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Abstra
t

In [5℄, Csisz�ar established the 
on
ept of forward �-
uto� rate for the error exponent

hypothesis testing problem based on independent and identi
ally distributed (i.i.d.) ob-

servations. Given � < 0, he de�ned the forward �-
uto� rate as the number R

0

� 0 that

provides the best possible lower bound in the form �(E�R

0

) to the type 1 error exponent

fun
tion for hypothesis testing where 0 < E < R

0

is the rate of exponential 
onvergen
e

to 0 of the type 2 error probability. He then demonstrated that the forward �-
uto� rate

is given by D

1=(1��)

(Xk

�

X), where D

�

(Xk

�

X) denotes the �-divergen
e [15℄, � > 0, � 6= 1.

Similarly, for � > 0, Csisz�ar also established the 
on
ept of reverse �-
uto� rate for the


orre
t exponent hypothesis testing problem.

In this work, we extend Csisz�ar's results by investigating the forward and reverse �-


uto� rates for the hypothesis testing between two arbitrary sour
es with memory. We

demonstrate that the liminf �-divergen
e rate provides the expression for the forward �-


uto� rate. Under two 
onditions on the large deviation spe
trum, �(R), we show that the

reverse �-
uto� rate is given by the �-divergen
e rate, where � =

1

1��

and 0 < � < �

max

,

where �

max

is the largest � < 1 for whi
h the lim sup

1

1��

-divergen
e rate is �nite. In

parti
ular, we examine i.i.d. observations and sour
es that satisfy the hypotheses of the

G�artner-Ellis Theorem. Unlike [3℄ where the alphabet for the sour
e 
oding 
uto� rate

problem was assumed to be �nite, we assume arbitrary (
ountable or 
ontinuous) sour
e

alphabet. We also provide several numeri
al examples to illustrate our forward and reverse

�-
uto� rates results.

Index Terms: Hypothesis testing error and 
orre
t exponent, forward and reverse �-
uto�

rates, information spe
trum, �-divergen
e rate, arbitrary observations with memory.
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1 Introdu
tion

In [5℄, Csisz�ar established the 
on
ept of forward �-
uto� rate for the hypothesis testing problem

based on independent and identi
ally distributed (i.i.d.) observations. Given � < 0, he de�ned

the forward �-
uto� rate as the number R

0

� 0 that provides the best possible lower bound

in the form �(E � R

0

) to the type 1 error exponent fun
tion for hypothesis testing where

0 < E < R

0

is the rate of exponential 
onvergen
e to 0 of the type 2 error probability. He

then demonstrated that the forward �-
uto� rate is given by D

1=(1��)

(Xk

�

X), where D

�

(Xk

�

X)

denotes the �-divergen
e, � > 0, � 6= 1. Similarly, Csisz�ar also established the 
on
ept of

reverse �-
uto� rate for the hypothesis testing problem based on i.i.d. observations. Given

� > 0, he de�nes the reverse �-
uto� rate as the number R

0

� 0 that provides the best

possible lower bound in the form �(E � R

0

) to the type 1 
orre
t exponent (or reliability)

fun
tion for hypothesis testing where 0 < R

0

< E is the rate of exponential 
onvergen
e to 0

of the type 2 error probability. He then demonstrated that the reverse �-
uto� rate is given by

D

1=(1��)

(Xk

�

X). These results provide a new operational signi�
an
e for the �-divergen
e.

The error exponent for the binary hypothesis testing problem has been thoroughly studied

for �nite state i.i.d. sour
es and Markov sour
es. The results for i.i.d. sour
es 
an be found

in [6℄, [9℄, [10℄, and for irredu
ible Markov sour
es in [1℄, [12℄. The error exponent for testing

between ergodi
 Markov sour
es with 
ontinuous state-spa
e under 
ertain additional restri
-

tions was established in [11℄. In its full generality, i.e., for arbitrary sour
es (not ne
essarily

stationary, ergodi
, et
.), the error exponent was studied in [4℄, [7℄, [8℄.

In the sequel, we extend Csisz�ar's results by investigating the forward and reverse �-
uto�

rates for the hypothesis testing between two arbitrary sour
es with memory. We demonstrate

that the liminf �-divergen
e rate provides the expression for the forward �-
uto� rate. Our

proof relies in part on the formulas established in [7℄, and extensions of the te
hniques used in

[3℄ that generalize Csisz�ar's sour
e 
oding 
uto� rate results for arbitrary dis
rete sour
es with

memory. Unlike [3℄ where the sour
e alphabet was assumed to be �nite, we assume arbitrary

(
ountable or 
ontinuous) sour
e alphabet. The te
hniques used in our proof are a mixture

of the te
hniques used in deriving the forward and reverse �-
uto� rates for sour
e 
oding [3℄.

However, some new te
hniques are also needed to obtain our result.

We also investigate the reverse �-
uto� rate problem for arbitrary sour
es with memory.

We show that if the log-likelihood ratio large deviation spe
trum, �(R), is 
onvex and if there
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exists an R 2 R su
h that �(R) + R = 0, then the �-divergen
e rate with � =

1

1��

provides

the expression for the reverse �-
uto� rate for 0 < � < �

max

, where �

max

is the largest � < 1

for whi
h the lim sup

1

1��

-divergen
e rate is �nite. For 1 > � � �

max

, we only provide an

upper bound to the reverse �-
uto� rate. However, our result does redu
e to Csisz�ar's result

for �nite-alphabet i.i.d. observations for 0 < � < 1. We also examine sour
es with memory

(
ountable or 
ontinuous alphabet) whi
h satisfy the G�artner-Ellis Theorem. We show that in

this 
ase, the above 
onditions on �(R) are satis�ed and that the reverse �-
uto� rate is given

by the

1

1��

-divergen
e rate.

The rest of the paper is organized as follows. In Se
tion 2, we brie
y re
all previous results by

Han [7℄ on the general expression for the Neyman-Pearson type 2 error subje
t to an exponential

bound on the type 1 error. In Se
tion 3, we establish the formula for the forward �-
uto� rate

and illustrate it numeri
ally in Se
tion 4. In Se
tion 5, we re
all the general expression for the

reliability fun
tion of the type 2 probability of 
orre
t de
oding [7℄ and formulate the reverse

�-
uto� rate problem by 
arefully examining the in
onsisten
y of de�nitions in [5℄ and [7℄.

In Se
tion 6, we investigate the reverse �-
uto� rate and illustrate it numeri
ally. Finally, in

Se
tion 7, we 
on
lude with a summary along with several dire
tions for future work.

2 Hypothesis Testing Error Exponent

Let us �rst de�ne the general sour
e as an in�nite sequen
e

X = fX

n

g

1

n=1

4

=

n

X

n

=

�

X

(n)

1

; : : : ; X

(n)

n

�o

1

n=1

of n-dimensional random variablesX

n

where ea
h 
omponent random variableX

(n)

i

(1 � i � n)

takes values in an arbitrary (
ountable or 
ontinuous) set X that we 
all the sour
e alphabet.

Given two arbitrary sour
es X = fX

n

g

1

n=1

and

�

X = f

�

X

n

g

1

n=1

taking values in the same sour
e

alphabet fX

n

g

1

n=1

, we may de�ne the general hypothesis testing problem with X = fX

n

g

1

n=1

as the null hypothesis and

�

X = f

�

X

n

g

1

n=1

as the alternative hypothesis.

Let A

n

be any subset of X

n

, n = 1; 2; : : : that we 
all the a

eptan
e region of the hypothesis

testing, and de�ne

�

n

4

= PrfX

n

62 A

n

g and �

n

4

= Prf

�

X

n

2 A

n

g

where �

n

; �

n

are 
alled type 1 error probability and type 2 error probability, respe
tively.
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De�nition 1 [5℄ Fix E > 0. A rate r is 
alled E-a
hievable if there exists a sequen
e of

a

eptan
e regions A

n

su
h that

lim inf

n!1

�

1

n

log�

n

� r and lim inf

n!1

�

1

n

log�

n

� E:

De�nition 2 The supremum of all E-a
hievable rates is denoted by D

e

(EjXk

�

X):

D

e

(EjXk

�

X)

4

= supfr > 0 : r is E-a
hievableg;

and D

e

(EjXk

�

X) = 0 if the above set is empty (whi
h is a degenerate uninteresting 
ase). The

dual of the fun
tion D

e

(EjXk

�

X) is de�ned as:

B

e

(rjXk

�

X)

4

= supfE > 0 : E is r-a
hievableg;

and B

e

(rjXk

�

X) = 0 if the above set is empty.

