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Abstra
t

In this work, we provide a 
omputable expression for the Kullba
k-Leibler

divergen
e rate, lim

n!1

1

n

D(p

(n)

kq

(n)

), between two time-invariant �nite-alpha-

bet Markov sour
es of arbitrary order and arbitrary initial distributions de-

s
ribed by the probability distributions p

(n)

and q

(n)

, respe
tively. We illus-

trate it numeri
ally and examine its rate of 
onvergen
e. The main tools used

to obtain the Kullba
k-Leibler divergen
e rate and its rate of 
onvergen
e are

the theory of non-negative matri
es and Perron-Frobenius theory. Similarly, we

provide a formula for the Shannon entropy rate lim

n!1

1

n

H(p

(n)

) of Markov

sour
es and examine its rate of 
onvergen
e.
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1 Introdu
tion

Let fX

1

; X

2

; : : :g be a �rst-order time-invariant Markov sour
e with �nite-alphabet

X = f1; : : : ;Mg. Consider the following two di�erent probability laws for this sour
e.

Under the �rst law,

PrfX

1

= ig =: p

i

and PrfX

k+1

= jjX

k

= ig =: p

ij

; i; j 2 X ;

so that

p

(n)

(i

n

) := PrfX

1

= i

1

; : : : ; X

n

= i

n

g = p

i

1

p

i

1

i

2

� � �p

i

n�1

i

n

; i

1

; : : : ; i

n

2 X ;

while under the se
ond law the initial probabilities are q

i

, the transition proba-

bilities are q

ij

, and the n-tuple probabilities are q

(n)

. Let p = (p

1

; : : : ; p

M

) and

q = (q

1

; : : : ; q

M

) denote the initial distributions under p

(n)

and q

(n)

respe
tively.

The Kullba
k-Leibler divergen
e [13℄ between two distributions p̂ and q̂ de�ned

on X is given by

D(p̂kq̂) =

X

i2X

p̂

i

log

p̂

i

q̂

i

;

where the base of the logarithm is arbitrary. The appli
ation of the Kullba
k-Leibler

divergen
e 
an be found in many areas su
h as approximation of probability distri-

butions [3℄, [12℄, signal pro
essing [10℄, [11℄, [5℄, pattern re
ognition [1℄, [2℄, et
.

One natural dire
tion for further studies is the investigation of the Kullba
k-

Leibler divergen
e rate

lim

n!1

1

n

D(p

(n)

kq

(n)

)

between two probability distributions p

(n)

and q

(n)

de�ned on X

n

, where

D(p

(n)

kq

(n)

) =

X

i

n

2X

n

p

(n)

(i

n

) log

p

(n)

(i

n

)

q

(n)

(i

n

)

;

for sour
es with memory. In previous work, Gray [8℄ proved that the Kullba
k-Leibler

divergen
e rate exists between a stationary sour
e p

(n)

and a time-invariant Markov

sour
e q

(n)

. This result 
an also be found in [17, p. 27℄. In [14℄, the authors noted that

the Kullba
k-Leibler divergen
e rate between ergodi
 Markov sour
es exists. In [16℄,
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Shields presented two examples for non-Markovian sour
es for whi
h the Kullba
k-

Leibler divergen
e rate does not exist. Finally, in [5℄, Do provides an upper bound for

the Kullba
k-Leibler divergen
e rate between stationary hidden Markov sour
es. To

the best of our knowledge, these are the only results available in the literature about

the existen
e and/or 
omputation of the Kullba
k-Leibler divergen
e rate between

sour
es with memory.

In this work, we provide an expli
it 
omputable expression for the Kullba
k-Leibler

divergen
e rate between two arbitrary time-invariant (not ne
essarily stationary, ir-

redu
ible) �nite-alphabet Markov sour
es. This expression, whi
h is proved in a

straightforward manner using results from the theory of non-negative matri
es and

Perron-Frobenius theory, has a readily usable form, making it appealing for various

analyti
al studies and appli
ations involving the divergen
e rate for systems with

memory.

