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Abstrat

In this work, we provide a omputable expression for the Kullbak-Leibler

divergene rate, lim

n!1

1

n

D(p

(n)

kq

(n)

), between two time-invariant �nite-alpha-

bet Markov soures of arbitrary order and arbitrary initial distributions de-

sribed by the probability distributions p

(n)

and q

(n)

, respetively. We illus-

trate it numerially and examine its rate of onvergene. The main tools used

to obtain the Kullbak-Leibler divergene rate and its rate of onvergene are

the theory of non-negative matries and Perron-Frobenius theory. Similarly, we

provide a formula for the Shannon entropy rate lim

n!1

1

n

H(p

(n)

) of Markov

soures and examine its rate of onvergene.

Index Terms: Deision theory, lassifation, pattern reognition, time-invariant

Markov soures, Kullbak-Leibler divergene rate, Shannon entropy rate, non-

negative matries, Perron-Frobenius theory, rate of onvergene.
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1 Introdution

Let fX

1

; X

2

; : : :g be a �rst-order time-invariant Markov soure with �nite-alphabet

X = f1; : : : ;Mg. Consider the following two di�erent probability laws for this soure.

Under the �rst law,

PrfX

1

= ig =: p

i

and PrfX

k+1

= jjX

k

= ig =: p

ij

; i; j 2 X ;

so that

p

(n)

(i

n

) := PrfX

1

= i

1

; : : : ; X

n

= i

n

g = p

i

1

p

i

1

i

2

� � �p

i

n�1

i

n

; i

1

; : : : ; i

n

2 X ;

while under the seond law the initial probabilities are q

i

, the transition proba-

bilities are q

ij

, and the n-tuple probabilities are q

(n)

. Let p = (p

1

; : : : ; p

M

) and

q = (q

1

; : : : ; q

M

) denote the initial distributions under p

(n)

and q

(n)

respetively.

The Kullbak-Leibler divergene [13℄ between two distributions p̂ and q̂ de�ned

on X is given by

D(p̂kq̂) =

X

i2X

p̂

i

log

p̂

i

q̂

i

;

where the base of the logarithm is arbitrary. The appliation of the Kullbak-Leibler

divergene an be found in many areas suh as approximation of probability distri-

butions [3℄, [12℄, signal proessing [10℄, [11℄, [5℄, pattern reognition [1℄, [2℄, et.

One natural diretion for further studies is the investigation of the Kullbak-

Leibler divergene rate

lim

n!1

1

n

D(p

(n)

kq

(n)

)

between two probability distributions p

(n)

and q

(n)

de�ned on X

n

, where

D(p

(n)

kq

(n)

) =

X

i

n

2X

n

p

(n)

(i

n

) log

p

(n)

(i

n

)

q

(n)

(i

n

)

;

for soures with memory. In previous work, Gray [8℄ proved that the Kullbak-Leibler

divergene rate exists between a stationary soure p

(n)

and a time-invariant Markov

soure q

(n)

. This result an also be found in [17, p. 27℄. In [14℄, the authors noted that

the Kullbak-Leibler divergene rate between ergodi Markov soures exists. In [16℄,
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Shields presented two examples for non-Markovian soures for whih the Kullbak-

Leibler divergene rate does not exist. Finally, in [5℄, Do provides an upper bound for

the Kullbak-Leibler divergene rate between stationary hidden Markov soures. To

the best of our knowledge, these are the only results available in the literature about

the existene and/or omputation of the Kullbak-Leibler divergene rate between

soures with memory.

In this work, we provide an expliit omputable expression for the Kullbak-Leibler

divergene rate between two arbitrary time-invariant (not neessarily stationary, ir-

reduible) �nite-alphabet Markov soures. This expression, whih is proved in a

straightforward manner using results from the theory of non-negative matries and

Perron-Frobenius theory, has a readily usable form, making it appealing for various

analytial studies and appliations involving the divergene rate for systems with

memory.