Proposition 1 [7℄ Fix r > 0. For the general hypothesis testing problem, we have that

B

e

(rjXk

�

X) = inf

R2R

fR + �(R) : �(R) < rg;

where

1

�(R)

4

= lim inf

n!1

�

1

n

logPr

�

1

n

log

P

X

n

(X

n

)

P

�

X

n
(X

n

)

� R

�

;

is the large deviation spe
trum of the normalized log-likelihood ratio.

For the sake of simpli
ity, we assume throughout that the sour
e alphabet is 
ountable.

However, we will point out the ne
essary modi�
ations in the proofs for the 
ase of a 
ontinuous

alphabet. The above proposition is the main tool for our key lemma in the following se
tion.

1

If the sour
e alphabet X is 
ontinuous, then P

X

n

(X

n

) plays the role of the density fun
tion f

X

n

(X

n

).
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3 Forward �-Cuto� Rate Between Arbitrary Hypothe-

ses

De�nition 3 [5℄ Fix � < 0. R

0

� 0 is a forward �-a
hievable rate for the general hypothesis

testing problem if

D

e

(EjXk

�

X) � �(E � R

0

)

for every E > 0, or equivalently,

B

e

(rjXk

�

X) � R

0

+

r

�

;

for every r > 0. The forward �-
uto� rate is de�ned as the supremum of all forward �-a
hievable

rates, and is denoted by R

(f)

0

(�jXk

�

X).

Note that in the degenerate 
ase whereD

e

(EjXk

�

X) is identi
ally 0, we have thatR

(f)

0

(�jXk

�

X) =

0. We herein assume that D

e

(EjXk

�

X) is not 0 for all values of E. A graphi
al illustration of

the forward �-
uto� rate, R

(f)

0

(�jXk

�

X), for testing between two arbitrary sour
es X and

�

X is

given in Figure 1.

Before stating our main result, we �rst observe in the next lemma that the forward �-
uto�

rate R

(f)

0

(�jXk

�

X) is indeed the R-axis inter
ept of a support line of slope

�

1��

to the large

deviation spe
trum �(R).

Lemma 1 Fix � < 0. The following 
onditions are equivalent.

(8R 2 R) �(R) �

�

� � 1

(R

0

� R) (1)

and

(8r > 0) B

e

(rjXk

�

X) � R

0

+

r

�

: (2)

Proof:

a) (1) ) (2). For any r > 0, we obtain by Proposition 1 that

(8Æ > 0)(9R

Æ

with �(R

Æ

) < r) B

e

(rjXk

�

X) + Æ � R

Æ

+ �(R

Æ

):
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Therefore

B

e

(rjXk

�

X) � R

Æ

+ �(R

Æ

)� Æ

� R

Æ

� Æ +

�

� � 1

(R

0

� R

Æ

) (3)

= �Æ +

�

� � 1

R

0

�

R

Æ

� � 1

� �Æ +

�

� � 1

R

0

�

R

0

� � 1

+

r

�

(4)

=

r

�

+R

0

� Æ; (5)

where (3) follows from (1), and (4) holds be
ause

r > �(R

Æ

) �

�

� � 1

(R

0

� R

Æ

):

Sin
e Æ 
an be made arbitrarily small, the proof of the forward part is 
ompleted.

b) (2) ) (1). Inequality (1) holds trivially for those R satisfying �(R) = 1. For any R 2 R

with �(R) <1, let r

Æ

4

= �(R) + Æ for some Æ > 0. Then (by Proposition 1)

B

e

(r

Æ

jXk

�

X) � R + �(R):

Therefore

�(R) � B

e

(r

Æ

jXk

�

X)� R

� R

0

+

r

Æ

�

� R (6)

= R

0

+

�(R)

�

+

Æ

�

�R;

where (6) follows by (2). Thus,

�(R) �

�

� � 1

(R

0

� R) +

Æ

� � 1

:

Sin
e Æ 
an be made arbitrarily small, the proof of the 
onverse part is 
ompleted.

6



Theorem 1 (Forward �-
uto� rate formula). Fix � < 0. For the general hypothesis

testing problem,

R

(f)

0

(�jXk

�

X) = lim inf

n!1

1

n

D

1

1��

(X

n

k

�

X

n

);

where

D

�

(X

n

k

�

X

n

)

4

=

1

�� 1

log

 

X

x

n

2X

n

[P

X

n

(x

n

)℄

�

[P

�

X

n
(x

n

)℄

1��

!

is the n-dimensional �-divergen
e.

2

Proof: Note that �(R) > 0 for some

3

R 2 R.

1. Forward part: R

(f)

0

(�jXk

�

X) � lim inf

n!1

1

n

D

1

1��

(X

n

k

�

X

n

).

By the equivalen
e of 
onditions (1) and (2), it suÆ
es to show that

(8R 2 R) �(R) �

�

� � 1

�

lim inf

n!1

1

n

D

1

1��

(X

n

k

�

X

n

)� R

�

:

Indeed, we have the following.

Pr

�

1

n

log

P

X

n

(X

n

)

P

�

X

n
(X

n

)

� R

�

= Pr

�

e

�t log

P

X

n

(X

n

)

P

�

X

n

(X

n

)

� e

�ntR

�

; for t > 0

� e

ntR

 

X

x

n

2X

n

[P

X

n

(x

n

)℄

1�t

[P

�

X

n
(x

n

)℄

t

!

(7)

= exp

�

�nt

�

1

n

D

1�t

(X

n

k

�

X

n

)� R

��

;

for 0 < t < 1, where (7) follows by Markov's inequality. Therefore

�(R) � t

�

lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

)�R

�

=

�

� � 1

�

lim inf

n!1

1

n

D

1

1��

(X

n

k

�

X

n

)�R

�

; for �

4

=

t

t� 1

< 0:

2

If the sour
e alphabet is 
ontinuous, i.e., it admits a density f

X

n

(�), then the n-dimensional �-divergen
e

is given by

D

�

(X

n

k

�

X

n

)

4

=

1

�� 1

log

�

Z

[f

X

n

(x

n

)℄

�

[f

�

X

n

(x

n

)℄

1��

dx

n

�

:

3

If �(R) = 0 for all R 2 R, then

B

e

(rjXk

�

X) = inf

R2R

fR+ �(R)j�(R) < rg = inf

R2R

fRg = �1;


ontradi
ting that B

e

(rjXk

�

X) is, by de�nition, an exponent and should be always non-negative.

7



2. Converse part: R

(f)

0

(�jXk

�

X) � lim inf

n!1

1

n

D

1

1��

(X

n

k

�

X

n

).

The 
onverse holds trivially if lim inf

n!1

1

n

D

1

1��

(X

n

k

�

X

n

) is in�nite. Hen
e we 
an as-

sume that lim inf

n!1

1

n

D

1

1��

(X

n

k

�

X

n

) < K, where K is some 
onstant. By the equivalen
e

of 
onditions (1) and (2), it suÆ
es to show that for any Æ > 0 arbitrarily small, there exists

R = R(Æ) 2 R su
h that

�(R) �

�

� � 1

�

3Æ + lim inf

n!1

1

n

D

1

1��

(X

n

k

�

X

n

)�R

�

:

Consider the twisted distribution de�ned as:

P

(t)

X

n

(x

n

)

4

=

[P

�

X

n

(x

n

)℄

t

[P

X

n

(x

n

)℄

1�t

P

x̂

n

2X

n

[P

�

X

n
(x̂

n

)℄

t

[P

X

n

(x̂

n

)℄

1�t

= exp

�

t

�

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

+D

1�t

(X

n

k

�

X

n

)

��

P

X

n

(x

n

); (8)

where t = �=(� � 1). Note that 0 < t < 1. Let N be a set of positive integers su
h that

lim

n2N ;n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

) = lim inf

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

); (9)

and de�ne

�

4

= supfR 2 R : �

(t)