The rest of this work is organized as follows. Preliminaries about the theory of non-

negative matri
es are �rst presented in Se
tion 2. In Se
tion 3, an expli
it formula for

the divergen
e rate between arbitrary time-invariant �nite-alphabet Markov sour
es is

derived and its rate of 
onvergen
e is investigated. A similar study for the expression

and 
onvergen
e rate of the Shannon entropy rate of time-invariant (non-stationary

in general) Markov sour
es is brie
y addressed in Se
tion 4. Numeri
al examples are

presented in Se
tion 5 and 
on
lusions are stated in Se
tion 6.

2 Preliminaries

Matri
es and ve
tors are positive if all their 
omponents are positive and non-negative

if all their 
omponents are non-negative. Throughout, A denotes an M �M non-

negative matrix with elements a

ij

. The ij-th element of A

m

is denoted by a

(m)

ij

.

We write i ! j if a

(m)

ij

> 0 for some positive integer m, and we write i 6! j if

a

(m)

ij

= 0 for every positive integer m. We say that i and j 
ommuni
ate and write

i $ j if i ! j and j ! i. If i ! j but j 6! i for some index j, then the index i is


alled inessential (or transient); otherwise, it is 
alled essential (or re
urrent). Thus
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if i is essential, i! j implies i$ j, and there is at least one j su
h that i! j.

With these de�nitions, it is possible to partition the set of indi
es f1; 2; : : : ;Mg

into disjoint sets, 
alled 
lasses. All essential indi
es 
an be subdivided into essential


lasses in su
h a way that all the indi
es belonging to one 
lass 
ommuni
ate, but


annot lead to an index outside the 
lass. Moreover, all inessential indi
es (if any)

may be divided into two types of inessential 
lasses: self-
ommuni
ating 
lasses and

non self-
ommuni
ating 
lasses. Ea
h self-
ommuni
ating inessential 
lass 
ontains

inessential indi
es whi
h 
ommuni
ate with ea
h other. A non self-
ommuni
ating

inessential 
lass is a singleton set whose element is an index whi
h does not 
ommu-

ni
ate with any index (in
luding itself).

A matrix is irredu
ible if its indi
es form a single essential 
lass; i.e., if every index


ommuni
ates with every other index.

Proposition 1 [15, p. 15℄ By renumbering the indi
es (i.e., by performing row and


olumn permutations), it is possible to put a non-negative matrix A in the 
anoni
al

form

A =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

A

1

: : : 0 0 : : : 0 : : : : : : 0

0 : : : 0 0 : : : 0 : : : : : : 0

: : : : : : : : : : : : : : : : : : : : : : : : 0

0 : : : A

h

0 : : : 0 : : : : : : 0

A

h+11

: : : A

h+1h

A

h+1

: : : 0 : : : : : : 0

: : : : : : : : : : : : : : : : : : : : : : : : 0

A

g1

: : : A

gh

A

gh+1

: : : A

g

: : : : : : 0

A

g+11

: : : A

g+1h

A

g+1h+1

: : : A

g+1g

0 : : : 0

: : : : : : : : : : : : : : : : : : : : : : : : 0

A

l1

: : : A

lh

A

lh+1

: : : A

lg

A

lg+1

: : : 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

where A

i

, i = 1; : : : ; g, are irredu
ible square matri
es, and in ea
h row i = h+1; : : : ; g

at least one of the matri
es A

i1

; A

i2

; : : : ; A

ii�1

is not zero. The matrix A

i

for i =

1; : : : ; h 
orresponds to the essential 
lass C

i

; while the matrix A

i

for i = h+1; : : : ; g

5




orresponds to the self-
ommuni
ating inessential 
lass C

i

. The other diagonal blo
k

sub-matri
es whi
h 
orrespond to non self-
ommuni
ating 
lasses C

i

, i = g+1; : : : ; l,

are 1�1 zero matri
es. In every row i = g+1; : : : ; l any of the matri
es A

i1

; : : : ; A

ii�1

may be zero.

