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Abstract

In this work, we provide a computable expression for the Kullback-Leibler
divergence rate, lim,,_, %D(p(") 1¢"™), between two time-invariant finite-alpha-
bet Markov sources of arbitrary order and arbitrary initial distributions de-
scribed by the probability distributions p(® and ¢(™), respectively. We illus-
trate it numerically and examine its rate of convergence. The main tools used
to obtain the Kullback-Leibler divergence rate and its rate of convergence are
the theory of non-negative matrices and Perron-Frobenius theory. Similarly, we
provide a formula for the Shannon entropy rate lim,_, %H (p(”)) of Markov

sources and examine its rate of convergence.

Index Terms: Decision theory, classifcation, pattern recognition, time-invariant
Markov sources, Kullback-Leibler divergence rate, Shannon entropy rate, non-

negative matrices, Perron-Frobenius theory, rate of convergence.

* This research was supported in part by the Natural Sciences and Engineering Research Council of Canada.
Z. Rached was with the Department of Mathematics & Statistics, Queen’s University, Kingston, ON K7L 3N6, Canada;
he is now with the Department of Mathematics & Statistics, Notre Dame University, Zouk Mosbeh, Keserouan,
P. O. Box 72 Zouk Mikael, Lebanon. F. Alajaji and L. L. Campbell are with the Department of Mathematics &
Statistics, Queen’s University, Kingston, ON K7L 3N6, Canada.



1 Introduction

Let {X;, Xy,...} be a first-order time-invariant Markov source with finite-alphabet
X ={1,...,M}. Consider the following two different probability laws for this source.
Under the first law,

Pr{X; =i} =1p; and Pr{Xyy =jlXs=1i}=p;y, 1,j€EAX,
so that
p(n)(ln) = PT{XI - il) e JXTL - Zn} — p’ilp’il’i2 o 'pinfl’ina il? .. 'Jin S XJ

while under the second law the initial probabilities are g;, the transition proba-
bilities are ¢;;, and the n-tuple probabilities are ¢™. Let p = (p1,-..,pm) and
¢ = (q1,...,qu) denote the initial distributions under p™ and ¢™ respectively.

The Kullback-Leibler divergence [13] between two distributions p and ¢ defined
on X is given by

D(plg) = i 10g W

ieX

where the base of the logarithm is arbitrary. The application of the Kullback-Leibler
divergence can be found in many areas such as approximation of probability distri-
butions [3], [12], signal processing [10], [11], [5], pattern recognition [1], [2], etc.

One natural direction for further studies is the investigation of the Kullback-
Leibler divergence rate

1
lim —D(p™||¢™)

n—oco 1

between two probability distributions p™ and ¢™ defined on X", where

P (i
Mgy =" pt 10g ()

) Y
meXxn ( n)
for sources with memory. In previous work, Gray [8] proved that the Kullback-Leibler
divergence rate exists between a stationary source p(™ and a time-invariant Markov

source ¢, This result can also be found in [17, p. 27]. In [14], the authors noted that

the Kullback-Leibler divergence rate between ergodic Markov sources exists. In [16],



Shields presented two examples for non-Markovian sources for which the Kullback-
Leibler divergence rate does not exist. Finally, in [5], Do provides an upper bound for
the Kullback-Leibler divergence rate between stationary hidden Markov sources. To
the best of our knowledge, these are the only results available in the literature about
the existence and/or computation of the Kullback-Leibler divergence rate between
sources with memory.

In this work, we provide an explicit computable expression for the Kullback-Leibler
divergence rate between two arbitrary time-invariant (not necessarily stationary, ir-
reducible) finite-alphabet Markov sources. This expression, which is proved in a
straightforward manner using results from the theory of non-negative matrices and
Perron-Frobenius theory, has a readily usable form, making it appealing for various
analytical studies and applications involving the divergence rate for systems with
1emory.

The rest of this work is organized as follows. Preliminaries about the theory of non-
negative matrices are first presented in Section 2. In Section 3, an explicit formula for
the divergence rate between arbitrary time-invariant finite-alphabet Markov sources is
derived and its rate of convergence is investigated. A similar study for the expression
and convergence rate of the Shannon entropy rate of time-invariant (non-stationary
in general) Markov sources is briefly addressed in Section 4. Numerical examples are

presented in Section 5 and conclusions are stated in Section 6.

2 Preliminaries

Matrices and vectors are positive if all their components are positive and non-negative

if all their components are non-negative. Throughout, A denotes an M x M non-

negative matrix with elements a;;. The 7j-th element of A™ is denoted by al(;n).