(R) > 0g;

where

�

(t)

(R)

4

= lim inf

n2N ;n!1

�

1

n

logP

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� R

�

;

is the twisted large deviation spe
trum of the normalized log-likelihood ratio with parameter t,

and � satis�es (
f. Lemmas 5 and 6 in Appendix A) that

�1 < � � lim

n2N ;n!1

1

n

D

1�t

(X

n

k

�

X

n

) = lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

) < K:

We then note by de�nition of �

(t)

(�) and the �niteness property of � that for any Æ > 0, there

exists " > 0 su
h that:

�

(t)

(� � Æ) = lim inf

n2N ;n!1

�

1

n

logP

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

� � � Æ

�

> " > 0:

As a result,

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

> � � Æ

�

� 1� e

�n"

for n 2 N suÆ
iently large:
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On the other hand, de�ne

��

(t)

(R)

4

= lim inf

n2N ;n!1

�

1

n

logP

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� R

�

and

��

4

= inffR 2 R : ��

(t)

(R) > 0g:

Then by noting that

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

= D

1�t

(X

n

k

�

X

n

)�

1

t

log

P

(t)

X

n

(x

n

)

P

X

n

(x

n

)

;

we have:

��

(t)

(R) = �

�

�tR +

t

n

D

1�t

(X

n

k

�

X

n

)

�

and

�� = �

1

t

supfR 2 R : � (R) > 0g+

1

n

D

1�t

(X

n

k

�

X

n

)

�

1

n

D

1�t

(X

n

k

�

X

n

) (10)

< K for n 2 N suÆ
iently large; (11)

where

�(R)

4

= lim inf

n2N ;n!1

�

1

n

logP

(t)

X

n

(

x

n

2 X

n

:

1

n

log

P

(t)

X

n

(x

n

)

P

X

n

(x

n

)

� R

)

;

(10) follows from Lemma 7 in Appendix A, and (11) holds by de�nition of K. This indi
ates the

existen
e of �" > 0 su
h that ��

(t)

(K) > �", whi
h immediately gives that for n 2 N suÆ
iently

large,

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� K

�

� e

�n�"

:

Therefore, for n 2 N suÆ
iently large,

P

(t)

X

n

�

x

n

2 X

n

: K >

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

> � � Æ

�

= P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

> � � Æ

�

�P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

� K

�

� 1� e

�n"

� e

�n�"

: (12)

9



Let I

1

4

= (� � Æ; b

1

); and

I

k

4

= [b

k�1

; b

k

) for 2 � k � L

4

=

�

K � � + Æ

2Æ

�

;

where b

k

4

= (� � Æ) + 2kÆ for 1 � k < L, and b

L

4

= K. By (12), there exists 1 � k(n) � L su
h

that

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

2 I

k(n)

�

�

1� e

�n"

� e

�n�"

L

; (13)

for n 2 N suÆ
iently large. Then, by letting R

1

4

= lim sup

n2N ;n!1

b

k(n)

+ Æ, we obtain that for

n 2 N suÆ
iently large

P

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

� R

1

�

� P

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

2 I

k(n)

�

:

However, for suÆ
iently large n 2 N , we have that

P

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

2 I

k(n)

�

=

X

�

x

n

2X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

2I

k(n)

�

P

X

n

(x

n

)

=

X

�

x

n

2X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

2I

k(n)

�

e

�t

�

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

+D

1�t

(X

n

k

�

X

n

)

�

P

(t)

X

n

(x

n

) (14)

> e

�nt

(

�b

k(n)�1

+

1

n

D

1�t

(X

n

k

�

X

n

)

)

X

�

x

n

2X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

2I

k(n)

�

P

(t)

X

n

(x

n

)

= e

�nt

(

�b

k(n)�1

+

1

n

D

1�t

(X

n

k

�

X

n

)

)

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

2 I

k(n)

�

�

1� e

�n"

� e

�n�"

L

e

�nt

(

�b

k(n)�1

+

1

n

D

1�t

(X

n

k

�

X

n

)

)

; (15)

where (14) follows from (8), and (15) follows from (13). Consequently
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�(R

1

) = lim inf

n!1

�

1

n

logP

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� R

1

�

� lim inf

n2N ;n!1

�

1

n

logP

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� R

1

�

� t

�

� lim sup

n2N ;n!1

b

k(n)�1

+ lim inf

n2N ;n!1

1

n

D

1�t

(X

n

k

�

X

n

)

�

� t

�

� lim sup

n2N ;n!1

b

k(n)

+ 2Æ + lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

)

�

= t

�

3Æ + lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

)� R

1

�

:

Sin
e Æ 
an be made arbitrarily small, the proof is 
ompleted.

Observations:

A. While the proof of the forward part is straightforward, the proof of the 
onverse part

is 
onsiderably more 
omplex. The obje
tive of the 
onverse part is to demonstrate that if

lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

) is slightly shifted to the right (by a fa
tor of 3Æ), then there exists

a 
oordinate R su
h that a straight line of slope �=(1� �) given by

y =

�

� � 1

�

3Æ + lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

)� R

�

lies above the 
urve of �(R) at R = R, thus violating its status of support line for �(R).

This proof is established by observing that the desired 
oordinate R lies in a small neigh-

borhood of � , where � is the smallest point for whi
h �

(t)

(R) vanishes. A key point is to 
hoose

the twisted parameter t to be equal to �=(�� 1) whi
h is the negative slope of the support line

to �(R). We graphi
ally illustrate this observation (based on a true example involving binary

memoryless sour
es) in Figure 2. The 
omputational details are des
ribed in Example 1 (
f.

Se
tion 4).

B. Note also that the proof holds if the alphabet is 
ountable or 
ontinuous as opposed to the

sour
e 
oding forward and reverse �-
uto� rates results [3℄ where the �niteness property of the

alphabet is ne
essary. The modi�
ations in the proof for the 
ontinuous 
ase are 
lear. Simply,

repla
e the probability mass fun
tion by the probability density fun
tion and the summation

by integration. We graphi
ally illustrate this observation (based on a true example involving

11



memoryless Gaussian sour
es) in Figure 3. The 
omputational details are des
ribed in Example

2 (
f. Se
tion 4).

C. The proof of the hypothesis testing forward �-
uto� rate is more involved than the proof

of the sour
e 
oding forward �-
uto� rate result given in [3℄. The main diÆ
ulty arises from

the formula in Proposition 1 where the in�mum for R is taken over the entire real line 
ontrary

to Proposition 1 in [3℄ for sour
e 
oding where R ranges from 0 to 1. This requires us to

deal separately with the degenerate 
ase � = �1 (
f. Lemma 6 in Appendix A). Also, the

te
hnique used to prove the forward �-
uto� rate for hypothesis testing relies on the proofs of

both the sour
e 
oding forward and reverse �-
uto� rates, but in major parts though similar to

the reverse sour
e 
oding �-
uto� rate.

D. If the sour
es X and

�

X are arbitrary (not ne
essarily stationary, irredu
ible) time-invariant

�nite-alphabet Markov sour
es of arbitrary order, then we know that the �-divergen
e rate

exists and 
an be 
omputed [13℄, [14℄. Thus in this 
ase, the forward �-
uto� rate for testing

between Markov sour
es 
an be obtained. Also, from the de�nition of D

e

(EjXk

�

X), it follows

dire
tly that for all E > 0,

D

e

(EjXk

�

X) � sup

�<0

h

�(E �R

(f)

0

(�jXk

�

X))

i

:

Note that this 
onvex lower bound is 
omputable for the entire 
lass of Markov sour
es, while

D

e

(EjXk

�

X) is not ne
essarily 
omputable in general (it is 
omputable for irredu
ible Markov

sour
es [1℄, [12℄, see Figure 4). We graphi
ally illustrate this observation for testing between

irredu
ible Markov sour
es in Figure 4 and arbitrary Markov sour
es (not ne
essarily stationary,

irredu
ible) in Figure 5. The 
omputational details are des
ribed in Examples 3 and 4 (
f.

Se
tion 4).

4 Numeri
al Examples for the Forward �-
uto� rate

Throughout this se
tion, the natural logarithm is used.