Proposition 2 (Frobenius) [7, p. 115℄ If A is irredu
ible, then A has a real

positive eigenvalue � that is greater than or equal to the magnitude of ea
h other

eigenvalue. There is a positive left (right) eigenve
tor, a (b), 
orresponding to �,

where a is a row ve
tor and b is a 
olumn ve
tor.

Proposition 3 [9, p. 492℄ Suppose A is irredu
ible and let R

i

, i = 1; : : : ;M

denote the sum of the i-th row. Also, let R

max

= maxfR

1

; : : : ; R

M

g and R

min

=

minfR

1

; : : : ; R

M

g. Then the largest positive real eigenvalue � satis�es

R

min

� � � R

max

:

The following lemma follows by appropriately modifying the proof of the above

proposition.

Lemma 1 If A is irredu
ible and the row sums are not all identi
al, then the largest

positive real eigenvalue � satis�es,

R

min

< � < R

max

:

Proof: Let � be the largest positive real eigenvalue of A with asso
iated stri
tly

positive left eigenve
tor a, whi
h exists by Proposition 2. Without loss of generality

a 
an be normalized, i.e., the sum of its 
omponents is equal to 1. Let 1

t

be the row

ve
tor

1

t

= (1; : : : ; 1):

6



Note that a1 = 1, where t denotes the transpose operation. We have aA = �a. Hen
e

aA1 = �a1 = �. On the other hand

aA1 = a(R

1

; : : : ; R

M

)

t

< a(R

max

; : : : ; R

max

)

t

=

M

X

i=1

a

i

R

max

= R

max

Therefore � < R

max

. Similarly, we 
an show that � > R

min

. Finally we 
on
lude that

R

min

< � < R

max

:

Proposition 4 Suppose A is irredu
ible. Let � be the largest positive real eigenvalue

with asso
iated right positive eigenve
tor b. Then A

m

� �

m

C (i.e., a

(m)

ij

� �

m




ij

), for

all m = 1; 2; : : :, where C = (

max

1�k�M

b

k

min

1�k�M

b

k

) is a matrix with identi
al entries that are

independent of m.

Proof: If Ab = �b, then A

m

b = �

m

b. We have that

�

m

( max

1�k�M

b

k

) � �

m

b

i

=

M

X

j=1

a

(m)

ij

b

j

� ( min

1�k�M

b

k

)

M

X

j=1

a

(m)

ij

� ( min

1�k�M

b

k

)a

(m)

ij

;

for all i = 1; : : : ;M and j = 1; : : : ;M . Sin
e b > 0, we obtain the desired result.

Proposition 5 [9, p. 524℄ Let P be the probability transition matrix for an irre-

du
ible Markov sour
e. Also, let a (b) be the left (right) eigenve
tor asso
iated with
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the largest positive real eigenvalue � = 1 su
h that ab = 1. Also, let L = ba. Then

lim

n!1

1

n

n

X

i=1

P

i

= L:

Moreover, there exists a �nite positive 
onstant C = C(P ) su
h that
















1

n

n

X

i=1

P

i

� L
















1

�

C

n

;

for all n = 1; 2; : : : and k � k

1

is the l

1

norm, where the l

1

norm of an M �M matrix

A is de�ned by kAk

1

4

= max

1�i;j�M

ja

ij

j.

Remark: The left eigenve
tor a is the unique stationary distribution � of P asso
i-

ated with the largest positive real eigenvalue � = 1 and b

t

= (1; : : : ; 1).

With the aid of the above proposition and Proposition 1, it 
an be shown that for

an arbitrary sto
hasti
 matrix P (i.e., with non-negative entries and every row-sum

equal to one), the Ces�aro limit, lim

n!1

1

n

P

n

i=1

P

i

, exists and is 
omputable.