We write 1 — j if al(;n) > 0 for some positive integer m, and we write ¢ /4 j if

ag-n) = 0 for every positive integer m. We say that 7 and j communicate and write
i <> jifi — jand j — ¢ If ¢ — j but 5 /4 ¢ for some index j, then the index ¢ is

called inessential (or transient); otherwise, it is called essential (or recurrent). Thus
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if ¢ is essential, ¢ — 7 implies ¢ <> j, and there is at least one j such that ¢ — j.

With these definitions, it is possible to partition the set of indices {1,2,..., M}
into disjoint sets, called classes. All essential indices can be subdivided into essential
classes in such a way that all the indices belonging to one class communicate, but
cannot lead to an index outside the class. Moreover, all inessential indices (if any)
may be divided into two types of inessential classes: self-communicating classes and
non self-communicating classes. Each self-communicating inessential class contains
inessential indices which communicate with each other. A non self-communicating
inessential class is a singleton set whose element is an index which does not commu-
nicate with any index (including itself).

A matrix is irreducible if its indices form a single essential class; i.e., if every index

communicates with every other index.

Proposition 1 [15, p. 15] By renumbering the indices (i.e., by performing row and

column permutations), it is possible to put a non-negative matrix A in the canonical

form
4 ... 0 0 .0 0
0 ... O 0O ... 0 0
0
0 ... 4 0O ... 0 0
Ao Apint oo Apn A o 0 0
0
Ag oon A Ag o A 0
Agiir oo Agrin Agpintr oo Agpg O 0
0
 An o A A o Ay Ay 0 ]
where A;,7 =1,..., g, are irreducible square matrices, and in each row i = h+1,...,¢g
at least one of the matrices A;1, A, ..., A;i—1 is not zero. The matrix A; for i =

1,..., h corresponds to the essential class C}; while the matrix A; fori =h+1,...,9g



corresponds to the self-communicating inessential class C;. The other diagonal block
sub-matrices which correspond to non self-communicating classes C;, 1 =¢g+1,...,1,
are 1 x 1 zero matrices. In every row ¢t = g+1,...,[ any of the matrices A;;,..., A; 1

may be zero.

Proposition 2 (Frobenius) [7, p. 115] If A is irreducible, then A has a real
positive eigenvalue A\ that is greater than or equal to the magnitude of each other
eigenvalue. There is a positive left (right) eigenvector, a (b), corresponding to A,

where a is a row vector and b is a column vector.

Proposition 3 [9, p. 492] Suppose A is irreducible and let R;, i = 1,..., M
denote the sum of the i-th row. Also, let Ry, = max{R;,..., Ry} and Ry, =

min{Ry,..., Ry}. Then the largest positive real eigenvalue A satisfies

Rmin <A S Rmax-

The following lemma follows by appropriately modifying the proof of the above

proposition.

Lemma 1 If A is irreducible and the row sums are not all identical, then the largest

positive real eigenvalue \ satisfies,
Ruin < A < Rpyax.

Proof: Let A be the largest positive real eigenvalue of A with associated strictly
positive left eigenvector a, which exists by Proposition 2. Without loss of generality
a can be normalized, i.e., the sum of its components is equal to 1. Let 1¢ be the row

vector



Note that al = 1, where t denotes the transpose operation. We have aA = Aa. Hence

aAl = Aal = ). On the other hand

aAl = a(Ry,...,Ry)"
< a(Rma,xa cee ma,x)t
M
=1
= Rmax

Therefore A < Ryax. Similarly, we can show that A > R,;,. Finally we conclude that

Rmin <AL Rmax-

|

Proposition 4 Suppose A is irreducible. Let A be the largest positive real eigenvalue

with associated right positive eigenvector b. Then A™ < \"C' (i.e., ag;ﬂ) < A™¢;j), for

allm =1,2,..., where C' = (%"@“) is a matrix with identical entries that are
1<k<m bk

independent of m.
Proof: If Ab = Ab, then A™b = A"b. We have that

A (@fgwbk) > A"

M
> min by) Za

1<k<M
Jj=1

—~

(m)

> (min by)a;;
1<k<M

@

foralli=1,...,M and j =1,...,M. Since b > 0, we obtain the desired result.

