 0. Ry > 0 is a forward [-achievable rate for the general hypothesis
testing problem if
D.(E[X||X) > B(E — Ry)

for every E > 0, or equivalently,

&mm&zm+g

for every » > 0. The forward -cutoff rate is defined as the supremum of all forward -achievable

rates, and is denoted by R(()f) (B1X||X).

Note that in the degenerate case where D, (E|X]|X) is identically 0, we have that R[()f) (BIX||X) =
0. We herein assume that D.(E|X]||X) is not 0 for all values of E. A graphical illustration of
the forward [S-cutoff rate, Réf)(B|X||X), for testing between two arbitrary sources X and X is
given in Figure 1.

Before stating our main result, we first observe in the next lemma that the forward S-cutoff

rate R(()f)(B|X||X) is indeed the R-axis intercept of a support line of slope % to the large
deviation spectrum n(R).
Lemma 1 Fix § < 0. The following conditions are equivalent.

(VReR) n(R) > ﬁ(Ro — R) (1)
and

(9> 0) Be(rlX|[X) > Ro+ 7. (2)
Proof:

a) (1) = (2). For any r > 0, we obtain by Proposition 1 that

(V(S > 0)(E|R5 with ’I](RJ) < T‘) BE(T|X||X) +0 > Rs + 77(R5).



Therefore

Be(r|X[[X) > Rs+n(Ry) =0
> Ry—5+B§TH%—Rﬂ (3)
s e
> —5+6€1R0—61ﬁ)1+% (4)
- % + Ry — 0, (5)
where (3) follows from (1), and (4) holds because
>Ry > (- )

Since 0 can be made arbitrarily small, the proof of the forward part is completed.
b) (2) = (1). Inequality (1) holds trivially for those R satisfying n(R) = oco. For any R € R
with n(R) < oo, let rs 2 n(R) + ¢ for some 6 > 0. Then (by Proposition 1)

B.(rs|XIIK) < R+ n(R).
Therefore

n(R) = Be(rs|X||X) - R

> R+ % ~R (6)
)
T
where (6) follows by (2). Thus,
B 0
n(R) > ﬁ(Ro - R)+ 51

Since 0 can be made arbitrarily small, the proof of the converse part is completed.



Theorem 1 (Forward [B-cutoff rate formula). Fix § < 0. For the general hypothesis
testing problem,

([3|X||X)—11m1nf D (X”||X”)

where

ni|yn A
Da(X"]1X") £ —

" log ( > (Prela) P (x”)]”)

zheX "

is the n-dimensional a-divergence.?

Proof: Note that n(R) > 0 for some®* R € R.

1. Forward part: Ro (5|X||X) > liminf, ID (XnHXn)

By the equivalence of conditions (1) and (2 ), 1t suffices to show that

(VR € R) 5(R) > % <l1m1nf Lp L (xx) - R) |

n— 00

Indeed, we have the following.

1 Pxn (X™ —tlog Bxn(X")
Pr {—logggR} = Pr{e o8 () >e”tR}, fort >0

et ( Y [P (@) Psa (fr”)]t> (7)

~ exp {—nt (%Dl_t(X”HX”) - R) } ,

for 0 < t < 1, where (7) follows by Markov’s inequality. Therefore

IN

1 _
n(R) > t<liminf—D1_t(X”||X”)—R>

_ P (hmmf D (X" X7) - R), forﬂéti«).

B-1 -1

2If the source alphabet is continuous, i.e., it admits a density fxn(:), then the n-dimensional a-divergence

is given by

DL (XX £

3If n(R) =0 for all R € R, then

B.(r|X||X) = inf {R + n(R)|n(R) < r} = inf {R} = —c0
RER RER

contradicting that B, (r|X||X) is, by definition, an exponent and should be always non-negative.
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2. Converse part: R (8|X||X) < liminf,_,o iD (X"||X")

The converse holds trivially if liminf, 1D (X”||X”) is infinite. Hence we can as-
sume that liminf, nD 1 (X”||X”) < K, Where K is some constant. By the equivalence
of conditions (1) and (2), 1t suffices to show that for any 6 > 0 arbitrarily small, there exists

R = R(5) € R such that

n(R) < b (36+11m1nf D1 (X”||X”) R).

ﬁ — n—00
Consider the twisted distribution defined as:
© (pny 2 [P (a™)] [P (2)]
Pel) = o P @ P @)
= e {t og P 4 oy | e ), )

where t = 3/(5 —1). Note that 0 < ¢t < 1. Let N be a set of positive integers such that

: 1 n|lyn : : 1 nijlyn
lim  —Dyja-p) (X" X") = liminf ~Dyyq_g (X" X7), (9)

neN,n—o00 1

and define
r2 sup{R € R : nV(R) > 0},

where

1 1. Pyu(a)
M(R) 2 liminf —~1logP{) {a" € A" : —log 2" <
o (E) nel/{fnnlgoo n 08 T € ‘n °8 Pgn(z™) — By,

is the twisted large deviation spectrum of the normalized log-likelihood ratio with parameter t,
and 7 satisfies (cf. Lemmas 5 and 6 in Appendix A) that

1
—c0 <7< lim =D (X"|X") = hmlnf D1 (XXM < K.

neN,n—oco 1

We then note by definition of n®(-) and the finiteness property of 7 that for any § > 0, there
exists € > 0 such that:
PXTL (./L'n)

1 1
n(r —6) = liminf —= log P{) {x" e X" logi
Pgn (")

neN,n—oco 1

gT—cS} >e > 0.
As a result,

P n
P/@L {x” e X" 1OgP7E‘T; > T — (5} >1—e ™ for n € N sufficiently large.
XTL



On the other hand, define

= A n n PX"(‘T”)
T(R) = nlgljr\fn;gf;o—— logPs(Z {:r € x": logm > R}

and

F2inf{ReR:7O(R) > 0}.