Example 1 Finite-alphabet memoryless sour
es: Consider the binary hypothesis testing be-

tween two memoryless sour
es X = fX

i

g

1

i=1

and

�

X = f

�

X

i

g

1

i=1

under the distributions (1=2; 1=2)

and (1=4; 3=4) respe
tively. Then the log-likelihood ratio Z = log

P

X

(X)

P

�

X

(X)

has the following dis-

12



tribution:

PrfZ = log(2)g = 1� PrfZ = log(2=3)g = 1=2:

By Cramer's theorem [2, p. 9℄, we get that

�(R) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

1; R < � log(3=2)

log(2); R = � log(3=2)

log(log(3=2)+R)�log(log(2)�R)

log(3)

R

+

log(3=2)

log(3)

log(log(3=2) +R)

+

log(2)

log(3)

log(log(2)� R)

+ log(2)� log(log(3)); � log(3=2) < R < E[Z℄ = log(2)� log(3)=2

0; otherwise;

where E[Z℄ denotes the expe
tation of the random variable Z. Let R

0

be the rate at whi
h the

line of slope �=(1� �) is tangent to �(R). By straightforward 
al
ulations, we get that

R

0

= log 2�

log 3

1 + 3

�

1��

;

and that the forward �-
uto� rate, R

(f)

0

(�jXk

�

X), whi
h is the R-axis inter
ept of the tangent

line of slope �=(1� �) to �(R), is given by

R

(f)

0

(�jXk

�

X) =

2� � 1

�

log 2�

� � 1

�

log

�

1 + 3

�

1��

�

� log 3:

On the other hand, the �-divergen
e between X under

�

X is given by

D

�

(Xk

�

X) =

1

�� 1

�

(�� 2) log 2 + log(1 + 3

1��

)

�

;

whi
h yields

D

1

1��

(Xk

�

X) =

2� � 1

�

log 2�

� � 1

�

log

�

1 + 3

�

1��

�

� log 3:

Note that the forward �-
uto� rate, R

(f)

0

(�jXk

�

X), and the lim inf �-divergen
e rate (whi
h

is equal to the �-divergen
e sin
e the sour
es are DMS) of order � = 1=(1 � �) are equal as

expe
ted from Theorem 1. Let us now derive � in order to 
he
k that � = R

0

. First, we

need to 
ompute �

(t)

(R). The set N is equal to the set of natural numbers in this 
ase. Note

that the distribution of the random variable Z

(t)

under the twisted distribution with parameter

0 < t < 1 is given by

P

(t)

fZ = log 2g = 1=(1 + 3

t

) and P

(t)

fZ = log(2=3)g = 3

t

=(1 + 3

t

):

13



By Cramer's Theorem [2, p. 9℄, we get that

�

(t)

(R) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

1; R < � log(3=2)

log(1 + 3

t

); R = � log(3=2)

t(R � log 2)

+

log(log(3=2)+R)�log(log(2)�R)

log(3)

R

+

log(3=2)

log(3)

log(log(3=2) +R)

+

log(2)

log(3)

log(log(2)� R)

+ log(1 + 3

t

)� log(log(3)); � log(3=2) < R < E[Z

(t)

℄ =

log 2

1+3

t

+ log(2=3)

3

t

1+3

t

0; otherwise;

where E[Z

(t)

℄ denotes the expe
tation of the random variable Z

(t)

. Therefore

� =

log 2

1 + 3

t

+ log(2=3)

3

t

1 + 3

t

:

It is easy to 
he
k that indeed we have � = R

0

when the twisted parameter t is 
hosen to be

�=(� � 1). This example is illustrated in Figure 2 for � = �7.

Example 2 Continuous alphabet memoryless sour
es: Consider the hypothesis testing problem

between two memoryless sour
es X = fX

i

g

1

i=1

and

�

X = f

�

X

i

g

1

i=1

under the Gaussian distribu-

tions N(�; 1) and N(��; 1) respe
tively, where N(a; b) represents a Gaussian distribution with

mean a and varian
e b. It is easy to 
he
k that the log-likelihood ratio Z = log

f

X

(X)

f

�

X

(X)

is Gaussian

distributed with mean 2�

2

and varian
e 4�

2

, whi
h gives that the moment generating fun
tion

of Z is E[e

�Z

℄ = e

2�

2

�+2�

2

�

2

. By Cramer's Theorem, we get that

�(R) =

8

<

:

1

8�

2

(R� 2�

2

)

2

; R < 2�

2

0; otherwise:

Let R

0

be the rate at whi
h the line of slope �=(1� �) is tangent to �(R). We have that

R

0

= 2�

2

1 + �

1� �

�

Thus, the forward �-
uto� rate, R

(f)

0

(�jXk

�

X), whi
h is the R-axis inter
ept of the tangent line

of slope �=(1� �) to �(R), is given by

R

(f)

0

(�jXk

�

X) = 2�

2

1

1� �

�

14



On the other hand, the �-divergen
e between X under

�

X is given by D

�

(Xk

�

X) = 2�

2

�, whi
h

yields

D

1

1��

(Xk

�

X) = 2�

2

1

1� �

�

Note that the forward �-
uto� rate, R

(f)

0

(�jXk

�

X), and the lim inf �-divergen
e rate (whi
h

is equal to the �-divergen
e sin
e the sour
es are DMS) of order � = 1=(1 � �) are equal as

expe
ted from Theorem 1.

Now, let us 
ompute �

(t)

(R). The set N in this 
ase is equal to the set of natural numbers.

For some normalization 
onstant C,

P

(t)

X

n

(x

n

) = C � exp

(

�

t

2

n

X

i=1

(x

i

+ �)

2

)

exp

(

�

1� t

2

n

X

i=1

(x

i

� �)

2

)

= C � exp

(

�

1

2

n

X

i=1

[t(x

i

+ �)

2

+ (1� t)(x

i

� �)

2

℄

)

= C � exp

(

�

1

2

n

X

i=1

(x

2

i

+ 2(2t� 1)�x

i

+ �

2

)

)

;

whi
h is a Gaussian distribution with mean (1� 2t)� and unit varian
e. Similarly, by invoking

Cramer's Theorem, we get that,

�

(t)

(R) =

8

<

:

1

8�

2

(R + (2t� 1)2�

2

)

2

; R < (1� 2t)2�

2

0; otherwise:

Hen
e, � = (1� 2t)2�

2

. It is straightforward to 
he
k that � = R

0

when the twisted parameter

t is 
hosen to be �=(� � 1). This example is depi
ted in Figure 3 for � = �0:5.

Example 3 Irredu
ible �nite-alphabet Markov sour
es: Suppose that X and

�

X are two irre-

du
ible Markov sour
es with arbitrary initial distributions and probability transition matri
es

P and Q de�ned as follows:

P =

0

�

1=3 2=3

1=4 3=4

1

A

; Q =

0

�

1=5 4=5

5=6 1=6

1

A

:

De�ne a new matrix R = (r

ij

) by

r

ij

= p

�

ij

q

1��

ij

; i; j = 0; 1:
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The �-divergen
e rate between X and

�

X exists and is given by

lim

n!1

1

n

D

�

(X

n

k

�

X

n

) =

1

�� 1

log�;

where � is the largest positive real eigenvalue of R [13℄, [14℄. Hen
e the 
omputation of the


onvex lower bound for D

e

(EjXk

�

X) is easily obtained as shown in Figure 4 for the values

� = �5;�3;�2;�4=3;�1;�2=3;�1=2;�2=5 (pro
eeding from left to right), where � =

1

1��

�

Note that in this 
ase the 
onvex lower bound is tight [1℄, [12℄.