O

Proposition 5 [9, p. 524] Let P be the probability transition matrix for an irre-
ducible Markov source. Also, let a (b) be the left (right) eigenvector associated with
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the largest positive real eigenvalue A = 1 such that ab = 1. Also, let L = ba. Then
lim zn: P =L
fim D P =L

Moreover, there exists a finite positive constant C' = C'(P) such that

l E P —L| < 9,
n “ n
=1 00
foralln =1,2,...and || || is the Iy, norm, where the [, norm of an M x M matrix

. A
A is defined by ||A||ec = maxi<; < ||

Remark: The left eigenvector a is the unique stationary distribution 7 of P associ-
ated with the largest positive real eigenvalue A =1 and b* = (1,...,1).

With the aid of the above proposition and Proposition 1, it can be shown that for
an arbitrary stochastic matrix P (i.e., with non-negative entries and every row-sum

equal to one), the Cesaro limit, lim,, % S P, exists and is computable.

Proposition 6 [4, p. 129] Let P be the probability transition matrix for an arbi-

trary Markov source with associated canonical form as in Proposition 1:

r 0
B C
where _ )
Ppiin oo Phyan
p ... 0
I' = O 0 , B = Pgl Pgh 7
Pyyin oo Py
0 ... p
i Py Py, |




and

Pyr ... O ... ... 0
oo | Pano P 0
Poyinir oo Pypag 0
Ppew ... Py Pygpo ... 0 |

Let a; (b;) be the left (right) eigenvector of P; associated with A = 1 such that a;b; = 1,
fori=1,...,h, and define

b1a1 e 0
0 ... 0
D =
0 . bhah
We have the following:
1~ D 0
lim —» P'=
naoo’n,i:1 (I_C)—IBD 0

where [ is the identity matrix.

3 Kullback-Leibler Divergence Rate

3.1 First-Order Markov Sources

We first assume that the time-invariant Markov source {X;, Xy,...} is of order one.
Later, we generalize the results for sources of arbitrary order k. Let p and ¢ be
two initial distributions and P and () be two probability transition matrices for the
source, yielding n-tuple distributions p™ and ¢(™ respectively. We assume that p is
absolutely continuous with respect to ¢ (p << ¢) and that P is absolutely continuous
with respect to Q (P << Q); ie,, ¢ =0 = p, = 0 and ¢;; = 0 = p;; = 0, for all
i,j € X. These conditions ensure that p™ << ¢™ for each n and cover most cases

of interest regarding the computation of the divergence rate.
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We have the following results.

Theorem 1 Suppose that the Markov source {Xj, Xy, ...} is irreducible under P
and ). Let

S(Xo| Xy =1) me log p”‘

jeX

Then, the Kullback-Leibler divergence rate between p™ and ¢(™ is given by

1
lim —D(p™]|¢™ Zm (Xo| Xy = 1),

n—oo 1 gy
7

where 7 = (71, ..., 7)) is the unique stationary distribution of P.

Proof: First note that S(X,|X; = i) is well defined for all i € X since P << Q.

Furthermore, since both p << ¢ and P << @ hold, we have that

D(p™|l¢™) =

|
_

_Z[p X1=1 + (X1 = 1)]S(Xo| Xy = i)
_lEZXle_Z log 8{{ ;,

which can be also written as

1 1 _
~D(p™"lg™) = —MI+P+-~+P"5V (1)
+ = Z pi log b (2)
zeX

where

V= (S(Xo] X, =1),...,9(Xs]| X, = M)).

Note that (2) approaches 0 as n — oco. Hence, by Proposition 5, we obtain that

1
lim —p(I+P+---+ P" )V =pLV,

n—oo M

10



where

™ T2 ... TMm

Ty T2 ... TMpm

™ T2 ... TMpm

Thus
™ To ... TMmM
1 ™ T Lo T
lim =D ™) = p| " T Y
n—oo 1, . :
™ T9o ... TM
= ZWZS(X2|X1 = Z)
1EX

|

Theorem 2 Suppose that the Markov source {X;, Xy,...} under p™ and ¢™ is
arbitrary! (not necessarily irreducible, stationary, etc.). Let the canonical form of P
be as in Proposition 1. Also, let B, D and C be as defined in Proposition 6. Then,

the Kullback-Leibler divergence rate between p™ and ¢™ is given by

N [ D 0]
lim —D(p™[j¢™) =p [ d_crmp 0 J V.

where

VE= (S(Xa| X1 =1),...,S(Xo|X) = M)),

and [ is the identity matrix with same dimensions as the matrix C'.