The rest of this work is organized as follows. Preliminaries about the theory of non-

negative matries are �rst presented in Setion 2. In Setion 3, an expliit formula for

the divergene rate between arbitrary time-invariant �nite-alphabet Markov soures is

derived and its rate of onvergene is investigated. A similar study for the expression

and onvergene rate of the Shannon entropy rate of time-invariant (non-stationary

in general) Markov soures is briey addressed in Setion 4. Numerial examples are

presented in Setion 5 and onlusions are stated in Setion 6.

2 Preliminaries

Matries and vetors are positive if all their omponents are positive and non-negative

if all their omponents are non-negative. Throughout, A denotes an M �M non-

negative matrix with elements a

ij

. The ij-th element of A

m

is denoted by a

(m)

ij

.

We write i ! j if a

(m)

ij

> 0 for some positive integer m, and we write i 6! j if

a

(m)

ij

= 0 for every positive integer m. We say that i and j ommuniate and write

i $ j if i ! j and j ! i. If i ! j but j 6! i for some index j, then the index i is

alled inessential (or transient); otherwise, it is alled essential (or reurrent). Thus
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if i is essential, i! j implies i$ j, and there is at least one j suh that i! j.

With these de�nitions, it is possible to partition the set of indies f1; 2; : : : ;Mg

into disjoint sets, alled lasses. All essential indies an be subdivided into essential

lasses in suh a way that all the indies belonging to one lass ommuniate, but

annot lead to an index outside the lass. Moreover, all inessential indies (if any)

may be divided into two types of inessential lasses: self-ommuniating lasses and

non self-ommuniating lasses. Eah self-ommuniating inessential lass ontains

inessential indies whih ommuniate with eah other. A non self-ommuniating

inessential lass is a singleton set whose element is an index whih does not ommu-

niate with any index (inluding itself).

A matrix is irreduible if its indies form a single essential lass; i.e., if every index

ommuniates with every other index.

Proposition 1 [15, p. 15℄ By renumbering the indies (i.e., by performing row and

olumn permutations), it is possible to put a non-negative matrix A in the anonial

form

A =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

A

1

: : : 0 0 : : : 0 : : : : : : 0

0 : : : 0 0 : : : 0 : : : : : : 0

: : : : : : : : : : : : : : : : : : : : : : : : 0

0 : : : A

h

0 : : : 0 : : : : : : 0

A

h+11

: : : A

h+1h

A

h+1

: : : 0 : : : : : : 0

: : : : : : : : : : : : : : : : : : : : : : : : 0

A

g1

: : : A

gh

A

gh+1

: : : A

g

: : : : : : 0

A

g+11

: : : A

g+1h

A

g+1h+1

: : : A

g+1g

0 : : : 0

: : : : : : : : : : : : : : : : : : : : : : : : 0

A

l1

: : : A

lh

A

lh+1

: : : A

lg

A

lg+1

: : : 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

where A

i

, i = 1; : : : ; g, are irreduible square matries, and in eah row i = h+1; : : : ; g

at least one of the matries A

i1

; A

i2

; : : : ; A

ii�1

is not zero. The matrix A

i

for i =

1; : : : ; h orresponds to the essential lass C

i

; while the matrix A

i

for i = h+1; : : : ; g

5



orresponds to the self-ommuniating inessential lass C

i

. The other diagonal blok

sub-matries whih orrespond to non self-ommuniating lasses C

i

, i = g+1; : : : ; l,

are 1�1 zero matries. In every row i = g+1; : : : ; l any of the matries A

i1

; : : : ; A

ii�1

may be zero.

Proposition 2 (Frobenius) [7, p. 115℄ If A is irreduible, then A has a real

positive eigenvalue � that is greater than or equal to the magnitude of eah other

eigenvalue. There is a positive left (right) eigenvetor, a (b), orresponding to �,

where a is a row vetor and b is a olumn vetor.