Example 4 Arbitrary �nite-alphabet Markov sour
es: Suppose that X and

�

X are two arbitrary

Markov sour
es with arbitrary initial distributions and probability transition matri
es P and

Q de�ned as follows:

P =

0

B

B

B

B

B

B

B

B

�

1=2 1=2 0 0 0

1=4 3=4 0 0 0

0 0 3=5 2=5 0

0 1=6 5=6 0 0

1=4 0 1=4 0 1=2

1

C

C

C

C

C

C

C

C

A

; Q =

0

B

B

B

B

B

B

B

B

�

1=5 4=5 0 0 0

2=3 1=3 0 0 0

0 0 1=2 1=2 0

0 1=6 5=6 0 0

1=8 0 1=2 0 3=8

1

C

C

C

C

C

C

C

C

A

:

De�ne a new matrix R = (r

ij

) by

r

ij

= p

�

ij

q

1��

ij

; i; j = 0; 1; 2; 3; 4:

The �-divergen
e rate between X and

�

X 
an be 
omputed [13℄, [14℄. Hen
e, the 
onvex

lower bound for D

e

(EjXk

�

X) 
an be easily derived as shown in Figure 5 for the values � =

�5;�3;�2;�1;�2=3;�1=2;�2=5;�1=6 (pro
eeding from left to right), where � =

1

1��

�

5 Hypothesis Testing Corre
t Exponent and Problem

Formulation

In [5℄, Csisz�ar investigated the hypothesis testing problem between i.i.d. observations by 
onsid-

ering the �-
uto� rate for the exponent of the best 
orre
t probability of type 1 with exponential


onstraint on the probability of type 2 error. More formally, he used the following de�nitions.
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De�nition 4 Fix E > 0. A rate r is 
alled E-una
hievable if there exists a sequen
e of

a

eptan
e regions A

n

su
h that

lim sup

n!1

�

1

n

log(1� �

n

) � r and lim inf

n!1

�

1

n

log�

n

� E;

where �

n

and �

n

are type 1 and type 2 error probabilities respe
tively. The in�mum of all

E-una
hievable rates is de�ned as:

D

�

e

(EjXk

�

X)

4

= inffr > 0 : r is E-una
hievableg;

and D

�

e

(EjXk

�

X) =1 if the above set is empty.

For 0 < r < D

�

e

(EjXk

�

X), every a

eptable region A

n

with lim inf

n!1

�

1

n

log�

n

� E

satis�es �

n

> 1� e

�nr

for n in�nitely often.

De�nition 5 Fix � > 0. R

0

� 0 is a reverse �-a
hievable rate for the general hypothesis

testing problem if

D

�

e

(EjXk

�

X) � �(E �R

0

)

for every E > 0. The reverse �-
uto� rate is de�ned as the in�mum of all reverse �-a
hievable

rates, and is denoted by R

(r)

0

(�jXk

�

X).

However, in [7℄, Han investigated the general hypothesis testing problem between arbitrary

sour
es with memory by 
onsidering the exponent of the best 
orre
t probability of type 2 with

exponential 
onstraint on the probability of type 1 error. More formally, he used the following

de�nition.

De�nition 6 [7℄ Fix r > 0. A rate E is 
alled r-una
hievable if there exists a sequen
e of

a

eptan
e regions A

n

su
h that

lim inf

n!1

�

1

n

log�

n

� r and lim sup

n!1

�

1

n

log(1� �

n

) � E:

The in�mum of all r-una
hievable rates is denoted by B

�

e

(rjXk

�

X):

B

�

e

(rjXk

�

X)

4

= inffE > 0 : E is r-una
hievableg;

and B

�

e

(rjXk

�

X) =1 if the above set is empty.

17



Proposition 2 [7℄ Fix r > 0. For the general hypothesis testing problem, we have that

B

�

e

(rjXk

�

X) = inf

R2R

fR + ��(R) + [r � ��(R)℄

+

g;

where

��(R)

4

= lim

n!1

�

1

n

logP

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� R

�

;

[x℄

+

= maxfx; 0g, provided the limit in ��(R) exists, and for any M > 0, there exists K > 0

su
h that

lim inf

n!1

�

1

n

logP

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� K

�

�M:

Remark 1: Note that Csisz�ar's and Han's de�nitions seem di�erent at �rst glan
e. In our

investigation, we realized that in order to establish our results on the reverse �-
uto� rate for

general sour
es with memory, a formula for the reliability fun
tion of the type 1 probability

of 
orre
t de
oding, D

�

e

(EjXk

�

X), is needed. However, in [7℄, Han provided a formula for the

reliability fun
tion of the type 2 probability of 
orre
t de
oding, B

�

e

(rjXk

�

X). This turned out

to be an obsta
le, sin
e we were not able to derive the reverse �-
uto� rate formula by dire
tly

using the formula for B

�

e

(rjXk

�

X). To over
ome this obsta
le, we observed that if we inter
hange

the role of the null and alternative hypotheses distributions (i.e., X $

�

X), and also r with E

(i.e., r $ E) in Han's de�nition (De�nitions 6), then a formula for D

�

e

(EjXk

�

X) 
an be readily

obtained from Han's result. More spe
i�
ally, we have the following.

De�nition 7 Fix E > 0. A rate r is 
alled E-una
hievable if there exists a sequen
e of

a

eptan
e regions A

0

n

= A




n

(
omplement of A

n

) su
h that

lim inf

n!1

�

1

n

log�

n

� E and lim sup

n!1

�

1

n

log(1� �

n

) � r;

where

�

n

= Prf

�

X

n

62 A

0

n

g = Prf

�

X

n

2 A

n

g and �

n

= PrfX

n

2 A

0

n

g = PrfX

n

62 A

n

g:

The in�mum of all E-una
hievable rates is given by

B

�

e

(Ej

�

XkX) = inffr > 0 : r is E-una
hievableg;

and B

�

e

(Ej

�

XkX) =1 if the above set is empty.

18



With De�nition 7, Proposition 2 be
omes as follows.

Proposition 3 For any E > 0,

B

�

e

(Ej

�

XkX) = inf

R2R

�

R + �(R) + [E � �(R)℄

+

	

;

where

�(R)

4

= lim

n!1

�

1

n

logP

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� R

�

;

provided the limit in �(R) exists, and for any M > 0, there exists K > 0 su
h that

lim inf

n!1

�

1

n

logP

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� K

�

�M:

Remark 2: We 
an now 
learly observe that De�nitions 7 and 4 are identi
al. This indi
ates

that Han'sB

�

e

(Ej

�

XkX) is in fa
t Csisz�ar'sD

�

e

(EjXk

�

X). Hen
e, using De�nition 4, Proposition 3

should be as follows.

Proposition 4 For any E > 0,

D

�

e

(EjXk

�

X) = inf

R2R

�

R + �(R) + [E � �(R)℄

+

	

;

where

�(R) = lim

n!1

�

1

n

logP

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� R

�

;

provided the limit in �(R) exists, and for any M > 0, there exists K > 0 su
h that

lim inf

n!1

�

1

n

logP

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� K

�

�M: (16)

Condition (16) evidently holds in the unrestri
tive 
ase where P

X

n

(�) is absolutely 
ontinuous

with respe
t to P

�

X

n
(�). The above proposition is a key ingredient for our main results in the

following se
tion.
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6 Reverse �-Cuto� Rate Between Arbitrary Hypotheses

In the degenerate 
ase where D

�

e

(EjXk

�

X) = 0, we have that R

(r)

0

(�jXk

�

X) = 1. Similarly, if

D

�

e

(EjXk

�

X) = 1, then R

(r)

0

(�jXk

�

X) = 0. A graphi
al illustration of R

(r)

0

(�jXk

�

X) is given

in Figure 6. Without loss of generality, we herein assume that P

X

n

(�) is absolutely 
ontinuous

with respe
t to P

�

X

n

(�).

We �rst show the following lemmas, whi
h will provide us the key me
hanism to establish

our reverse �-
uto� rate result.

Lemma 2 Assume that the limit in �(R) exists. For all E > 0, we have that

D

�

e

(EjXk

�

X) � E + inffR 2 R : �(R) � Eg:

Proof: We have the following.