!Since p and P are assumed to be absolutely continuous with respect to ¢ and @ respectively,
it follows that p(™ is absolutely continuous with respect to ¢(”. Hence, some restriction on their
behavior is induced. For instance, if P is irreducible, () must be irreducible. However, it is possible
to have @ irreducible and P reducible. So, in general, ) and P do not necessarily have the same

number of classes.

11



Proof: As in the previous theorem, we have that

1 1 _
~DE"lg™) = —p(I+ P+ PV (3)
1 ;
+— > pilog g (4)
i€X di

Then, the desired result follows immediately from Proposition 6.

|

Theorem 3 The rate of convergence of the Kullback-Leibler divergence rate between

arbitrary p™ and ¢™ is of the order 1/n.

Proof: Clearly, the rate of convergence of (4) to 0 is of the order 1/n. In Proposi-
tion 5, it is proved that the rate of convergence of the Cesaro sum of an irreducible

stochastic matrix is of the order 1/n. On the other hand, if P is not irreducible, let

P, 1 = 1,...,h, be the sub-matrices corresponding to essential classes and let F;,
t=h+1,...,g be the sub-matrices corresponding to inessential classes as in Propo-
sition 1. For ¢+ = 1,...,h, each P; is stochastic and irreducible; so its Cesaro-sum is

of the order 1/n by Proposition 5. Now, for i = h+1,..., g, every P; is irreducible

and hence, by Proposition 4, we have that
P"<\'G;, i=h+1,...,¢, (5)

where \; is the largest positive real eigenvalue of P;, and G; is a matrix with identical

entries that are independent of n. Therefore

1 o~ 1 o

- P < = G,

- Z ;o< - Z NG,
7=1 j=1

LA(1 =N

SRAASEA YN

fori =h+1,...,9. If P, has all row sums identical then \; < 1 by Proposition 3,

the fact that P is stochastic and the fact that, in the canonical form of P, at least

one of the matrices Py, Py, -+, P; 1 is non-zero when i = h+1,...,¢g (so that the

row sums of P; are strictly less than one). Otherwise, \; < 1 by Lemma 1. Hence,

12



the Cesdro sum of P;, i = h+1,..., g is of the order 1/n. By considering the Cesaro
sum of the canonical form of P, we get that the rate of convergence of (3) is of the
order 1/n. Therefore the rate of convergence of the Kullback-Leibler divergence rate

is of the order 1/n. -

3.2 k-th Order Markov Sources

We next suppose that the Markov source {X,} has an arbitrary order k, and let (™)
and ¢™ be two possible n-tuple distributions for {X,}. Define {W,} as the process
obtained by k-step blocking the Markov source {X,}; i.e.,

Wn = (Xn7 Xn+17 s 7Xn+k;71)-

Then {W,,} is a first order Markov source with M* states. Let p = (py,...,paw) and
q¢=(q,.-.,qy+) denote the initial distributions of W; and let P = [p;;] and Q = [g;],
(with 7,7 = 1,..., M*) denote the probability transition matrices for {W,}, resulting
in n-tuple distributions p™ and ¢™ respectively.

We first note that since =1 (gn+k=1) = p) (") and Gte—b(gn+h-1) =
g™ (w") for all n > 1, then D(p"+*=1||g" =) = D(p™||¢™). Therefore, the
divergence rates for { X, } and {W,,} are identical since (n+k—1)/n — 1 as n — oo.

Now clearly D(p'™||¢"™)) can be written as

1 1 _
~D(Pg™) = —p(I+ P+ PV
1 A p(Wh =4)
i (W1 =i)log q(Wy =1)’

where

Vit = (S(WaWy =1),...,S(Wy|W; = Mk))

It then directly follows that Theorems 2 and 3 also hold for a Markov source of

arbitrary order k.
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4 Shannon Entropy Rate

The existence and the computation of the Shannon entropy rate of an arbitrary time-
invariant finite-alphabet Markov source can be directly deduced from the existence
and the computation of the Kullback-Leibler divergence rate. Indeed, if ¢ is sta-

tionary memoryless with uniform marginal distribution, then
D(p™[lg™) = nlog M — H(p™™).

Therefore
1 1
lim —D(p™||¢™) =log M — lim —H (p™). (6)

n—oo N n—oo 1

We have the following corollaries.

Corollary 1 Suppose that the Markov source {X;, Xs,...} under P is irreducible.
Let

RVAN
H(X2|X1 = Z) = — Zp” lng”

JEX

Then, the Shannon entropy rate of p(™ is given by

1
lim —H(p™) = mH(Xs|X; =),

n—00 1 .
i

where m = (my,...,m)) is the unique stationary distribution of P.