Then by noting that

Py (z") _ 1. PO
loizD_Xan——l -
8P D (X X") = —log Pon(27)
we have:
t _
and
B 1 1 ni|lyn
T= = sup{ReR:0(R) >0} + EDl_t(X | X™)
1 _
< ﬁlet(XnHXn) (10)
< K for n € N sufficiently large, (11)
where

1 1 PO (am
U(R)énle%n;gio—ﬁlogP(Z{ eax” logp;‘iniEx;SR},

(10) follows from Lemma 7 in Appendix A, and (11) holds by definition of K. This indicates the
existence of & > 0 such that 7 (K) > &, which immediately gives that for n € A sufficiently
large,

ﬁ;rizK}Sf

P {x“ eX": = lo
Therefore, for n € N sufficiently large,

1. Pxn(a"
P)(p)z{x 6Xﬂ'K>nlOgP§7§i”;>T_6}
")
")

1. P
= P)((t%{xnezl’"' log ———= oo 7—6}
Pin(x

1 Py (z™)
o {x eX": — logxizK}
* Py (a")
1 —e™ " —e " (12)

v



Let Il é (T — 5, bl), and

I £ [be_y,by) for 2<k<LZ2 [ww

20

where by, £ (1 —9) +2ko for 1 <k < L, and by, K. By (12), there exists 1 < k(n) < L such
that

1 Pxn (z™ 1—e™ —em*
P;((T)L {x SV " log% € Ik(n)} > i ; (13)

for n € N sufficiently large. Then, by letting R; 2 lim SUPpeA n—soo Ok(n) + 0, We obtain that for
n € N sufficiently large

1. Pyl

1. Pxa(z"
Pxn {x“exn:—l og ) <R1} > Pxn {x”eX”:—logix @) Efk(m}-
n n

Pgn(z") Pgn(zm)

However, for sufficiently large n € A, we have that

1. Pyu(a) }
Pxn x"EX”'—lg el
X{ Pya(w > H

{x"EX" Llog %le(n)}
P)’(n(zn)

_ > o (e FEER+DI-OIEY) b (14)

X?’L
{:c"EX" L log Pigxnielk(n)}
> e (b1t D1 (XTIX™) 3y P (")

{:Cne)(n 1 log PX Exnieh‘:(n)}
n
— 7nt(fbk(n),1+%D1_t(X"||X”))P(t) E xn - 1 l PX" (.T ) el
‘ X % Py T

> 1- 6"2_ < e*nt(*bk(n)flJr%Dl—t(X"HXn)), (15)

where (14) follows from (8), and (15) follows from (13). Consequently
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1 1
n(R;) = liminf——log Pxn {x” € X" : —log

n—00 n

VAN

. 1 1. Pyu(z)
1 f ——log Pxn "Te X" Zlog—— L <
Jiminf ——log Py { €A Tloe g —Rl}

VAN

1 _
t<— lim sup bk(n)—l + liminf —D; ,(X"||X™)

neN n—so0 neN,n—oo N

VAN

1 _
t <— limsup by(n) + 20 + lim inf—Dlt(X”HX”))
n—oo 71

neN ,n—o0

1 _
n—oo 71

Since 0 can be made arbitrarily small, the proof is completed. ]

Observations:

A. While the proof of the forward part is straightforward, the proof of the converse part
is considerably more complex. The objective of the converse part is to demonstrate that if
liminf,, o =Dy (X"||X™) is slightly shifted to the right (by a factor of 36), then there exists
a coordinate R such that a straight line of slope 5/(1 — () given by

y = % (35 + liﬁglf%Dl_t(Xn“Xn) - R)
lies above the curve of n(R) at R = R, thus violating its status of support line for n(R).

This proof is established by observing that the desired coordinate R lies in a small neigh-
borhood of 7, where 7 is the smallest point for which n(t)(R) vanishes. A key point is to choose
the twisted parameter ¢ to be equal to /(5 — 1) which is the negative slope of the support line
to n(R). We graphically illustrate this observation (based on a true example involving binary

memoryless sources) in Figure 2. The computational details are described in Example 1 (cf.

Section 4).

B. Note also that the proof holds if the alphabet is countable or continuous as opposed to the
source coding forward and reverse f-cutoff rates results [3] where the finiteness property of the
alphabet is necessary. The modifications in the proof for the continuous case are clear. Simply,
replace the probability mass function by the probability density function and the summation

by integration. We graphically illustrate this observation (based on a true example involving
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memoryless Gaussian sources) in Figure 3. The computational details are described in Example

2 (cf. Section 4).

C. The proof of the hypothesis testing forward S-cutoff rate is more involved than the proof
of the source coding forward [-cutoff rate result given in [3]. The main difficulty arises from
the formula in Proposition 1 where the infimum for R is taken over the entire real line contrary
to Proposition 1 in [3] for source coding where R ranges from 0 to co. This requires us to
deal separately with the degenerate case 7 = —oo (cf. Lemma 6 in Appendix A). Also, the
technique used to prove the forward S-cutoff rate for hypothesis testing relies on the proofs of
both the source coding forward and reverse S-cutoff rates, but in major parts though similar to

the reverse source coding [-cutoff rate.

D. If the sources X and X are arbitrary (not necessarily stationary, irreducible) time-invariant
finite-alphabet Markov sources of arbitrary order, then we know that the a-divergence rate
exists and can be computed [13], [14]. Thus in this case, the forward S-cutoff rate for testing
between Markov sources can be obtained. Also, from the definition of D,(E|X||X), it follows
directly that for all £ > 0,

De(EIXIR) 2 sup | 5(E — By (BX|I)].

Note that this convex lower bound is computable for the entire class of Markov sources, while
D.(E|X||X) is not necessarily computable in general (it is computable for irreducible Markov
sources [1], [12], see Figure 4). We graphically illustrate this observation for testing between
irreducible Markov sources in Figure 4 and arbitrary Markov sources (not necessarily stationary,
irreducible) in Figure 5. The computational details are described in Examples 3 and 4 (cf.

Section 4).

4 Numerical Examples for the Forward S-cutoff rate
Throughout this section, the natural logarithm is used.

Example 1 Finite-alphabet memoryless sources: Consider the binary hypothesis testing be-
tween two memoryless sources X = {X;}2°, and X = {X;}°, under the distributions (1/2,1/2)

and (1/4,3/4) respectively. Then the log-likelihood ratio Z = log gg; has the following dis-
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tribution:

Pr{Z =log(2)} =1— Pr{Z =log(2/3)} = 1/2.