D

�

e

(EjXk

�

X) = inf

R2R

�

R + �(R) + [E � �(R)℄

+

	

(by Proposition 4)

= min

�

inf

�(R)�E

fR + Eg; inf

�(R)>E

fR + �(R)g

�

� inf

�(R)�E

fR + Eg

= E + inffR 2 R : �(R) � Eg:

Lemma 3 Assume that �(R) admits a limit and is 
onvex, and that there exists an R su
h

that R + �(R) = 0. Then for those E satisfying D

�

e

(EjXk

�

X) > 0,

D

�

e

(EjXk

�

X) = E + inffR 2 R : �(R) � Eg:

Proof: Sin
e �(R) is de
reasing by de�nition and it is assumed to be 
onvex, then it is 
ontin-

uous and stri
tly de
reasing. Let R

�

be the smallest one that satis�es R+ �(R) = 0. Then for

E � �(R

�

),

D

�

e

(EjXk

�

X) = inf

R2R

�

R + �(R) + [E � �(R)℄

+

	

(by Proposition 4)

� R

�

+ �(R

�

) + [E � �(R

�

)℄

+

= 0:
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Hen
e, the set of values of E su
h that D

�

e

(EjXk

�

X) > 0 does not in
lude E � �(R

�

). Now as

�(R) is assumed 
onvex, its slope is stri
tly in
reasing, whi
h implies that the slope of �(R) is

less than �1 for R < R

�

. This immediately gives that the slope of the fun
tion R + �(R) is

negative for R < R

�

. Consequently, for any E > �(R

�

) (whi
h 
orresponds to R < R

�

sin
e

�(R) is stri
tly de
reasing),

inf

fR:�(R)>Eg

fR + �(R)g = fR + �(R)gj

R=�

�1

(E)

= �

�1

(E) + E = inf

�(R)�E

fR + Eg ;

where

�

�1

(E)

4

= inffa : �(a) � Eg;

is the quantile or inverse of �(�). Thus,

D

�

e

(EjXk

�

X) = inf

R2R

�

R + �(R) + [E � �(R)℄

+

	

= min

�

inf

�(R)�E

fR + Eg; inf

�(R)>E

fR + �(R)g

�

= inf

�(R)�E

fR + Eg

= E + inffR 2 R : �(R) � Eg:

Lemma 4 Fix t < 0. Also, assume that �(R) admits a limit and is 
onvex, and that there

exists an R su
h that R + �(R) = 0. The following two 
onditions are equivalent.

(8 R 2 R) �(R) � �R(1� t) + tR

0

(17)

and

(8 E > 0) D

�

e

(EjXk

�

X) �

t

t� 1

(E �R

0

): (18)

Proof:

a) (17))(18). By Lemma 3, for those E satisfying D

�

e

(EjXk

�

X) > 0, we have that

D

�

e

(EjXk

�

X) = E + inffR 2 R : �(R) � Eg

� E + inffR 2 R : �R(1� t) + tR

0

� Eg

=

t

t� 1

(E � R

0

) ;
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where the inequality follows from (17). This implies that

inffE > 0 : D

�

e

(EjXk

�

X) > 0g � R

0

:

Hen
e, for these E satisfying D

�

e

(EjXk

�

X) = 0, the 
laim also holds sin
e D

�

e

(EjXk

�

X) is

in
reasing.

b) (18))(17). By Lemma 2 and (18), for E > 0, we have that

inffR 2 R : �(R) � Eg �

t

t� 1

(E �R

0

)� E =

1

t� 1

E �

t

t� 1

R

0

:

Thus

E � �

�

1

t� 1

E �

t

t� 1

R

0

�

;

sin
e �(�) is stri
tly de
reasing. Letting

R =

1

t� 1

E �

t

t� 1

R

0

;

or

E = �R(1� t) + tR

0

;

the above inequality 
an be rewritten as

�(R) � �R(1� t) + tR

0

;

where R 2 R.

We next employ Lemma 4 to show our main result regarding the reverse �-
uto� rate.

Theorem 2 (Reverse �-
uto� rate formula). Assume that �(R) admits a limit and is


onvex, and that there exists an R su
h that R+ �(R) = 0. For the general hypothesis testing

problem,

R

(r)

0

(�jXk

�

X) � lim inf

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

) for 0 < � < 1;

and

R

(r)

0

(�jXk

�

X) � lim sup

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

) for 0 < � < �

max

;

where

�

max

= sup

�

� 2 (0; 1) : lim sup

n!1

1

n

D

1=(1�
)

(X

n

k

�

X

n

) <1 for every 0 < 
 < �

�

;
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and

D

�

(X

n

k

�

X

n

)

4

=

1

�� 1

log

 

X

x

n

2X

n

[P

X

n

(x

n

)℄

�

[P

�

X

n

(x

n

)℄

1��

!

is the n-dimensional R�enyi �-divergen
e. Note that the above two inequalities dire
tly imply

that

R

(r)

0

(�jXk

�

X) = lim

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

);

for 0 < � < �

max

.

Proof:

4

1. Forward part: R

(r)

0

(�jXk

�

X) � lim inf

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

) for 0 < � < 1.

By the equivalen
e of 
onditions (17) and (18), it suÆ
es to show that

(8R 2 R) �(R) � �R(1� t) + t � lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

):

Consider the twisted distribution de�ned as:

P

(t)

X

n

(x

n

)

4

=

[P

�

X

(x

n

)℄

t

[P

X

n

(x

n

)℄

1�t

P

x̂

n

2X

n

[P

�

X

(x̂

n

)℄

t

[P

X

n

(x̂

n

)℄

1�t

= exp

�

(t� 1) log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

+ tD

1�t

(X

n

k

�

X

n

)

�

P

�

X

n

(x

n

): (19)

Then for t < 0,

P

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� R

�

=

X

n

x

n

2X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

�R

o

P

�

X

n

(x

n

)

=

X

n

x

n

2X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

�R

o

exp

�

(1� t) log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� tD

1�t

(X

n

k

�

X

n

)

�

P

(t)

X

n

(x

n

)

� exp

�

nR(1� t)� tD

1�t

(X

n

k

�

X

n

)

	

X

n

x

n

2X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

�R

o

P

(t)

X

n

(x

n

)

� exp

�

nR(1� t)� tD

1�t

(X

n

k

�

X

n

)

	

:

4

For the proof of the 
ontinuous alphabet 
ase, the same remark given in Observation B (
f. Se
tion 3)

applies.
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So, sin
e �(R) admits a limit, we have

�(R) = lim sup

n!1

�

1

n

logP

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� R

�

� �R(1� t) + t � lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

)

= �R(1� t) + t � lim inf

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

); for �

4

=

t

t� 1

2 (0; 1):

2. Converse part: R

(r)

0

(�jXk

�

X) � lim sup

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

) for 0 < � < �

max

.

By the equivalen
e of (17) and (18), it suÆ
es to show the existen
e of

�

R for any Æ > 0 su
h

that

�(

�

R) � �

�

R(1� t) + t

�

lim sup

n!1

1

n

D

1�t

(X

n

k

�

X

n

) +

(1� t)

t

3Æ

�

;

where t = �=(� � 1) < 0. Let N be the set of positive integers su
h that

lim

n2N ;n!1

1

n

D

1�t

(X

n

k

�

X

n

) = lim sup

n!1

1

n

D

1�t

(X

n

k

�

X

n

) (20)

and de�ne

�

4

= supfR 2 R : �

(t)

(R) > 0g;

where

�

(t)

(R)

4

= lim inf

n2N ;n!1

�

1

n

logP

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� R

�

;

is the twisted large deviation spe
trum of the normalized log-likelihood ratio with parameter

t. It 
an be shown that � satis�es �1 < � � 0 (
f. Lemmas 8 and 9 in Appendix B). We

then note by de�nition of �

(t)

(�) and the �niteness property of � that for any Æ > 0, there exists

� > 0 su
h that

�

(t)

(�� Æ) = lim inf

n2N ;n!1

�

1

n

logP

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n
(x

n

)

P

X

n

(x

n

)

� �� Æ

�

> � > 0:

As a result,

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

> �� Æ

�

� 1� e

�n�

for n 2 N suÆ
iently large:

On the other hand, de�ne

��

(t)

(R)

4

= lim inf

n2N ;n!1

�

1

n

logP

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n
(x

n

)

P

X

n

(x

n

)

� R

�

and

�

�

4

= inffR 2 R : ��

(t)

(R) > 0g:
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Then by noting that

log

P

�

X

n
(x

n

)

P

X

n

(x

n

)

= �D

1�t

(X

n

k

�

X

n

) +

1

t

log

P

(t)

X

n

(x

n

)

P

X

n

(x

n

)

;

we have:

��

(t)