Proof: Obtained directly by plugging ¢;; = 1/M in Theorem 1 and using (6).

|

Corollary 2 Let the canonical form of P be as in Proposition 1. Also, let B, D and
C be as defined in Proposition 6. Then, the Shannon entropy rate is given by

.1n_[D 0]
,B&EH@”)—p{u_wnlBD 0|

Y

where

V= (H(X| Xy =1),..., H(Xz| X, = M)),
and [ is the identity matrix with the same dimensions as the matrix C'.
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Proof: Note that P’ i = 1,2,... is a stochastic matrix?. Hence,

1 -1
lim =([+ P+ +P" 1" = lim ——1'
n—oo M n—00 n
= 1!
which yields that
1
lim —( + P+ -+ P"?)
n—o0o M,
is a stochastic matrix. Therefore,
D 0
(I-¢)'BD 0
is also a stochastic matrix. Hence,
log M log M
D 0
=D
(I-¢)'BD 0
log M log M
= log M.

Then, the corollary follows directly by plugging ¢;; = 77 in Theorem 2 and using (6).

Ol
Remark: It was mentioned in [6, p. 68] that the Shannon entropy rate for an arbitrary
time-invariant finite-alphabet Markov source exists, but no computational details nor

an explicit analytical expression for the entropy rate (as shown above) were provided.

Corollary 3 The rate of convergence of the Shannon entropy rate of p™ is of the

order 1/n.

2We have that P1! = 1!, where 1 = (1,...,1) and t is the transpose operation. Using this fact
and the fact that P? = PP*~1, the result follows by mathematical induction on i.
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5 Numerical Examples

In this section, we use the natural logarithm for simplicity.
Example 1: Let P and () be two possible probability transition matrices for a first

order Markov source {X;, Xs,...} (not stationary and not irreducible) defined as

follows:
(12 0 0 12 0 0 0]
0 0 4/7 2/7 1/7 0 0
0 0 1/3 0 0 2/3 0
P=|1/4 0 0 3/4 0 0 0],
2/5 2/5 0 0 1/5 0 0
o 0 1 0 0 0 0
| 1/4 0 1/2 0 1/4 0 0|
and
| /3 0 0 2/3 0 0 0 ]
0 0 2/7 1/7 47 0 0
0 0 1/5 0 0 4/5 0
Q=11/6 0 0 5/6 0 0 0
1/5 2/5 0 0 2/5 0 0
o 0 1 0 0 0 0
1/4 0 1/4 0 1/2 0 0

Let p = (3/7,0,1/7,0,1/7,2/7,0) and ¢ = (2/8,0,3/8,0, 1/8,2/8,0) be two possible

initial distributions under p™ and ¢(™, respectively. In canonical form, P and @ can

16



be rewritten as

(1/32/3 0 0 0 0 0
1 0 0 0 0 0 0
0 0 1/212 0 0 0
P=| 0 o0 1/434 0 0 0],
0 0 2/5 0 1/5 2/5 0
47 0 0 27 1T 0 0
(12 0 14 0 14 0 0
and
(1/54/5 0 0 0 0 0
1 0 0 0 0 0 0
0 0 1/32/3 0 0 0
Q=| 0 0 1/6 5/6 0 0 0|,
0 0 1/5 0 2/52/5 0
2/7 0 0 17 47 0 0
14 0 14 0 12 0 0

simply by permuting the first and third rows (columns) and the second and sixth rows
(columns). Note that P has 2 essential classes, 1 inessential self-communicating class
and 1 inessential non self-communicating class. Accordingly, the initial distributions
are rewritten as p = (1/7,2/7,3/7,0,1/7,0,0) and ¢ = (3/8,2/8,2/8,0,1/8,0,0),
after permuting the first and third indices and the second and sixth indices. We

obtain the following.

n | 3DE™e™)

10 0.05323
20 0.03626
100 0.03415

By Theorem 2, the Kullback-Leibler divergence rate is equal to 0.032. Clearly, as n
gets larger, ZD(p™||g™) is closer to the Kullback-Leibler divergence rate. We also

obtain the following.
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By Corollary 2, the Shannon entropy rate is equal to 0.50008. Similarly, as n gets

larger, the value of %H(p(m) moves closer to the Shannon entropy rate.