By Cramer’s theorem [2, p. 9], we get that

(

00, R < —1log(3/2)
log(2), R = —log(3/2)
log(log(3/2)+R)flog(log(Q)fR)R

log(3)

n(R) =4 +5E75 log(log(3/2) + R)

182 10 log(2) — R)

3)
+ log(2) — log(log(3)), —log(3/2) < R < E[Z] =log(2) — log(3)/2

0, otherwise,

\
where E[Z] denotes the expectation of the random variable Z. Let R’ be the rate at which the
line of slope #/(1 — f3) is tangent to n(R). By straightforward calculations, we get that
log 3
Rl = log 2 — Lﬂ,
1+ 377
and that the forward S-cutoff rate, R (5|X||X) which is the R-axis intercept of the tangent
line of slope /(1 — B) to n(R), is given by
26 -1 B -
log?2 —
B B

On the other hand, the a-divergence between X under X is given by

D (BIX|1X) =

1 B
log (1 + 31—ﬂ) — log 3.

D, (X]|X) = ﬁ ((a —2)log2 +log(1+3")),

which yields
26 -1 B -
Dli (X||X) = 3 log2 — 3

Note that the forward [-cutoff rate, R(()f) (B]X||X), and the liminf a-divergence rate (which

1 B
log (1 + 31—ﬂ> — log 3.

is equal to the a-divergence since the sources are DMS) of order a = 1/(1 — ) are equal as
expected from Theorem 1. Let us now derive 7 in order to check that 7 = R'. First, we
need to compute 7 (R). The set A is equal to the set of natural numbers in this case. Note
that the distribution of the random variable Z®) under the twisted distribution with parameter

0 <t < 1is given by
W17 =log2} =1/(1 43" and PW{Z =1log(2/3)} = 3'/(1 + 3%).
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By Cramer’s Theorem (2, p. 9], we get that

f

00, R < —log(3/2)
log(1 + 31), R = —log(3/2)
t(R —log2)
log(log(3/2)+R)—log(log(2)—R)
BOR)={ T ) &
+ ‘;gg(/y log(log(3/2) + R)
+128 log(log(2) — R)
+1log(1 +3") —log(log(3)), —log(3/2) < R < E[Z"] = 122 +log(2/3) 125
0, otherwise,

\

where E[Z®)] denotes the expectation of the random variable Z(*). Therefore

t

1+3t

log 2
1+ 3t

+ log(2/3)

T =

It is easy to check that indeed we have 7 = R’ when the twisted parameter t is chosen to be

B/(B —1). This example is illustrated in Figure 2 for § = —

Example 2 Continuous alphabet memoryless sources: Consider the hypothesis testing problem
between two memoryless sources X = {X;}2, and X = {X;}2°, under the Gaussian distribu-
tions N (v, 1) and N(—v, 1) respectively, where N(a, b) represents a Gaussian distribution with
mean a and variance b. It is easy to check that the log-likelihood ratio Z = log E is Gaussian
distributed with mean 2v? and variance 412, which gives that the moment generating function
of Z is E[e??] = ¢*"0+2°%" By Cramer’s Theorem, we get that

L(R—-202%)% R<2?

n(R) =< _
0, otherwise.

Let R’ be the rate at which the line of slope /(1 — ) is tangent to n(R). We have that

1+5
1-p

Thus, the forward S-cutoff rate, R(()f)(ﬁ|X||)_(), which is the R-axis intercept of the tangent line
of slope /(1 — /3) to n(R), is given by

R = 21?

1
1-8

P (B1X]1X) = 202

14



On the other hand, the a-divergence between X under X is given by D, (X||X) = 212, which
yields

_ 1
_ 9,2 )
Do (X|18) = 20—

Note that the forward [-cutoff rate, R[()f) (B]X||X), and the liminf a-divergence rate (which
is equal to the a-divergence since the sources are DMS) of order @ = 1/(1 — ) are equal as
expected from Theorem 1.

Now, let us compute n(t)(R). The set N in this case is equal to the set of natural numbers.

For some normalization constant C',

i=1 i=1

N |

= C.exp {_ Dt +v)” + (1= 1) (a; — ”)2]}

1
= C-exp{—

which is a Gaussian distribution with mean (1 — 2¢)v and unit variance. Similarly, by invoking

DN |
=

(z7 4+ 2(2t — Vv, + 1/2)} ,
1

Cramer’s Theorem, we get that,

O (R) = (R+ (2t —1)20%)% R < (1-—2t)2°
’]7 =
0, otherwise.

Hence, 7 = (1 — 2¢)2v%. It is straightforward to check that 7 = R’ when the twisted parameter
t is chosen to be /(S — 1). This example is depicted in Figure 3 for g = —0.5.

Example 3 Irreducible finite-alphabet Markov sources: Suppose that X and X are two irre-
ducible Markov sources with arbitrary initial distributions and probability transition matrices

P and () defined as follows:

1/3 2/3 1/5 4/5

1/4 3/4 |’ 5/6 1/6
Define a new matrix R = (r;;) by

a l—«

Tij = pijqij_ , 14,7 =0,1

15



The a-divergence rate between X and X exists and is given by

1 - 1
lim —D,(X"|X") = log A,

n—oo 1 a—l

where )\ is the largest positive real eigenvalue of R [13], [14]. Hence the computation of the
convex lower bound for D,(E|X||X) is easily obtained as shown in Figure 4 for the values
f = -5,-3,-2-4/3,—-1,-2/3,-1/2,—2/5 (proceeding from left to right), where o = ﬁ
Note that in this case the convex lower bound is tight [1], [12].

Example 4 Arbitrary finite-alphabet Markov sources: Suppose that X and X are two arbitrary
Markov sources with arbitrary initial distributions and probability transition matrices P and

Q) defined as follows:

/2 1/2 0 0 0 /5 4/5 0 0 0
1/4 3/4 0 0 0 2/3 1/3 0 0 0
P=1 0 0 3/52/5 0 |, Q=1 0 0 1/2 1/2 0
0 1/6 5/6 0 0 0 1/6 5/6 0 0
/4 0 1/4 0 1/2 /8 0 1/2 0 3/8

Define a new matrix R = (r;;) by
’rij :p%qiljiaa Z:] - 071727374'

The a-divergence rate between X and X can be computed [13], [14]. Hence, the convex
lower bound for D,.(E|X||X) can be easily derived as shown in Figure 5 for the values 3 =

—5,-3,-2,—1,-2/3,-1/2,-2/5,—1/6 (proceeding from left to right), where oo = ﬁ

5 Hypothesis Testing Correct Exponent and Problem

Formulation

In [5], Csiszar investigated the hypothesis testing problem between i.i.d. observations by consid-
ering the S-cutoff rate for the exponent of the best correct probability of type 1 with exponential

constraint on the probability of type 2 error. More formally, he used the following definitions.
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Definition 4 Fix £ > 0. A rate r is called E-unachievable if there exists a sequence of

acceptance regions A,, such that

1 1
limsup ——log(l — p,) <r and liminf——log\, > E,
n

n—00 n—00

where u, and A\, are type 1 and type 2 error probabilities respectively. The infimum of all

E-unachievable rates is defined as:
D (E|X||X) 2 inf{r > 0 : r is E-unachievable},
and D! (E|X]||X) = oo if the above set is empty.