Proposition 6 [4, p. 129℄ Let P be the probability transition matrix for an arbi-

trary Markov sour
e with asso
iated 
anoni
al form as in Proposition 1:

P =

2

4

� 0

B C

3

5

;

where

� =

2

6

6

6

6

6

6

4

P

1

: : : 0

0 : : : 0

: : : : : : : : :

0 : : : P

h

3

7

7

7

7

7

7

5

; B =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

P

h+11

: : : P

h+1h

: : : : : : : : :

P

g1

: : : P

gh

P

g+11

: : : P

g+1h

: : : : : : : : :

P

l1

: : : P

lh

3

7

7

7

7

7

7

7

7

7

7

7

7

5

;

8



and

C =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

P

h+1

: : : 0 : : : : : : 0

: : : : : : : : : : : : : : : : : :

P

gh+1

: : : P

g

: : : : : : 0

P

g+1h+1

: : : P

g+1g

0 : : : 0

: : : : : : : : : : : : : : : : : :

P

lh+1

: : : P

lg

P

lg+1

: : : 0

3

7

7

7

7

7

7

7

7

7

7

7

7

5

:

Let a

i

(b

i

) be the left (right) eigenve
tor of P

i

asso
iated with � = 1 su
h that a

i

b

i

= 1,

for i = 1; : : : ; h, and de�ne

D =

2

6

6

6

6

6

6

4

b

1

a

1

: : : 0

0 : : : 0

: : : : : : : : :

0 : : : b

h

a

h

3

7

7

7

7

7

7

5

:

We have the following:

lim

n!1

1

n

n

X

i=1

P

i

=

2

4

D 0

(I � C)

�1

BD 0

3

5

;

where I is the identity matrix.

3 Kullba
k-Leibler Divergen
e Rate

3.1 First-Order Markov Sour
es

We �rst assume that the time-invariant Markov sour
e fX

1

; X

2

; : : :g is of order one.

Later, we generalize the results for sour
es of arbitrary order k. Let p and q be

two initial distributions and P and Q be two probability transition matri
es for the

sour
e, yielding n-tuple distributions p

(n)

and q

(n)

respe
tively. We assume that p is

absolutely 
ontinuous with respe
t to q (p << q) and that P is absolutely 
ontinuous

with respe
t to Q (P << Q); i.e., q

i

= 0 ) p

i

= 0 and q

ij

= 0 ) p

ij

= 0, for all

i; j 2 X . These 
onditions ensure that p

(n)

<< q

(n)

for ea
h n and 
over most 
ases

of interest regarding the 
omputation of the divergen
e rate.

9



We have the following results.

Theorem 1 Suppose that the Markov sour
e fX

1

; X

2

; : : :g is irredu
ible under P

and Q. Let

S(X

2

jX

1

= i)

4

=

X

j2X

p

ij

log

p

ij

q

ij

:

Then, the Kullba
k-Leibler divergen
e rate between p

(n)

and q

(n)

is given by

lim

n!1

1

n

D(p

(n)

kq

(n)

) =

X

i2X

�

i

S(X

2

jX

1

= i);

where � = (�

1

; : : : ; �

M

) is the unique stationary distribution of P .

Proof: First note that S(X

2

jX

1

= i) is well de�ned for all i 2 X sin
e P << Q.

Furthermore, sin
e both p << q and P << Q hold, we have that

1

n

D(p

(n)

kq

(n)

) =

1

n

X

i2X

[p(X

1

= i) + � � �+ p(X

n�1

= i)℄S(X

2

jX

1

= i) +

1

n

X

i2X

p(X

1

= i) log

p(X

1

= i)

q(X

1

= i)

;

whi
h 
an be also written as

1

n

D(p

(n)

kq

(n)

) =

1

n

p(I + P + � � �+ P

n�2

)V (1)

+

1

n

X

i2X

p

i

log

p

i

q

i

; (2)

where

V

t

= (S(X

2

jX

1

= 1); : : : ; S(X

2

jX

1

=M)):

Note that (2) approa
hes 0 as n!1. Hen
e, by Proposition 5, we obtain that

lim

n!1

1

n

p(I + P + � � �+ P

n�2

)V = pLV;

10



where

L = ba = (1; : : : ; 1)

t

(�

1

; : : : ; �

M

)

=

2

6

6

6

6

6

6

4

�

1

�

2

: : : �

M

�

1

�

2

: : : �

M

.