(R) = �

�

tR +

t

n

D

1�t

(X

n

k

�

X

n

)

�

;

where

�(R)

4

= lim inf

n2N ;n!1

�

1

n

logP

(t)

X

n

(

x

n

2 X

n

:

1

n

log

P

(t)

X

n

(x

n

)

P

X

n

(x

n

)

� R

)

;

and

�

� =

1

t

supfR 2 R : � (R) > 0g �

1

n

D

1�t

(X

n

k

�

X

n

)

� 0; (21)

where (21) follows from Lemma 7 in Appendix A, and the non-negativity [5℄ of the R�enyi

divergen
e D

1�t

(X

n

k

�

X

n

). This indi
ates the existen
e of �� > 0 su
h that ��

(t)

(Æ) > ��, whi
h

immediately gives that for n 2 N suÆ
iently large,

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� Æ

�

� e

�n��

:

Therefore, for n 2 N suÆ
iently large,

P

(t)

X

n

�

x

n

2 X

n

: Æ >

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

> �� Æ

�

� P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

> �� Æ

�

�P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

� Æ

�

� 1� e

�n�

� e

�n��

: (22)

Let I

1

4

= (�� Æ; b

1

), and

5

I

k

4

= [b

k�1

; b

k

) for 2 � k � L

4

=

�

2Æ � �

2Æ

�

;

where b

k

4

= (�� Æ) + 2kÆ for 1 � k < L, and b

L

4

= Æ. By (22), there exists 1 � k(n) � L su
h

that

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

2 I

k(n)

�

�

1� e

�n�

� e

�n��

L

; (23)

5

Note that when � < 0, L � 2; so the de�nition is well-established. However, in 
ase � = 0, we just take

L = 1, and I

1

= (�Æ; Æ).
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for n 2 N suÆ
iently large. Then, by letting R

1

4

= lim sup

n2N ;n!1

b

k(n)

+ Æ, we obtain that for

n 2 N suÆ
iently large,

P

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n
(x

n

)

P

X

n

(x

n

)

� R

1

�

� P

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n
(x

n

)

P

X

n

(x

n

)

2 I

k(n)

�

:

However, for suÆ
iently large n 2 N , we have that:

P

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

2 I

k(n)

�

=

X

n

x

n

2X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

2I

k(n)

o

P

�

X

n

(x

n

)

=

X

n

x

n

2X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

2I

k(n)

o

e

�tD

1�t

(X

n

k

�

X

n

)

e

(1�t) log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

P

(t)

X

n

(x

n

)

� e

�tD

1�t

(X

n

k

�

X

n

)

e

(1�t)nb

k(n)�1

X

n

x

n

2X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

2I

k(n)

o

P

(t)

X

n

(x

n

)

= e

�tD

1�t

(X

n

k

�

X

n

)

e

(1�t)nb

k(n)�1

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n
(x

n

)

P

X

n

(x

n

)

2 I

k(n)

�

�

1� e

�n�

� e

�n��

L

e

�tD

1�t

(X

n

k

�

X

n

)

e

(1�t)nb

k(n)�1

:

Consequently,

�(R

1

)

(a)

= lim inf

n!1

�

1

n

logP

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n
(x

n

)

P

X

n

(x

n

)

� R

1

�

� lim inf

n2N ;n!1

�

1

n

logP

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� R

1

�

� lim sup

n2N ;n!1

�

t

1

n

D

1�t

(X

n

k

�

X

n

)

�

+ lim inf

n2N ;n!1

�

�(1� t)b

k(n)�1

�

= t lim inf

n2N ;n!1

1

n

D

1�t

(X

n

k

�

X

n

)� (1� t) lim sup

n2N ;n!1

b

k(n)�1

(b)

= t lim sup

n!1

1

n

D

1�t

(X

n

k

�

X

n

)� (1� t) lim sup

n2N ;n!1

b

k(n)�1

� t lim sup

n!1

1

n

D

1�t

(X

n

k

�

X

n

)� (1� t) lim sup

n2N ;n!1

b

k(n)

+ 2Æ(1� t)

= t lim sup

n!1

1

n

D

1�t

(X

n

k

�

X

n

)� (1� t)R

1

+ 3Æ(1� t);

where equality (a) holds sin
e �(R) admits a limit, and equality (b) follows from the de�nition

of N in (20).
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We observe that the 
onvexity 
ondition for �(R) given in the above theorem is not ne
essary

for the expression of the reverse �-
uto� rate to be given by the

1

1��

-divergen
e rate. This is

illustrated in the following example, where we show that �(R) is not 
onvex while

R

(r)

0

(�jXk

�

X) = lim

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

) for 0 < � < 1:

Example 5: Let P

�

X

n

(a

n

) = 1 � e

�2n

and P

�

X

n

(b

n

) = e

�2n

, where a

n

6= b

n

and a

n

; b

n

2 X

n

.

Also, let P

X

n

(a

n

) = 1 � e

�
n

and P

X

n

(b

n

) = e

�
n

, where 0 < 
 < 2. Then, the log-likelihood

ratio, Z

n

, is given by

Z

n

= log

P

�

X

n

(

�

X

n

)

P

X

n

(

�

X

n

)

=

8

>

>

<

>

>

:

log

1� e

�2n

1� e

�
n

; with probability (in P

�

X

n

) 1� e

�2n

�(2� 
)n; with probability (in P

�

X

n
) e

�2n

;

whi
h implies that

�(R) = lim

n!1

�

1

n

logPr

�

1

n

Z

n

� R

�

=

8

>

>

<

>

>

:

0; for R � 0

2; for � (2� 
) � R < 0

1; for R < �(2� 
):

Note that �(R) in not 
onvex but R + �(R) = 0 for R = 0. Note also that 
ondition (16)

is satis�ed sin
e P

X

n

(�) and P

�

X

n
(�) are absolutely 
ontinuous with respe
t to ea
h other. Let

us �rst 
ompute the �-divergen
e rate between X

n

and

�

X

n

, where � > 1. The normalized

n-dimensional �-divergen
e is given by

1

n

D

�

(X

n

k

�

X

n

) =

1

n(�� 1)

log

�

(1� e

�
n

)

�

(1� e

�2n

)

1��

+ e

�
n�

e

�2n(1��)

�

:

We have the following three 
ases.

1. 
�+2�2� > 0. Note that e

�
n

and e

�2n

approa
h 0 as n!1 and that e

�
n�

e

�2n(1��)

=

e

�n(
�+2�2�)

; whi
h also approa
hes 0 as n ! 1. Hen
e, the �-divergen
e rate is equal

to 0 sin
e the argument of the logarithm! 1 as n!1.

2. 
� + 2 � 2� < 0. In this 
ase, sin
e e

�n(
�+2�2�)

! 1 as n ! 1, the argument of the

logarithm, for large n, is dominated by e

�n(
�+2�2�)

. Hen
e

lim

n!1

1

n

D

�

(X

n

k

�

X

n

) = lim

n!1

�

n(
� + 2� 2�)

n(�� 1)

=


� + 2� 2�

1� �

�
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3. 
�+ 2� 2� = 0. Clearly, the �-divergen
e rate is equal to 0 in this 
ase.

Let us now 
ompute the reverse �-
uto� rate. First, we need to 
ompute D

�

e

(EjXk

�

X) using

Proposition 4. We have the following 
ases.

� E > 2. We have that

R + �(R) + [E � �(R)℄

+

=

8

>

>

<

>

>

:

R + E; for R � 0

R + E; for � (2� 
) � R < 0

1; for R < �(2� 
):

Hen
e

D

�

e

(EjXk

�

X) = inf

R2R

�

R + �(R) + [E � �(R)℄

+

	

= E � 2 + 
:

� 0 < 
 < E � 2. In this 
ase

R + �(R) + [E � �(R)℄

+

=

8

>

>

<

>

>

:

R + E; for R � 0

R + 2; for � (2� 
) � R < 0

1; for R < �(2� 
):

Hen
e, D

�

e

(EjXk

�

X) = 
.

� 0 < E � 
. In this 
ase

R + �(R) + [E � �(R)℄

+

=

8

>

>

<

>

>

:

R + E; for R � 0

R + 2; for � (2� 
) � R < 0

1; for R < �(2� 
):

Hen
e, D

�

e

(EjXk

�

X) = E.