For 0 < r < Di(E|X||X), every acceptable region A, with liminf, ,o —=logA, > E

satisfies p, > 1 —e™"" for n infinitely often.

Definition 5 Fix § > 0. Ry > 0 is a reverse [-achievable rate for the general hypothesis
testing problem if
Dy (E|X|IX) > B(E — Ry)

for every £ > 0. The reverse S-cutoff rate is defined as the infimum of all reverse -achievable

rates, and is denoted by R\ (3]X||X).

However, in [7], Han investigated the general hypothesis testing problem between arbitrary
sources with memory by considering the exponent of the best correct probability of type 2 with
exponential constraint on the probability of type 1 error. More formally, he used the following

definition.

Definition 6 [7] Fix r > 0. A rate E is called r-unachievable if there exists a sequence of

acceptance regions A,, such that
. 1 . 1
liminf ——log y,, > r and limsup——log(l — \,) < E.
n—00 n n—00 n
The infimum of all r-unachievable rates is denoted by B (r|X||X):
Bz (r|X|[|X) 2 inf{E > 0: E is r-unachievable},

and B} (r|X]||X) = oo if the above set is empty.
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Proposition 2 [7] Fix r > 0. For the general hypothesis testing problem, we have that
B (+X[[X) = inf {R + p(R) + [ — p(R)[*).

where

1 1 Pya(a®
5(R) 2 lim —=log Py« 42" € X" —1ogM <Ry,
n—oo 1 n " Pxa(am)

[z]" = max{x, 0}, provided the limit in p(R) exists, and for any M > 0, there exists K > 0
such that

]_ ]_ Pin n
lim inf —— log Pgn x”eX”:—logMZK > M.
n—oo 1 n Pxn(z")

Remark 1: Note that Csiszar’s and Han’s definitions seem different at first glance. In our
investigation, we realized that in order to establish our results on the reverse -cutoff rate for
general sources with memory, a formula for the reliability function of the type 1 probability
of correct decoding, D} (E|X||X), is needed. However, in [7], Han provided a formula for the
reliability function of the type 2 probability of correct decoding, B*(r|X||X). This turned out
to be an obstacle, since we were not able to derive the reverse f-cutoff rate formula by directly
using the formula for B?(r|X||X). To overcome this obstacle, we observed that if we interchange
the role of the null and alternative hypotheses distributions (i.e., X <+ X), and also r with E
(i.e., 7 <+ E) in Han’s definition (Definitions 6), then a formula for D?(FE|X]||X) can be readily

obtained from Han’s result. More specifically, we have the following.

Definition 7 Fix £ > 0. A rate r is called E-unachievable if there exists a sequence of

acceptance regions A/, = A (complement of A,,) such that

o 1 . 1

liminf ——log A, > E and limsup——log(l — pu,) <r,

n—oo n n—00 n
where

AN =Pr{X"¢g A} =Pr{X"€A,} and p,=Pr{X" e A }=Pr{X"¢A,}.
The infimum of all E-unachievable rates is given by
BX(E|X||X) = inf{r > 0 : r is E-unachievable},

and B} (E|X]||X) = oo if the above set is empty.
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With Definition 7, Proposition 2 becomes as follows.

Proposition 3 For any £ > 0,
BI(E|X|[X) = inf {R+ p(R) +[E = p(R)]"},

where

]_ ]_ Pin n
p(R) 2 lim ——log Pg.{a" € X™ —logM <R?Y,
n—oo N n ° Pxn(z™)

provided the limit in p(R) exists, and for any M > 0, there exists K > 0 such that

n—o0

1 1 Pxn (a™
lim inf —— log Pxn {:r” e X" —logM > K} > M.
n n

Remark 2: We can now clearly observe that Definitions 7 and 4 are identical. This indicates
that Han’s B (F|X||X) is in fact Csiszar’s D? (E|X]|X). Hence, using Definition 4, Proposition 3

should be as follows.

Proposition 4 For any £ > 0,
Dy (BIX[X) = inf {R+p(R) +[E = p(R)]"},

where

]_ ]_ Pin n
p(R) = lim —=log Pg. < a" € X" : —logM <R?Y,
n—oo N n° Pxn(z")

provided the limit in p(R) exists, and for any M > 0, there exists K > 0 such that

1 1. Pya(z”
liminf —— log Py { 2" € X™ —logM > K> M. (16)
n—soo n Pgu(z™)

Condition (16) evidently holds in the unrestrictive case where Py« (+) is absolutely continuous
with respect to Pg.(-). The above proposition is a key ingredient for our main results in the

following section.
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6 Reverse 3-Cutoff Rate Between Arbitrary Hypotheses

In the degenerate case where D?(E|X||X) = 0, we have that R(()T)(ﬂ|X||)_() = o0o. Similarly, if
D:(E|X]||X) = oo, then R[()r)(,3|X||)_() = 0. A graphical illustration of R[()r)(,3|X||)_() is given
in Figure 6. Without loss of generality, we herein assume that Pxx(-) is absolutely continuous
with respect to Pgx ().

We first show the following lemmas, which will provide us the key mechanism to establish

our reverse [-cutoff rate result.
Lemma 2 Assume that the limit in p(R) exists. For all £ > 0, we have that

D EIX||IX) < E+inf{R e R : p(R) < E}.

Proof: We have the following.

DiE|X|X) = inf {R+p(R)+[E —p(R)]*} (by Proposition 4)

RER
= i inf {R+FE inf {R R
minf inf (R+E), inf {7+ p(r)} )
< inf E
o p(}%I)ISE{R+ J
= E+inf{ReR:p(R) < E}.

|

Lemma 3 Assume that p(R) admits a limit and is convex, and that there exists an R such

that R + p(R) = 0. Then for those E satisfying D! (E|X]||X) > 0,
Di(EIX||X)=E+inf{R e R: p(R) < E}.
Proof: Since p(R) is decreasing by definition and it is assumed to be convex, then it is contin-

uous and strictly decreasing. Let R* be the smallest one that satisfies R + p(R) = 0. Then for
E < p(R"),

Di}(EIX[X) = inf {R+p(R)+[E —p(R)]"} (by Proposition 4)