Proposition 3 [9, p. 492℄ Suppose A is irreduible and let R

i

, i = 1; : : : ;M

denote the sum of the i-th row. Also, let R

max

= maxfR

1

; : : : ; R

M

g and R

min

=

minfR

1

; : : : ; R

M

g. Then the largest positive real eigenvalue � satis�es

R

min

� � � R

max

:

The following lemma follows by appropriately modifying the proof of the above

proposition.

Lemma 1 If A is irreduible and the row sums are not all idential, then the largest

positive real eigenvalue � satis�es,

R

min

< � < R

max

:

Proof: Let � be the largest positive real eigenvalue of A with assoiated stritly

positive left eigenvetor a, whih exists by Proposition 2. Without loss of generality

a an be normalized, i.e., the sum of its omponents is equal to 1. Let 1

t

be the row

vetor

1

t

= (1; : : : ; 1):
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Note that a1 = 1, where t denotes the transpose operation. We have aA = �a. Hene

aA1 = �a1 = �. On the other hand

aA1 = a(R

1

; : : : ; R

M

)

t

< a(R

max

; : : : ; R

max

)

t

=

M

X

i=1

a

i

R

max

= R

max

Therefore � < R

max

. Similarly, we an show that � > R

min

. Finally we onlude that

R

min

< � < R

max

:

Proposition 4 Suppose A is irreduible. Let � be the largest positive real eigenvalue

with assoiated right positive eigenvetor b. Then A

m

� �

m

C (i.e., a

(m)

ij

� �

m



ij

), for

all m = 1; 2; : : :, where C = (

max

1�k�M

b

k

min

1�k�M

b

k

) is a matrix with idential entries that are

independent of m.

Proof: If Ab = �b, then A

m

b = �

m

b. We have that

�

m

( max

1�k�M

b

k

) � �

m

b

i

=

M

X

j=1

a

(m)

ij

b

j

� ( min

1�k�M

b

k

)

M

X

j=1

a

(m)

ij

� ( min

1�k�M

b

k

)a

(m)

ij

;

for all i = 1; : : : ;M and j = 1; : : : ;M . Sine b > 0, we obtain the desired result.

Proposition 5 [9, p. 524℄ Let P be the probability transition matrix for an irre-

duible Markov soure. Also, let a (b) be the left (right) eigenvetor assoiated with
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the largest positive real eigenvalue � = 1 suh that ab = 1. Also, let L = ba. Then

lim

n!1

1

n

n

X

i=1

P

i

= L:

Moreover, there exists a �nite positive onstant C = C(P ) suh that











1

n

n

X

i=1

P

i

� L











1

�

C

n

;

for all n = 1; 2; : : : and k � k

1

is the l

1

norm, where the l

1

norm of an M �M matrix

A is de�ned by kAk

1

4

= max

1�i;j�M

ja

ij

j.

Remark: The left eigenvetor a is the unique stationary distribution � of P assoi-

ated with the largest positive real eigenvalue � = 1 and b

t

= (1; : : : ; 1).

With the aid of the above proposition and Proposition 1, it an be shown that for

an arbitrary stohasti matrix P (i.e., with non-negative entries and every row-sum

equal to one), the Ces�aro limit, lim

n!1

1

n

P

n

i=1

P

i

, exists and is omputable.

Proposition 6 [4, p. 129℄ Let P be the probability transition matrix for an arbi-

trary Markov soure with assoiated anonial form as in Proposition 1:

P =

2

4

� 0

B C

3

5

;

where

� =

2

6

6

6

6

6

6

4

P

1

: : : 0

0 : : : 0

: : : : : : : : :

0 : : : P

h

3

7

7

7

7

7

7

5

; B =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

P

h+11

: : : P

h+1h

: : : : : : : : :

P

g1

: : : P

gh

P

g+11

: : : P

g+1h

: : : : : : : : :

P

l1

: : : P

lh

3

7

7

7

7

7

7

7

7

7

7

7

7

5

;
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and

C =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

P

h+1

: : : 0 : : : : : : 0

: : : : : : : : : : : : : : : : : :