.

.

.

.

.

.

.

.

.

.

.

�

1

�

2

: : : �

M

3

7

7

7

7

7

7

5

:

Thus

lim

n!1

1

n

D(p

(n)

kq

(n)

) = p

2

6

6

6

6

6

6

4

�

1

�

2

: : : �

M

�

1

�

2

: : : �

M

.

.

.

.

.

.

.

.

.

.

.

.

�

1

�

2

: : : �

M

3

7

7

7

7

7

7

5

V

=

X

i2X

�

i

S(X

2

jX

1

= i)

Theorem 2 Suppose that the Markov sour
e fX

1

; X

2

; : : :g under p

(n)

and q

(n)

is

arbitrary

1

(not ne
essarily irredu
ible, stationary, et
.). Let the 
anoni
al form of P

be as in Proposition 1. Also, let B, D and C be as de�ned in Proposition 6. Then,

the Kullba
k-Leibler divergen
e rate between p

(n)

and q

(n)

is given by

lim

n!1

1

n

D(p

(n)

kq

(n)

) = p

2

4

D 0

(I � C)

�1

BD 0

3

5

V;

where

V

t

= (S(X

2

jX

1

= 1); : : : ; S(X

2

jX

1

=M));

and I is the identity matrix with same dimensions as the matrix C.

1

Sin
e p and P are assumed to be absolutely 
ontinuous with respe
t to q and Q respe
tively,

it follows that p

(n)

is absolutely 
ontinuous with respe
t to q

(n)

. Hen
e, some restri
tion on their

behavior is indu
ed. For instan
e, if P is irredu
ible, Q must be irredu
ible. However, it is possible

to have Q irredu
ible and P redu
ible. So, in general, Q and P do not ne
essarily have the same

number of 
lasses.

11



Proof: As in the previous theorem, we have that

1

n

D(p

(n)

kq

(n)

) =

1

n

p(I + P + � � �+ P

n�2

)V (3)

+

1

n

X

i2X

p

i

log

p

i

q

i

: (4)

Then, the desired result follows immediately from Proposition 6.

Theorem 3 The rate of 
onvergen
e of the Kullba
k-Leibler divergen
e rate between

arbitrary p

(n)

and q

(n)

is of the order 1=n.

Proof: Clearly, the rate of 
onvergen
e of (4) to 0 is of the order 1=n. In Proposi-

tion 5, it is proved that the rate of 
onvergen
e of the Ces�aro sum of an irredu
ible

sto
hasti
 matrix is of the order 1=n. On the other hand, if P is not irredu
ible, let

P

i

, i = 1; : : : ; h, be the sub-matri
es 
orresponding to essential 
lasses and let P

i

,

i = h+ 1; : : : ; g be the sub-matri
es 
orresponding to inessential 
lasses as in Propo-

sition 1. For i = 1; : : : ; h, ea
h P

i

is sto
hasti
 and irredu
ible; so its Ces�aro-sum is

of the order 1=n by Proposition 5. Now, for i = h + 1; : : : ; g, every P

i

is irredu
ible

and hen
e, by Proposition 4, we have that

P

n

i

� �

n

i

G

i

; i = h+ 1; : : : ; g; (5)

where �

i

is the largest positive real eigenvalue of P

i

, and G

i

is a matrix with identi
al

entries that are independent of n. Therefore

1

n

n

X

j=1

P

j

i

�

1

n

n

X

j=1

�

j

i

G

i

=

1

n

�

i

(1� �

n

i

)