ReR

< R+ p(RY) +[E - p(R")]" =0.
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Hence, the set of values of E such that D?(E|X||X) > 0 does not include E < p(R*). Now as
p(R) is assumed convex, its slope is strictly increasing, which implies that the slope of p(R) is
less than —1 for R < R*. This immediately gives that the slope of the function R + p(R) is
negative for R < R*. Consequently, for any £ > p(R*) (which corresponds to R < R* since
p(R) is strictly decreasing),

o BE (R (R} = (R p(R) ey s
— -1 —
= FUE)+E= inf {R+E},

where

p () £ inf{a: p(a) < EY,

is the quantile or inverse of p(-). Thus,

DEX|K) = inf {R+p(R) +[E— p(R)]"}

RER
= i inf {R+F inf {R R
min{ it (R+E), it {7+ p(r)} )
N p(ll?r)liE{RjLE}

= E+inf{ReR:p(R) < E}.

|

Lemma 4 Fix t < 0. Also, assume that p(R) admits a limit and is convex, and that there

exists an R such that R+ p(R) = 0. The following two conditions are equivalent.
(VReR) p(R)>—-R(1—1t)+tRy (17)
and
. t
(¥ B>0) DiEXX) > —(F - Ry). (18)

Proof:
a) (17)=(18). By Lemma 3, for those E satisfying D*(E|X||X) > 0, we have that

DIEX|X) = E+inf{ReR:p(R) < E}

v

E+inf{ReR:—-R(1—-t)+tRy < E}
t
1 (B~ Ro),
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where the inequality follows from (17). This implies that
inf{E > 0: D(E|X||X) > 0} < Ro.

Hence, for these E satisfying D!(E|X||X) = 0, the claim also holds since D?(E|X||X) is
increasing.

b) (18)=(17). By Lemma 2 and (18), for E > 0, we have that

t 1 t
inf R: <FE}>—(F— —F= E— .
W{RER:p(R) < B} > (B R)-E= ~-E- ' R,
Thus
1 t
E < —F - —
_p<t—1 t—1R0>’
since p(-) is strictly decreasing. Letting
1 t
— E—
=y

or

E=—R(1 —t)+tRy,

the above inequality can be rewritten as
p(R) > —R(1 —t) + tRy,

where R € R. -

We next employ Lemma 4 to show our main result regarding the reverse S-cutoff rate.

Theorem 2 (Reverse (B-cutoff rate formula). Assume that p(R) admits a limit and is

convex, and that there exists an R such that R+ p(R) = 0. For the general hypothesis testing

problem,
RST)(/J’IXHX) < ligglf%Dl/uﬁ)(X”HX”) for 0 < g < 1,
and
R (BIXI1%) > limsup Dy (X or 0< 5 < s,
where

1 _
Brmax = sup {6 € (0,1) : limsup — Dy — (X"[|X™) < oo for every 0 < vy < B} ,

n—oo I
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and
AN

Do (X" X™)

Lo ( S 1P ) [Py (x”)]l—“)

TreX™
is the n-dimensional Rényi a-divergence. Note that the above two inequalities directly imply
that
r Y : 1 njlyn
R (B1XIX) = lim =Dy (X" |X"),

for 0 < 8 < Bmax-

Proof:*
1. Forward part: R(()T)(ﬂ|X||)_() < liminf,, 0 £ Dy j1-p) (X"[|X™) for 0 < g < 1.
By the equivalence of conditions (17) and (18), it suffices to show that

1 _
(VR E€R) p(R) > —R(L 1) + ¢ liminf ~Dy_o(X"[X").
n—0o0

Counsider the twisted distribution defined as:

0y & [Pe@)][Pn(a”)]
Pola®) = S P @ P GO
_ exp{(t— 1)lo gizg n% +tD1t(X”||X”)}PXn(x"). (19)

Then for t < 0,

e g £ )
= > Pgn(a")

1 Pen@n)
{a}neXn.; log Pﬁn(zn)gR}

Pin ZL’n bl
- Z exp { (1= ) log 210 - D (7157 | P )
< exp{nR(l—t) —tDy (X" X™)} 3 P (a)

{x"eX" 1 gpxn(iﬂ ><R}

e
< exp{nR(1—1t) —tD_,(X"[|X")}.

“For the proof of the continuous alphabet case, the same remark given in Observation B (cf. Section 3)

applies.
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So, since p(R) admits a limit, we have
1 1 Pgn (2"
p(R) = limsup——log Pxn {x" SV logM < R}
n— o0 n PX”( )
1 _
> —R(1—t)+t-liminf —D;_,(X"||X™)
n—oo N,
1 > At
= —R(1—t)+t-liminf—Dy/q 5 (X"]|X"), f =——¢c (0,1).
(1 —t) +¢-liminf =Dyjq (X" X"), for f=-—€(0,1)
2. Conwverse part: R(()r)(ﬁ|X||X) > lim sup,,_, =D1/a-p) (X"[|X™) for 0 < 8 < Bmax-
By the equivalence of (17) and (18), it suffices to show the existence of R for any § > 0 such
that

p(R) < —R(1—1t)+1t (hmsup 1D1 (XX + u ; ) 35) :

n—0o0

where t = /(8 — 1) < 0. Let N be the set of positive integers such that

1 1
lim —-D;_ t(Xn”Xn) = lim sup — Dl t(XnHXn) (20)
neN,n—o0 1 n—00
and define
A= sup{R € R: p(R) > 0},
where

1 1. Pga(a”
pPD(R) 2 liminf ——log P {:r” e X" —1ogM < R},
n n

neN,n=so0 Pyn(z™) —
is the twisted large deviation spectrum of the normalized log-likelihood ratio with parameter
t. It can be shown that A satisfies —oo < A < 0 (cf. Lemmas 8 and 9 in Appendix B). We
then note by definition of p®(-) and the finiteness property of A that for any § > 0, there exists
e > 0 such that
Pgn(a")

PXn (l‘n)

1 1
DX =) = liminf —Zlog P{) {x” € X" : —log
n

neN,n—oco 1N

gA—§}>e>Q
As a result,

P n
P)(fi {x” e X" logTEx; >\ — 5} > 1—e " for n € N sufficiently large.