P

gh+1

: : : P

g

: : : : : : 0

P

g+1h+1

: : : P

g+1g

0 : : : 0

: : : : : : : : : : : : : : : : : :

P

lh+1

: : : P

lg

P

lg+1

: : : 0

3

7

7

7

7

7

7

7

7

7

7

7

7

5

:

Let a

i

(b

i

) be the left (right) eigenvetor of P

i

assoiated with � = 1 suh that a

i

b

i

= 1,

for i = 1; : : : ; h, and de�ne

D =

2

6

6

6

6

6

6

4

b

1

a

1

: : : 0

0 : : : 0

: : : : : : : : :

0 : : : b

h

a

h

3

7

7

7

7

7

7

5

:

We have the following:

lim

n!1

1

n

n

X

i=1

P

i

=

2

4

D 0

(I � C)

�1

BD 0

3

5

;

where I is the identity matrix.

3 Kullbak-Leibler Divergene Rate

3.1 First-Order Markov Soures

We �rst assume that the time-invariant Markov soure fX

1

; X

2

; : : :g is of order one.

Later, we generalize the results for soures of arbitrary order k. Let p and q be

two initial distributions and P and Q be two probability transition matries for the

soure, yielding n-tuple distributions p

(n)

and q

(n)

respetively. We assume that p is

absolutely ontinuous with respet to q (p << q) and that P is absolutely ontinuous

with respet to Q (P << Q); i.e., q

i

= 0 ) p

i

= 0 and q

ij

= 0 ) p

ij

= 0, for all

i; j 2 X . These onditions ensure that p

(n)

<< q

(n)

for eah n and over most ases

of interest regarding the omputation of the divergene rate.
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We have the following results.

Theorem 1 Suppose that the Markov soure fX

1

; X

2

; : : :g is irreduible under P

and Q. Let

S(X

2

jX

1

= i)

4

=

X

j2X

p

ij

log

p

ij

q

ij

:

Then, the Kullbak-Leibler divergene rate between p

(n)

and q

(n)

is given by

lim

n!1

1

n

D(p

(n)

kq

(n)

) =

X

i2X

�

i

S(X

2

jX

1

= i);

where � = (�

1

; : : : ; �

M

) is the unique stationary distribution of P .

Proof: First note that S(X

2

jX

1

= i) is well de�ned for all i 2 X sine P << Q.

Furthermore, sine both p << q and P << Q hold, we have that

1

n

D(p

(n)

kq

(n)

) =

1

n

X

i2X

[p(X

1

= i) + � � �+ p(X

n�1

= i)℄S(X

2

jX

1

= i) +

1

n

X

i2X

p(X

1

= i) log

p(X

1

= i)

q(X

1

= i)

;

whih an be also written as

1

n

D(p

(n)

kq

(n)

) =

1

n

p(I + P + � � �+ P

n�2

)V (1)

+

1

n

X

i2X

p

i

log

p

i

q

i

; (2)

where

V

t

= (S(X

2

jX

1

= 1); : : : ; S(X

2

jX

1

=M)):

Note that (2) approahes 0 as n!1. Hene, by Proposition 5, we obtain that

lim

n!1

1

n

p(I + P + � � �+ P

n�2

)V = pLV;
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where

L = ba = (1; : : : ; 1)

t

(�

1

; : : : ; �

M

)

=

2

6

6

6

6

6

6

4

�

1

�

2

: : : �

M

�

1

�

2

: : : �

M

.

.

.

.

.

.

.

.

.

.

.

.

�

1

�

2

: : : �

M

3

7

7

7

7

7

7

5

:

Thus

lim

n!1

1

n

D(p

(n)

kq

(n)

) = p

2

6

6

6

6

6

6

4

�

1

�

2

: : : �

M

�

1

�

2

: : : �

M

.

.

.

.

.

.

.

.

.

.

.

.