1� �

i

G

i

;

for i = h + 1; : : : ; g. If P

i

has all row sums identi
al then �

i

< 1 by Proposition 3,

the fa
t that P is sto
hasti
 and the fa
t that, in the 
anoni
al form of P , at least

one of the matri
es P

i1

; P

i2

; � � � ; P

ii�1

is non-zero when i = h + 1; : : : ; g (so that the

row sums of P

i

are stri
tly less than one). Otherwise, �

i

< 1 by Lemma 1. Hen
e,

12



the Ces�aro sum of P

i

, i = h+ 1; : : : ; g is of the order 1=n. By 
onsidering the Ces�aro

sum of the 
anoni
al form of P , we get that the rate of 
onvergen
e of (3) is of the

order 1=n. Therefore the rate of 
onvergen
e of the Kullba
k-Leibler divergen
e rate

is of the order 1=n.

3.2 k-th Order Markov Sour
es

We next suppose that the Markov sour
e fX

n

g has an arbitrary order k, and let ~p

(n)

and ~q

(n)

be two possible n-tuple distributions for fX

n

g. De�ne fW

n

g as the pro
ess

obtained by k-step blo
king the Markov sour
e fX

n

g; i.e.,

W

n

:= (X

n

; X

n+1

; : : : ; X

n+k�1

):

Then fW

n

g is a �rst order Markov sour
e with M

k

states. Let p = (p

1

; : : : ; p

M

k) and

q = (q

1

; : : : ; q

M

k) denote the initial distributions ofW

1

and let P = [p

ij

℄ and Q = [q

ij

℄,

(with i; j = 1; : : : ;M

k

) denote the probability transition matri
es for fW

n

g, resulting

in n-tuple distributions p

(n)

and q

(n)

respe
tively.

We �rst note that sin
e ~p

(n+k�1)

(x

n+k�1

) = p

(n)

(w

n

) and ~q

(n+k�1)

(x

n+k�1

) =

q

(n)

(w

n

) for all n � 1, then D(~p

(n+k�1)

k~q

(n+k�1)

) = D(p

(n)

kq

(n)

). Therefore, the

divergen
e rates for fX

n

g and fW

n

g are identi
al sin
e (n+ k� 1)=n! 1 as n!1.

Now 
learly D(p

(n)

kq

(n)

) 
an be written as

1

n

D(p

(n)

kq

(n)

) =

1

n

p(I + P + � � � + P

n�2

)V

+

1

n

X

i2X

k

p(W

1

= i) log

p(W

1

= i)

q(W

1

= i)

;

where

V

t

= (S(W

2

jW

1

= 1); : : : ; S(W

2

jW

1

=M

k

)):

It then dire
tly follows that Theorems 2 and 3 also hold for a Markov sour
e of

arbitrary order k.

13



4 Shannon Entropy Rate

The existen
e and the 
omputation of the Shannon entropy rate of an arbitrary time-

invariant �nite-alphabet Markov sour
e 
an be dire
tly dedu
ed from the existen
e

and the 
omputation of the Kullba
k-Leibler divergen
e rate. Indeed, if q

(n)

is sta-

tionary memoryless with uniform marginal distribution, then

D(p

(n)

kq

(n)

) = n logM �H(p

(n)

):

Therefore

lim

n!1

1

n

D(p

(n)

kq

(n)

) = logM � lim

n!1

1

n

H(p

(n)

): (6)

We have the following 
orollaries.

Corollary 1 Suppose that the Markov sour
e fX

1

; X

2

; : : :g under P is irredu
ible.

Let

H(X

2

jX

1

= i)

4

= �

X

j2X

p

ij

log p

ij

:

Then, the Shannon entropy rate of p

(n)

is given by

lim

n!1

1

n

H(p

(n)

) =

X

i2X

�

i

H(X

2

jX

1

= i);

where � = (�

1

; : : : ; �

M

) is the unique stationary distribution of P .