On the other hand, define

an n
PD(R) 2 nlelj{/nnlgf;o—— log P\!) {x” €A —log% > R}

and

N2 inf{ReR: " (R) > 0}.
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Then by noting that

n t) (,.n
logij:igng = —D; (X™||X™) + % log %Zn;,
we have:
F(R) =0 (tR + %D1—t(Xn||)_(")> :
where . PO (o
o(R) = nleb{fnggf;o——long {:r €ax": logP)é:iEz; < R} ,
and

1 1 _
= 3 sup{ReR:0(R) >0} — =Dy, (X"||X")
n
< 0, (21)
where (21) follows from Lemma 7 in Appendix A, and the non-negativity [5] of the Rényi

divergence D;_;(X™||X™). This indicates the existence of € > 0 such that p(§) > € which
immediately gives that for n € N sufficiently large,

]_ Pin n =
P)(p)z{:c eEX": — lg#ﬂzé}ge“.

Therefore, for n € N sufficiently large,

5>—lgPL(x)>)\—5}

{ n 7~ Pga(z")
> {g; €A™ = giﬁ ;>)\—6}
—PYZL {:r e x": log]]anE ;Z(S}
> 1—e ™ —e " B (22)

Let I, 2 (A — 6,b,), and’

I £ [bey,by) for2< k< L2 F‘S_W,

26
where by, £ (A—0)+2kd for 1 <k < L, and by, 25. By (22), there exists 1 < k(n) < L such
that

1 Pga(z") 1 -
POLlomcxm: Zlog 2" ) € [ b > 23
( { Lo T € gy p 2 (23)

5Note that when A < 0, L > 2; so the definition is well-established. However, in case A = 0, we just take
L=1,and I = (-9,9).
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for n € N sufficiently large. Then, by letting R; 2 lim SUPpeA n—oo Ok(n) 10, We obtain that for
n € N sufficiently large,
1. Pgu(z") 1. Pgu(a")
Pin GX”-—I ’7<R > Pena e X" —log—+—2%€ L) ¢ -
However, for sufficiently large n € A/, we have that:
Pgn g™ € X" —log ———= € Ixn
* { S B Py am) &M >}

gn (@
{onean:Liog pXr 0 en ) }

Pgn (2"

_ Z eftpl_t(xnuxn)e(lft) log & n@")P( )( n)
{x"eX":%l g%elk(n)}

> e tD1- (X[ X™) (1=t)nbk(n)—1 Z P)(fi (z™)

{amexniLiog %EIM)}

e_tlet(Xn”Xn)e(l_t)”bk(")—lP)((QL {x” e X" —l giiw Ex”; € Ik(n)}

, l—e™-— eingeftDl_t(X”H)_(")e(lft)nbk(n),l'

- L

Consequently,
p(Ry) @ l%r_l)(i)gf—%logPXn {xneX”: ;log% <R

1 1 Pgn (2™
< liminf ——log Pgn {x eX": — logMSRl}
neNn—oo m n (™)
: 1 nll on o
< lmow [t—DH(X 0]+ tigint (=0 O]
= ¢ liminf —D1 H(XMX™) — (1 —¢) limsup by
neN n—oo N neN ,n— oo
1
© tlim sup — D1 J(XMIX™) — (1 —¢t) limsup bygn)—1
n—00 neN ,n—oo
1
< tlimsup — D1 H(XMX™) — (1 —¢) limsup by + 20(1 — ¢)

n—00 neN ,n—oo

1
= tlimsup— D1 ((XMIX™) — (1= t)Ry +35(1 — 1),

n—o0
where equality (a) holds since p(R) admits a limit, and equality (b) follows from the definition
of N in (20). O
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We observe that the convexity condition for p(R) given in the above theorem is not necessary

for the expression of the reverse [-cutoff rate to be given by the ﬁ—divergence rate. This is

illustrated in the following example, where we show that p(R) is not convex while
r X ; 1 ni vn
By (BIXIIX) = lim —Di - (X" X") for 0 < § < 1.

Example 5: Let Pgn(a,) = 1 — e and Pgn(b,) = e, where a,, # b, and a,,b, € X™.

Also, let Pxn(an) =1 — e and Pxa(b,) = e ", where 0 < ¢ < 2. Then, the log-likelihood
ratio, Z,, is given by

1—e 2

Pro(Xm) | 87 e

7, =log =X\ )
%8 P (X

., with probability (in Pg.) 1 —e™"

—(2—=¢)n,  with probability (in Pg») e 2",
which implies that

0, forR>0
1 1
p(R) = lim ——logPr{ﬁZnsR}: 2, for —(2—¢)<R<0

n—oo N
oo, for R < —(2—¢).

Note that p(R) in not convex but R + p(R) = 0 for R = 0. Note also that condition (16)
is satisfied since Pxn(-) and Pgn(-) are absolutely continuous with respect to each other. Let
us first compute the a-divergence rate between X™ and X", where o > 1. The normalized
n-dimensional a-divergence is given by
1 - 1
~D, XX = 1 1 — e M) (] — ¢ 2m)l-@ —cno ,—2n(l—a) )
LX) = g (L e (1 e e e e )]

We have the following three cases.

1. ca+2—2a > 0. Note that e~ and e~?" approach 0 as n — oo and that e~ e=2n(1-) =
e ™Meat2=20) which also approaches 0 as n — oo. Hence, the a-divergence rate is equal

to 0 since the argument of the logarithm — 1 as n — oo.

2. ca+2 — 2« < 0. In this case, since e ™+2-20) 4 56 as n — oo, the argument of the
logarithm, for large n, is dominated by e~™c@+2=2%)  Hence
1 - 2—2
lim LD, (X" X") = lim — {0 t2=20)
n—00 M n—>00 n(a — 1)
. ca+2 -2
N 11—«
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3. ca+ 2 —2a = 0. Clearly, the a-divergence rate is equal to 0 in this case.

Let us now compute the reverse S-cutoff rate. First, we need to compute D} (E|X||X) using

Proposition 4. We have the following cases.

e F > 2. We have that

R+ FE, for R>0
R+pR)+[E-p(R)]" = ¢ R+E, for —(2—¢)<R<0
00, for R < —(2—¢).

Hence

DEXIK) = inf {R+p(R) +[E— p(R)]*}

RER
= F—-2+c.

e 0 <c< FE <2. In this case

R+ FE, for R>0
R+pR)+[E-pR)]" = ¢ R+2, for —(2—¢)<R<0
00, for R < —(2—¢).

Hence, D} (E|X[|X) = c.
e 0 < F <c. In this case

R+ FE, for R>0
R+pR)+[E-pR)]" = ¢ R+2, for —(2—¢)<R<0
00, for R < —(2—¢).

Hence, D} (E|X||X) = E.