�

1

�

2

: : : �

M

3

7

7

7

7

7

7

5

V

=

X

i2X

�

i

S(X

2

jX

1

= i)

Theorem 2 Suppose that the Markov soure fX

1

; X

2

; : : :g under p

(n)

and q

(n)

is

arbitrary

1

(not neessarily irreduible, stationary, et.). Let the anonial form of P

be as in Proposition 1. Also, let B, D and C be as de�ned in Proposition 6. Then,

the Kullbak-Leibler divergene rate between p

(n)

and q

(n)

is given by

lim

n!1

1

n

D(p

(n)

kq

(n)

) = p

2

4

D 0

(I � C)

�1

BD 0

3

5

V;

where

V

t

= (S(X

2

jX

1

= 1); : : : ; S(X

2

jX

1

=M));

and I is the identity matrix with same dimensions as the matrix C.

1

Sine p and P are assumed to be absolutely ontinuous with respet to q and Q respetively,

it follows that p

(n)

is absolutely ontinuous with respet to q

(n)

. Hene, some restrition on their

behavior is indued. For instane, if P is irreduible, Q must be irreduible. However, it is possible

to have Q irreduible and P reduible. So, in general, Q and P do not neessarily have the same

number of lasses.

11



Proof: As in the previous theorem, we have that

1

n

D(p

(n)

kq

(n)

) =

1

n

p(I + P + � � �+ P

n�2

)V (3)

+

1

n

X

i2X

p

i

log

p

i

q

i

: (4)

Then, the desired result follows immediately from Proposition 6.

Theorem 3 The rate of onvergene of the Kullbak-Leibler divergene rate between

arbitrary p

(n)

and q

(n)

is of the order 1=n.

Proof: Clearly, the rate of onvergene of (4) to 0 is of the order 1=n. In Proposi-

tion 5, it is proved that the rate of onvergene of the Ces�aro sum of an irreduible

stohasti matrix is of the order 1=n. On the other hand, if P is not irreduible, let

P

i

, i = 1; : : : ; h, be the sub-matries orresponding to essential lasses and let P

i

,

i = h+ 1; : : : ; g be the sub-matries orresponding to inessential lasses as in Propo-

sition 1. For i = 1; : : : ; h, eah P

i

is stohasti and irreduible; so its Ces�aro-sum is

of the order 1=n by Proposition 5. Now, for i = h + 1; : : : ; g, every P

i

is irreduible

and hene, by Proposition 4, we have that

P

n

i

� �

n

i

G

i

; i = h+ 1; : : : ; g; (5)

where �

i

is the largest positive real eigenvalue of P

i

, and G

i

is a matrix with idential

entries that are independent of n. Therefore

1

n

n

X

j=1

P

j

i

�

1

n

n

X

j=1

�

j

i

G

i

=

1

n

�

i

(1� �

n

i

)

1� �

i

G

i

;

for i = h + 1; : : : ; g. If P

i

has all row sums idential then �

i

< 1 by Proposition 3,

the fat that P is stohasti and the fat that, in the anonial form of P , at least

one of the matries P

i1

; P

i2

; � � � ; P

ii�1

is non-zero when i = h + 1; : : : ; g (so that the

row sums of P

i

are stritly less than one). Otherwise, �

i

< 1 by Lemma 1. Hene,

12



the Ces�aro sum of P

i

, i = h+ 1; : : : ; g is of the order 1=n. By onsidering the Ces�aro

sum of the anonial form of P , we get that the rate of onvergene of (3) is of the

order 1=n. Therefore the rate of onvergene of the Kullbak-Leibler divergene rate

is of the order 1=n.