Proof: Obtained dire
tly by plugging q

ij

= 1=M in Theorem 1 and using (6).

Corollary 2 Let the 
anoni
al form of P be as in Proposition 1. Also, let B, D and

C be as de�ned in Proposition 6. Then, the Shannon entropy rate is given by

lim

n!1

1

n

H(p

(n)

) = p

2

4

D 0

(I � C)

�1

BD 0

3

5

V;

where

V

t

= (H(X

2

jX

1

= 1); : : : ; H(X

2

jX

1

=M));

and I is the identity matrix with the same dimensions as the matrix C.

14



Proof: Note that P

i

, i = 1; 2; : : : is a sto
hasti
 matrix

2

. Hen
e,

lim

n!1

1

n

(I + P + � � �+ P

n�2

)1

t

= lim

n!1

n� 1

n

1

t

= 1

t

whi
h yields that

lim

n!1

1

n

(I + P + � � �+ P

n�2

)

is a sto
hasti
 matrix. Therefore,

2

4

D 0

(I � C)

�1

BD 0

3

5

is also a sto
hasti
 matrix. Hen
e,

p

2

4

D 0

(I � C)

�1

BD 0

3

5

2

6

6

6

4

logM

.

.

.

logM

3

7

7

7

5

= p

2

6

6

6

4

logM

.

.

.

logM

3

7

7

7

5

= logM:

Then, the 
orollary follows dire
tly by plugging q

ij

=

1

M

in Theorem 2 and using (6).

Remark: It was mentioned in [6, p. 68℄ that the Shannon entropy rate for an arbitrary

time-invariant �nite-alphabet Markov sour
e exists, but no 
omputational details nor

an expli
it analyti
al expression for the entropy rate (as shown above) were provided.

Corollary 3 The rate of 
onvergen
e of the Shannon entropy rate of p

(n)

is of the

order 1=n.

2

We have that P1

t

= 1

t

, where 1 = (1; : : : ; 1) and t is the transpose operation. Using this fa
t

and the fa
t that P

i

= PP

i�1

, the result follows by mathemati
al indu
tion on i.
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5 Numeri
al Examples

In this se
tion, we use the natural logarithm for simpli
ity.

Example 1: Let P and Q be two possible probability transition matri
es for a �rst

order Markov sour
e fX

1

; X

2

; : : :g (not stationary and not irredu
ible) de�ned as

follows:

P =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1=2 0 0 1=2 0 0 0

0 0 4=7 2=7 1=7 0 0

0 0 1=3 0 0 2=3 0

1=4 0 0 3=4 0 0 0

2=5 2=5 0 0 1=5 0 0

0 0 1 0 0 0 0

1=4 0 1=2 0 1=4 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;

and

Q =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1=3 0 0 2=3 0 0 0

0 0 2=7 1=7 4=7 0 0

0 0 1=5 0 0 4=5 0

1=6 0 0 5=6 0 0 0

1=5 2=5 0 0 2=5 0 0

0 0 1 0 0 0 0

1=4 0 1=4 0 1=2 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

Let p = (3=7; 0; 1=7; 0; 1=7; 2=7; 0) and q = (2=8; 0; 3=8; 0; 1=8; 2=8; 0) be two possible

initial distributions under p

(n)

and q

(n)

, respe
tively. In 
anoni
al form, P and Q 
an

16



be rewritten as

P =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1=3 2=3 0 0 0 0 0

1 0 0 0 0 0 0

0 0 1=2 1=2 0 0 0

0 0 1=4 3=4 0 0 0

0 0 2=5 0 1=5 2=5 0

4=7 0 0 2=7 1=7 0 0

1=2 0 1=4 0 1=4 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;

and

Q =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1=5 4=5 0 0 0 0 0

1 0 0 0 0 0 0

0 0 1=3 2=3 0 0 0

0 0 1=6 5=6 0 0 0

0 0 1=5 0 2=5 2=5 0

2=7 0 0 1=7 4=7 0 0

1=4 0 1=4 0 1=2 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;

simply by permuting the �rst and third rows (
olumns) and the se
ond and sixth rows