The reverse [-cutoff rate is the E-axis intercept of the line of slope [ passing by the point
(2, ¢) as illustrated in Figure 7. By straightforward calculation, we get that

R (BIX|X) = —g +2.
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For a« =1/(1 — ), we get that

ca+ 2 — 2«

B (BIX[X) = =

Since, by definition, R(()T)(ﬁ|X||)_() > 0, it is straightforward to check that
r X ; 1 ni vn
R (BIX[[X) = lim ~Dyjq(X"|X") for0< 8 <1

Note that for this example, since the a-divergence rate is always finite , it follows directly that
ﬂmax =1
We finally present a class of sources with memory (countable or continuous alphabet) for

which the reverse S-cutoff rate is given by the Rényi ﬁ—divergence rate for all 0 < f < 1.

Corollary 1 Consider the hypothesis testing problem between sources with memory such that

PenX")  satisfies both hypotheses of the

Pxn(Xn)’

the log-likelihood ratio process {Z,,} where Z,, = log
Gértner-Ellis Theorem [2, p. 15]:

e 0(0) 2 lim,, o %qﬁn(@) exists for all 6 € R,
e ¢ is differentiable on d,, where d,, 2 {0 :¢(0) < oo},

where ¢,,(0) = log Ep.,[e(0Z,)]. Then the reverse S-cutoff rate satisfies

r X ; 1 ni| vn
R (BIXIX) = lim —Dijap)(X"|X") for 0< < 1.

Proof: We will prove the result for countable alphabets. The required modifications for the
continuous alphabet case are straightforward. We need to show that for sources satisfying the
Gértner-Ellis Theorem, the Rényi divergence rate exists, that the conditions of Theorem 2
hold and that [, = 1. First, the Rényi divergence rate exists and [.x = 1 from the first
hypothesis of the Gartner-Ellis Theorem and the fact that

- 1-p41 1
D =120, ().
Next, by the Gartner-Ellis Theorem, we have that

S

p(R) = sup {0R — ¢(0)} .

0<0
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Clearly, p(R) admits a limit and is convex in R. Let us show that there exists an R such that
R+ p(R) = 0. First, note that Ep_, [e(#Z,)] =1 for # = 0 and § = —1. Hence, ¢(#) = 0 for
f =0 and @ = —1. This implies that

pUR) + R = sup (0 + DR = 9(0)) 2 [0+ DR~ 6(0)],__, = 0. 21
Observe that
0 = Ble%n] = Z e?18 %Pxn (™)
_ Z o(0+1) Lo %PX” (a")
> ew+4)§;bg§§g§§%;3ﬂ(xn)::ew+1n_ppxnann7 (25)

where D(-||-) is the Kullback-Leibler divergence and (25) follows by Jensen’s inequality. This
implies that
1
{(9 +1)R, — —¢n(9)} <0 forall @ <0,
n

where R, = —1D(X"||X"). As a result,

limsup,_,o {(0 + 1)R, — £¢,(0)} = (0 + 1) liminf, ,oc R, — ¢(#) <0, forf < —1
liminf, oo { (6 + 1) Ry — 2¢,(0)} = (0 + 1) liminf, oo R, — ¢(0) <0, for 0>60> -1

Therefore
p(liminf R,,) + liminf R,, <O0.

n—00 n—00

On the other hand, by (24), we have that

p(liminf R,,) + liminf R,, > 0.

n—00 n—00

Hence

p(liminf R,,) + lim inf R,, = 0.

n—o0 n—o0

Remark 3: By Corollary 1, for i.i.d. finite-alphabet observations (in this case, Gértner-Ellis
Theorem reduces to Cramer’s Theorem), our result in Theorem 2 reduces to Csiszar’s result
[5]; i.e., the reverse [-cutoff rate is given by the Rényi divergence with parameter ﬁ, for

0<p<l1.
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Remark 4: The above corollary holds for the class of finite-alphabet irreducible Markov sources
since the latter satisfy both hypotheses of the Gartner-Ellis Theorem. Indeed, the a-divergence

rate exists and is differentiable; furthermore, it admits a simple computable expression [14].

Numerical Examples:

We briefly present two examples of memoryless sources where we explicitly verify the existence
of R such that R+ p(R) = 0.

Example 6: Finite-alphabet memoryless sources: Consider Example 1 in Section 4 where X
and X are interchanged. Note that p(R) is equal to n(R) in this case. It is straightforward to
check that R + p(R) = 0 for R approximately —0.13.

Example 7: Continuous alphabet memoryless sources: Consider Example 2 in Section 4 where
X and X are interchanged. Note that p(R) is equal to n(R) in this case. By straightforward
calculation we get that R + p(R) =0 for R = —21/2%.

7 Conclusions

We examined the forward and reverse [-cutoff rates for the hypothesis testing problem be-

tween arbitrary sources with memory (not necessarily Markovian, ergodic, stationary, etc.) of

arbitrary alphabet (countable or continuous). We showed that the forward S-cutoff rate is

given by the liminf a-divergence rate, where o = ﬁ and # < 0. Under two conditions on

the large deviation spectrum, p(R), we showed that the reverse [-cutoff rate is given by the
1

a-divergence rate, where o = g and 0 < B < fBuax. For Bnax < B < 1, we provided an
upper bound to the reverse -cutoff rate. We also investigated sources with memory (countable
or continuous alphabet) that satisfy the hypotheses of the Gértner-Ellis Theorem. We showed
that the conditions on p(R) are satisfied and that the reverse S-cutoff rate is given by the Rényi
divergence rate. A direct consequence is that, for i.i.d. observations, our result indeed reduces
to Csiszar’s result, hence providing a simple expression for the reverse (-cutoff rate in terms
of the Rényi divergence. Another consequence is that, for finite-alphabet irreducible Markov
sources, the reverse -cutoff rate is given by the Rényi divergence rate which can be computed
using Perron-Frobenius theory [14]. We also provided several numerical examples to illustrate

our forward and reverse [-cutoff rates results.
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Future work may include the study of Csiszar’s channel coding S-cutoff rates [5] for arbitrary

discrete channels with memory using our information spectrum techniques.