3.2 k-th Order Markov Soures

We next suppose that the Markov soure fX

n

g has an arbitrary order k, and let ~p

(n)

and ~q

(n)

be two possible n-tuple distributions for fX

n

g. De�ne fW

n

g as the proess

obtained by k-step bloking the Markov soure fX

n

g; i.e.,

W

n

:= (X

n

; X

n+1

; : : : ; X

n+k�1

):

Then fW

n

g is a �rst order Markov soure with M

k

states. Let p = (p

1

; : : : ; p

M

k) and

q = (q

1

; : : : ; q

M

k) denote the initial distributions ofW

1

and let P = [p

ij

℄ and Q = [q

ij

℄,

(with i; j = 1; : : : ;M

k

) denote the probability transition matries for fW

n

g, resulting

in n-tuple distributions p

(n)

and q

(n)

respetively.

We �rst note that sine ~p

(n+k�1)

(x

n+k�1

) = p

(n)

(w

n

) and ~q

(n+k�1)

(x

n+k�1

) =

q

(n)

(w

n

) for all n � 1, then D(~p

(n+k�1)

k~q

(n+k�1)

) = D(p

(n)

kq

(n)

). Therefore, the

divergene rates for fX

n

g and fW

n

g are idential sine (n+ k� 1)=n! 1 as n!1.

Now learly D(p

(n)

kq

(n)

) an be written as

1

n

D(p

(n)

kq

(n)

) =

1

n

p(I + P + � � � + P

n�2

)V

+

1

n

X

i2X

k

p(W

1

= i) log

p(W

1

= i)

q(W

1

= i)

;

where

V

t

= (S(W

2

jW

1

= 1); : : : ; S(W

2

jW

1

=M

k

)):

It then diretly follows that Theorems 2 and 3 also hold for a Markov soure of

arbitrary order k.

13



4 Shannon Entropy Rate

The existene and the omputation of the Shannon entropy rate of an arbitrary time-

invariant �nite-alphabet Markov soure an be diretly dedued from the existene

and the omputation of the Kullbak-Leibler divergene rate. Indeed, if q

(n)

is sta-

tionary memoryless with uniform marginal distribution, then

D(p

(n)

kq

(n)

) = n logM �H(p

(n)

):

Therefore

lim

n!1

1

n

D(p

(n)

kq

(n)

) = logM � lim

n!1

1

n

H(p

(n)

): (6)

We have the following orollaries.

Corollary 1 Suppose that the Markov soure fX

1

; X

2

; : : :g under P is irreduible.

Let

H(X

2

jX

1

= i)

4

= �

X

j2X

p

ij

log p

ij

:

Then, the Shannon entropy rate of p

(n)

is given by

lim

n!1

1

n

H(p

(n)

) =

X

i2X

�

i

H(X

2

jX

1

= i);

where � = (�

1

; : : : ; �

M

) is the unique stationary distribution of P .

Proof: Obtained diretly by plugging q

ij

= 1=M in Theorem 1 and using (6).

Corollary 2 Let the anonial form of P be as in Proposition 1. Also, let B, D and

C be as de�ned in Proposition 6. Then, the Shannon entropy rate is given by

lim

n!1

1

n

H(p

(n)

) = p

2

4

D 0

(I � C)

�1

BD 0

3

5

V;

where

V

t

= (H(X

2

jX

1

= 1); : : : ; H(X

2

jX

1

=M));

and I is the identity matrix with the same dimensions as the matrix C.

14



Proof: Note that P

i

, i = 1; 2; : : : is a stohasti matrix

2

. Hene,

lim

n!1

1

n

(I + P + � � �+ P

n�2

)1

t

= lim

n!1

n� 1

n

1

t

= 1

t

whih yields that

lim

n!1

1

n

(I + P + � � �+ P

n�2

)

is a stohasti matrix. Therefore,

2

4

D 0

(I � C)

�1

BD 0

3

5

is also a stohasti matrix. Hene,

p

2

4

D 0

(I � C)

�1

BD 0

3

5

2

6

6

6

4

logM

.

.

.

logM

3

7

7

7

5

= p

2

6

6

6

4

logM

.

.

.

logM

3

7

7

7

5

= logM:

Then, the orollary follows diretly by plugging q

ij

=

1

M

in Theorem 2 and using (6).