(
olumns). Note that P has 2 essential 
lasses, 1 inessential self-
ommuni
ating 
lass

and 1 inessential non self-
ommuni
ating 
lass. A

ordingly, the initial distributions

are rewritten as p = (1=7; 2=7; 3=7; 0; 1=7; 0; 0) and q = (3=8; 2=8; 2=8; 0; 1=8; 0; 0),

after permuting the �rst and third indi
es and the se
ond and sixth indi
es. We

obtain the following.

n

1

n

D(p

(n)

kq

(n)

)

10 0.05323

50 0.03626

100 0.03415

By Theorem 2, the Kullba
k-Leibler divergen
e rate is equal to 0.032. Clearly, as n

gets larger,

1

n

D(p

(n)

kq

(n)

) is 
loser to the Kullba
k-Leibler divergen
e rate. We also

obtain the following.

17



n

1

n

H(p

(n)

)

10 0.54366

50 0.50877

100 0.50442

By Corollary 2, the Shannon entropy rate is equal to 0.50008. Similarly, as n gets

larger, the value of

1

n

H(p

(n)

) moves 
loser to the Shannon entropy rate.

Example 2: Suppose that the Markov sour
e is of order 2 under p

(n)

and q

(n)

re-

spe
tively. Let fW

1

;W

2

; : : :g be the pro
ess obtained by 2-step blo
king the Markov

sour
e. Let P and Q be two possible transition matri
es for fW

1

;W

2

; : : :g de�ned as

follows:

P =

2

6

6

6

6

6

6

4

1=3 2=3 0 0

0 0 1 0

2=5 3=5 0 0

0 0 1=6 5=6

3

7

7

7

7

7

7

5

;

and

Q =

2

6

6

6

6

6

6

4

3=4 1=4 0 0

0 0 1 0

7=8 1=8 0 0

0 0 2=3 1=3

3

7

7

7

7

7

7

5

:

Let p = (1=8; 3=8; 2=8; 2=8) and q = (1=7; 2=7; 3=7; 1=7) denote two possible initial

distributions of W

1

under p

(n)

and q

(n)

respe
tively. The set of indi
es f1; 2; 3g forms

an essential 
lass, while the singleton set f4g forms a self-
ommuni
ating non-essential


lass. Hen
e, P and Q are not irredu
ible. Note also that both p

(n)

and q

(n)

are not

stationary. We obtain the following.
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n

1

n

D(p

(n)

kq

(n)

)

10 0.2982

50 0.3253

100 0.3277

By Theorem 2, the Kullba
k-Leibler divergen
e rate is equal to .3301. Clearly, as n

in
reases,

1

n

D(p

(n)

kq

(n)

) gets 
loser to the Kullba
k-Leibler divergen
e rate. We also

obtain the following.

n

1

n

H(p

(n)

)

10 0.4618

50 0.4175

100 0.4116

By Corollary 2, the Shannon entropy rate is equal to 0.4057. Similarly,

1

n

H(p

(n)

)

approa
hes the Shannon entropy rate with in
reasing n.

6 Con
lusion

In this work, we derived a formula for the Kullba
k-Leibler divergen
e rate between

two time-invariant �nite-alphabet Markov sour
es of arbitrary order and arbitrary

initial distributions. We also investigated its rate of 
onvergen
e. Similarly, we ex-

amined the 
omputation and the existen
e of the Shannon entropy rate for Markov

sour
es and investigated its rate of 
onvergen
e. The main tools used in obtaining

these results are the theory of non-negative matri
es and Perron-Frobenius theory.

One interesting and 
hallenging dire
tion for future work is the investigation of the

Kullba
k-Leibler divergen
e rate for general hidden Markov sour
es.
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