The reverse �-
uto� rate is the E-axis inter
ept of the line of slope � passing by the point

(2; 
) as illustrated in Figure 7. By straightforward 
al
ulation, we get that

R

(r)

0

(�jXk

�

X) = �




�

+ 2:
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For � = 1=(1� �), we get that

R

(r)

0

(�jXk

�

X) =


� + 2� 2�

1� �

�

Sin
e, by de�nition, R

(r)

0

(�jXk

�

X) � 0, it is straightforward to 
he
k that

R

(r)

0

(�jXk

�

X) = lim

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

) for 0 < � < 1:

Note that for this example, sin
e the �-divergen
e rate is always �nite , it follows dire
tly that

�

max

= 1.

We �nally present a 
lass of sour
es with memory (
ountable or 
ontinuous alphabet) for

whi
h the reverse �-
uto� rate is given by the R�enyi

1

1��

-divergen
e rate for all 0 < � < 1.

Corollary 1 Consider the hypothesis testing problem between sour
es with memory su
h that

the log-likelihood ratio pro
ess fZ

n

g where Z

n

= log

P

�

X

n

(

�

X

n

)

P

X

n
(

�

X

n

)

, satis�es both hypotheses of the

G�artner-Ellis Theorem [2, p. 15℄:

� �(�)

4

= lim

n!1

1

n

�

n

(�) exists for all � 2 R,

� � is di�erentiable on d

'

, where d

'

4

= f� : �(�) <1g;

where �

n

(�)

4

= logE

P

�

X

n

[e(�Z

n

)℄: Then the reverse �-
uto� rate satis�es

R

(r)

0

(�jXk

�

X) = lim

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

) for 0 < � < 1:

Proof: We will prove the result for 
ountable alphabets. The required modi�
ations for the


ontinuous alphabet 
ase are straightforward. We need to show that for sour
es satisfying the

G�artner-Ellis Theorem, the R�enyi divergen
e rate exists, that the 
onditions of Theorem 2

hold and that �

max

= 1. First, the R�enyi divergen
e rate exists and �

max

= 1 from the �rst

hypothesis of the G�artner-Ellis Theorem and the fa
t that

1

n

D

1

1��

(X

n

k

�

X

n

) =

1� �

�

1

n

�

n

�

1

� � 1

�

:

Next, by the G�artner-Ellis Theorem, we have that

�(R) = sup

��0

f�R� �(�)g :
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Clearly, �(R) admits a limit and is 
onvex in R. Let us show that there exists an R su
h that

R + �(R) = 0. First, note that E

P

�

X

n

[e(�Z

n

)℄ = 1 for � = 0 and � = �1. Hen
e, �(�) = 0 for

� = 0 and � = �1. This implies that

�(R) +R = sup

��0

[(� + 1)R� �(�)℄ � [(� + 1)R� �(�)℄j

�=�1

= 0: (24)

Observe that

e

�

n

(�)

= E[e

�Z

n

℄ =

X

e

� log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

P

�

X

n

(x

n

)

=

X

e

(�+1) log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

P

X

n

(x

n

)

� e

(�+1)

P

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

P

X

n
(x

n

)

= e

(�+1)[�D(X

n

k

�

X

n

)℄

; (25)

where D(�k�) is the Kullba
k-Leibler divergen
e and (25) follows by Jensen's inequality. This

implies that

�

(� + 1)R

n

�

1

n

�

n

(�)

�

� 0 for all � � 0;

where R

n

= �

1

n

D(X

n

k

�

X

n

). As a result,

8

<

:

lim sup

n!1

�

(� + 1)R

n

�

1

n

�

n

(�)

	

= (� + 1) lim inf

n!1

R

n

� �(�) � 0; for � < �1

lim inf

n!1

�

(� + 1)R

n

�

1

n

�

n

(�)

	

= (� + 1) lim inf

n!1

R

n

� �(�) � 0; for 0 � � � �1

Therefore

�(lim inf

n!1

R

n

) + lim inf

n!1

R

n

� 0:

On the other hand, by (24), we have that

�(lim inf

n!1

R

n

) + lim inf

n!1

R

n

� 0:

Hen
e

�(lim inf

n!1

R

n

) + lim inf

n!1

R

n

= 0:

Remark 3: By Corollary 1, for i.i.d. �nite-alphabet observations (in this 
ase, G�artner-Ellis

Theorem redu
es to Cramer's Theorem), our result in Theorem 2 redu
es to Csisz�ar's result

[5℄; i.e., the reverse �-
uto� rate is given by the R�enyi divergen
e with parameter

1

1��

, for

0 < � < 1.
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Remark 4: The above 
orollary holds for the 
lass of �nite-alphabet irredu
ible Markov sour
es

sin
e the latter satisfy both hypotheses of the G�artner-Ellis Theorem. Indeed, the �-divergen
e

rate exists and is di�erentiable; furthermore, it admits a simple 
omputable expression [14℄.

Numeri
al Examples:

We brie
y present two examples of memoryless sour
es where we expli
itly verify the existen
e

of R su
h that R + �(R) = 0.

Example 6: Finite-alphabet memoryless sour
es: Consider Example 1 in Se
tion 4 where X

and

�

X are inter
hanged. Note that �(R) is equal to �(R) in this 
ase. It is straightforward to


he
k that R + �(R) = 0 for R approximately �0:13.

Example 7: Continuous alphabet memoryless sour
es: Consider Example 2 in Se
tion 4 where

X and

�

X are inter
hanged. Note that �(R) is equal to �(R) in this 
ase. By straightforward


al
ulation we get that R + �(R) = 0 for R = �2�

2

.

7 Con
lusions

We examined the forward and reverse �-
uto� rates for the hypothesis testing problem be-

tween arbitrary sour
es with memory (not ne
essarily Markovian, ergodi
, stationary, et
.) of

arbitrary alphabet (
ountable or 
ontinuous). We showed that the forward �-
uto� rate is

given by the lim inf �-divergen
e rate, where � =

1

1��

and � < 0. Under two 
onditions on

the large deviation spe
trum, �(R), we showed that the reverse �-
uto� rate is given by the

�-divergen
e rate, where � =

1

1��

and 0 < � < �

max

. For �

max

� � < 1, we provided an

upper bound to the reverse �-
uto� rate. We also investigated sour
es with memory (
ountable

or 
ontinuous alphabet) that satisfy the hypotheses of the G�artner-Ellis Theorem. We showed

that the 
onditions on �(R) are satis�ed and that the reverse �-
uto� rate is given by the R�enyi

divergen
e rate. A dire
t 
onsequen
e is that, for i.i.d. observations, our result indeed redu
es

to Csisz�ar's result, hen
e providing a simple expression for the reverse �-
uto� rate in terms

of the R�enyi divergen
e. Another 
onsequen
e is that, for �nite-alphabet irredu
ible Markov

sour
es, the reverse �-
uto� rate is given by the R�enyi divergen
e rate whi
h 
an be 
omputed

using Perron-Frobenius theory [14℄. We also provided several numeri
al examples to illustrate

our forward and reverse �-
uto� rates results.
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Future work may in
lude the study of Csisz�ar's 
hannel 
oding �-
uto� rates [5℄ for arbitrary

dis
rete 
hannels with memory using our information spe
trum te
hniques.

Appendix A: Properties of � and �(R)

Lemma 5 For 0 < t < 1,

�

4

= supfR : �

(t)

(R) > 0g � lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

):

Proof: For any � > 0,

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

> lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

) + 2�

�

� P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

>

1

n

D

1�t

(X

n

k

�

X

n

) + �

�
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P
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�
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an be made arbitrarily small.
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Lemma 7 We have the following:

supfR 2 R : � (R) > 0g � 0:

Proof: For any � > 0,
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e, the lemma holds.

Appendix B: Properties of �

Lemma 8 For t < 0, � � 0.
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Lemma 9 For 0 > t > �
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Figure 7: Reliability fun
tion of the type 1 probability of 
orre
t de
oding for testing between

the two sour
es P

X

n

(�) and P

�

X

n

(�) as given in Example 5.
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