Example 2: Suppose that the Markov source is of order 2 under p™ and ¢™ re-
spectively. Let {W;, W5, ...} be the process obtained by 2-step blocking the Markov

source. Let P and @) be two possible transition matrices for {Wy, Ws, ...} defined as

follows:

and

Let p = (1/8,3/8,2/8,2/8) and ¢ = (1/7,2/7,3/7,1/7) denote two possible initial
distributions of W, under p™ and ¢(™ respectively. The set of indices {1,2,3} forms
an essential class, while the singleton set {4} forms a self-communicating non-essential

class. Hence, P and () are not irreducible. Note also that both p(™ and ¢™ are not

n | ~H(p")

10 | 0.54366
50 | 0.50877
100 | 0.50442

[ 1/3 2/3
0 0

2/5 3/5
0 0

[ 3/4 1/4
0 0
7/8 1/8
0 0

stationary. We obtain the following.

18

0 0
1 0

0 0
1/6 5/6 |
0 0 |
1 0

0 0
2/3 1/3 |




1 n n
n | ~D(p™|¢"™)

10 0.2982
20 0.3253
100 0.3277

By Theorem 2, the Kullback-Leibler divergence rate is equal to .3301. Clearly, as n

increases, £ D(p(™|]¢(™)) gets closer to the Kullback-Leibler divergence rate. We also

obtain the following.

n | LH(p")

10 0.4618
50 0.4175
100 | 0.4116

By Corollary 2, the Shannon entropy rate is equal to 0.4057. Similarly, %H(p(”))

approaches the Shannon entropy rate with increasing n.

6 Conclusion

In this work, we derived a formula for the Kullback-Leibler divergence rate between
two time-invariant finite-alphabet Markov sources of arbitrary order and arbitrary
initial distributions. We also investigated its rate of convergence. Similarly, we ex-
amined the computation and the existence of the Shannon entropy rate for Markov
sources and investigated its rate of convergence. The main tools used in obtaining
these results are the theory of non-negative matrices and Perron-Frobenius theory.
One interesting and challenging direction for future work is the investigation of the

Kullback-Leibler divergence rate for general hidden Markov sources.

19



References

1]

2]

[5]

(6]

7]
8]
9]

[10]

[11]

M. B. Bassat, “f-entropies, probability of error, and feature selection,” Informa-

tion and Control, vol. 39, pp. 227-242, 1978.

C. H. Chen, Statistical Pattern Recognition, Rochelle Park, NJ: Hayden Book
Co., Ch. 4, 1973.

C. K. Chow and C. N. Liu, “Approximating discrete probability distributions
with dependence trees,” IEEE Transactions on Information Theory, vol. 14,

no. 3, pp. 462-467, May 1968.

D. R. Cox and H. D. Miller, The Theory of Stochastic Processes, Methuen and
Co. Ltd, 1965.

M. N. Do, “Fast approximation of Kullback-Leibler distance for dependence trees
and hidden Markov models,” IEEE Signal Processing Letters, vol. 10, no. 4,
pp. 115-118, April 2003.

R. G. Gallager, Information Theory and Reliable Communication, Wiley, 1968.
R. G. Gallager, Discrete Stochastic Processes, Kluwer, Boston, 1996.
R. M. Gray, Entropy and Information Theory, Springer-Verlag, New York, 1990.

R. A. Horn and C. R. Johnson, Matriz Analysis, Cambridge University Press,
1985.

T. T. Kadota and L. A. Shepp, “On the best finite set of linear observables

”

for discriminating two Gaussian signals,” IEEE Transactions on Information

Theory, vol. 13, no. 2, pp. 278-284, Apr. 1967.

T. Kailath, “The divergence and Bhattacharyya distance measures in signal selec-
tion,” IEEE Transactions on Communication Technology, vol. 15, no. 1, pp. 52-

60, Feb. 1967.

20



[12] D. Kazakos and T. Cotsidas, “A decision theory approach to the approximation
of discrete probability densities,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 2, no. 1, pp. 61-67, Jan. 1980.

[13] S. Kullback and R. A. Leibler, “On information and sufficiency,” Annals of Math-
ematical Statistics, vol. 22, pp. 79-86, 1951.

[14] K. Marton and P. C. Shields, “The positive-divergence and blowing-up proper-
ties,” Israel Journal of Mathematics, vol. 86, 331-348, 1994.

[15] E. Seneta, Non-Negative Matrices and Markov Chains, Springer-Verlag New York
Inc., 1981.

[16] P. C. Shields, “Two divergence-rate counterexamples,” Journal of Theoretical

Probability, vol. 6, 521-545, 1993.

[17] Z. Ye and T. Berger, Information Measures For Discrete Random Fields, Science

Press, Beijing, New York, 1998.

21