Appendix A: Properties of 7 and o(R)

Lemma 5 For 0 <t < 1,

1 _
7 2 sup{R: p(R) > 0} < liminf =Dy, (X"].X").
Proof: For any v > 0,

13 n n 1 PX"(xn) S 1 ni vn
1 Pxn (2™ 1 _
< P)((t% e X" — logﬂ > —Di_(X"||X") + v for n € N sufficiently large,
n ~ Pxa(z") ~ n
where A is defined in (9). But

) n n
log Pon(a) > Dl LX) X )—1—1/}
(

z")

" e X" (log X ) + D, t(X"||X")> > 1/}

; + Dlt(X"||X")> < —z/t}

TL

I
s
S
s
—N— =
&ﬁ
m
<
S
3|”‘
=
Q
OQ

= P{amexn %log ]]zj(‘:)g:; < —mf} (26)
= pl {:r" € X" : PY(a") < e Py )}

< etpe{at e X PO") < e Pra(a”) }

S e—nllt

where (26) follows from (8). Thus for n € N sufficiently large,

Pxn(x™ 1 _
P)(f,)L {x" c X" & < liminfﬁDl,t(X"HX") + 21/} >1— eﬂut)
n—o0

which implies
1 _
n® <lim inf =Dy (X"|X") + 21/)
n—oo M

1 Pxn(z"
xe (") < liminf — D1 t(X”||X”)+21/}

1
= liminf __logp(’)”“ {x” €a™: ﬁlog PXn(l‘") n—00

neN,n—oco 7N

1
< limsup ——log (1 — e‘””t) =0.
neN,n—oo N
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Consequently,
1 _
sup { R : n(R) > 0} < 1i£g1ng1_t(X”||X") +2v.

The proof is completed by noting that v can be made arbitrarily small.

Lemma 6 For 0 <t < 1, if liminf, o +D1_;(X"[|X") < K, then
2 () —
T =sup{R:n"(R) >0} > —o0.
Proof: By (8), we get that

_ Pxn(z")
t Xxn n 1-t)lo )f
P)((r)z (.’En) — etlet(‘( ||X )e( ) g Pin (@) PXn (fL‘n)

Hence,

PO e e xm: —log 2L <R
¥ { R

etDl_t(X”HX")e(lft)nRPXn e X llog Pxn(2") <R
n " Pxa(am)

VAN

< D (XX (1-OnR.

which implies that

1 _
n(R) > —t limsup —D; ((X"||X") — (1 —t)R.

neN n—oo 1

Therefore,

t 1 _
7> ——— limsup —D;_,(X"||X").
1- neN n—oo 1

This shows that 7 = —oo implies that
. 1 o : 1 S | o
limsup =Dy (X"||X") = lim —D; (X"||X")=liminf—D; ,(X"||X") = o0,
n—oo 1

neN n—oo T neN n—oo N

contradicting the assumption that liminf, ,.,(1/n)D; (X"||X") < K.
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Lemma 7 We have the following:
sup{ReR:0(R) >0} >0.

Proof: For any v > 0,
1 p(t) (xn)
P(tzb n Xn . —l Xn <
X {x < n °8 Pxn(z™) — g

— P)((tZL {x” ex": Pgi (™) < e ™ Pxn (x”)}

< e "™ Pyn {xn c X" P;(fr); (Lb‘n) < e ™ Py (Lb‘n)}
S e—nu)
which implies o(—v) > v. Hence, the lemma holds. ]

Appendix B: Properties of A
Lemma 8 Fort <0, A <0.

Proof: Observe that for R > 0,

]_ Pin(l‘n)
PO exn: Zlog2" L S R
X {:r < n 8 Pxn(xm)

< e—nR(l—t)-}-tDl,t(X"H)_(")P‘zn ./L'n c Xn . l log PX" (xn) > R
- ’ n  Pxn(x™)

< e—nR(l—t)+tD1,t(X"||X")

S e*TLR(].*t)

Y

where the last inequality follows from the non-negativity of D;_;(X"||X"). This implies that
for R > 0,
1
pPP(R) < liminf —=log (1- e_”R(l_t>) =0,

T neNnp—oco N

which immediately implies that A < 0. ]
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Lemma 9 For 0 >t > Suax/(Bmax — 1), A > —00.

Proof: If A = —oo, then p®(R) = 0 for every R € R. Hence, by choosing any & > 0 satisfying
t>t—0> Pmax/(Pmax — 1), we have:
]_ P_n(xn)
PO dam e xm: Zlog X" < R
X {x © R Pxn(z™) —

(D1 NI~ (=01 gy X 4nk pld) [ ¢ g Ly, Pee@®) g
n~ Pxn(xm)

< e (t=0)Di_(—g)(X"[|X")+0onR
— Y

IN

which implies that
1 _
0=p"(R) > (t—6) limsup —D;_q_s(X"[|X") - OR.
neN ,n—oo

This indicates that

. 1 _ . 1 _ )

limsup =Dy 5 (X"||X") > limsup —D;__4)(X"[|X") > ——=R for every R € R,

n—oo 1 neN ,n—oo 1 t—90

or equivalently,

: 1 n|| yn
lim sup —D1 ¢ 5) (X"[| X") = o0,

n—oo 1

which contradicts the assumption on [,ay. ]
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R (51X X) E

Figure 1: A graphical illustration of the forward S-cutoff rate, R(()f) (B|X||X), for testing between

two arbitrary sources X and X.
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D(X|IX) R

Figure 2: Functions n(R), n')(R) and (8/(8—1)) [lim inf,, 00 %Dﬁ(X”HX") — R| for testing
between two binary memoryless sources X = {X;}22, and X = {X;}?°, under the distributions
(1/2,1/2) and (1/4,3/4) respectively, and with § = —7. When R < —log(3/2), n(R) =
nW(R) = oc.
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Figure 3: Functions n(R), n')(R) and (8/(8—1)) |liminf, %Dﬁ(X"HX") - R] for testing
between two memoryless sources X = {X;}2, and X = {X;}2°, under the Gaussian distribu-

tions N(v,1) and N(—v, 1) respectively, and with § = —0.5.
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0 B (51X[1X) E
Figure 4: Convex lower bound for testing between irreducible Markov sources. Each line of

slope (3 intersects the F-axis at R(()f) (B]X||X). Proceeding from left to right, the values of 3
are: —5,—3,—2,—4/3,—1,-2/3,—1/2, —2/5.
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O R’y (B1X1X) E
Figure 5: Convex lower bound for testing between arbitrary Markov sources. Each line of slope

B intersects the E-axis at RS (8]X||X). Proceeding from left to right, the values of 3 are:
—5,—3,-2,—1,-2/3,—1/2,~2/5,—1/6.
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Figure 6: A graphical illustration of the reverse g-cutoff rate, R(()r>(6|X||X), for testing between

two arbitrary sources X and X.
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Figure 7: Reliability function of the type 1 probability of correct decoding for testing between

the two sources Py« (-) and Pg.(-) as given in Example 5.
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