Remark: It was mentioned in [6, p. 68℄ that the Shannon entropy rate for an arbitrary

time-invariant �nite-alphabet Markov soure exists, but no omputational details nor

an expliit analytial expression for the entropy rate (as shown above) were provided.

Corollary 3 The rate of onvergene of the Shannon entropy rate of p

(n)

is of the

order 1=n.

2

We have that P1

t

= 1

t

, where 1 = (1; : : : ; 1) and t is the transpose operation. Using this fat

and the fat that P

i

= PP

i�1

, the result follows by mathematial indution on i.
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5 Numerial Examples

In this setion, we use the natural logarithm for simpliity.

Example 1: Let P and Q be two possible probability transition matries for a �rst

order Markov soure fX

1

; X

2

; : : :g (not stationary and not irreduible) de�ned as

follows:

P =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1=2 0 0 1=2 0 0 0

0 0 4=7 2=7 1=7 0 0

0 0 1=3 0 0 2=3 0

1=4 0 0 3=4 0 0 0

2=5 2=5 0 0 1=5 0 0

0 0 1 0 0 0 0

1=4 0 1=2 0 1=4 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;

and

Q =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1=3 0 0 2=3 0 0 0

0 0 2=7 1=7 4=7 0 0

0 0 1=5 0 0 4=5 0

1=6 0 0 5=6 0 0 0

1=5 2=5 0 0 2=5 0 0

0 0 1 0 0 0 0

1=4 0 1=4 0 1=2 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

Let p = (3=7; 0; 1=7; 0; 1=7; 2=7; 0) and q = (2=8; 0; 3=8; 0; 1=8; 2=8; 0) be two possible

initial distributions under p

(n)

and q

(n)

, respetively. In anonial form, P and Q an

16



be rewritten as

P =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1=3 2=3 0 0 0 0 0

1 0 0 0 0 0 0

0 0 1=2 1=2 0 0 0

0 0 1=4 3=4 0 0 0

0 0 2=5 0 1=5 2=5 0

4=7 0 0 2=7 1=7 0 0

1=2 0 1=4 0 1=4 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;

and

Q =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1=5 4=5 0 0 0 0 0

1 0 0 0 0 0 0

0 0 1=3 2=3 0 0 0

0 0 1=6 5=6 0 0 0

0 0 1=5 0 2=5 2=5 0

2=7 0 0 1=7 4=7 0 0

1=4 0 1=4 0 1=2 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;

simply by permuting the �rst and third rows (olumns) and the seond and sixth rows

(olumns). Note that P has 2 essential lasses, 1 inessential self-ommuniating lass

and 1 inessential non self-ommuniating lass. Aordingly, the initial distributions

are rewritten as p = (1=7; 2=7; 3=7; 0; 1=7; 0; 0) and q = (3=8; 2=8; 2=8; 0; 1=8; 0; 0),

after permuting the �rst and third indies and the seond and sixth indies. We

obtain the following.

n

1

n

D(p

(n)

kq

(n)

)

10 0.05323

50 0.03626

100 0.03415

By Theorem 2, the Kullbak-Leibler divergene rate is equal to 0.032. Clearly, as n

gets larger,

1

n

D(p

(n)

kq

(n)

) is loser to the Kullbak-Leibler divergene rate. We also

obtain the following.
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n

1

n

H(p

(n)

)

10 0.54366

50 0.50877

100 0.50442

By Corollary 2, the Shannon entropy rate is equal to 0.50008. Similarly, as n gets

larger, the value of

1

n

H(p

(n)

) moves loser to the Shannon entropy rate.

Example 2: Suppose that the Markov soure is of order 2 under p

(n)

and q

(n)

re-

spetively. Let fW

1

;W

2

; : : :g be the proess obtained by 2-step bloking the Markov

soure. Let P and Q be two possible transition matries for fW

1

;W

2

; : : :g de�ned as

follows:

P =

2

6

6

6

6

6

6

4

1=3 2=3 0 0

0 0 1 0

2=5 3=5 0 0

0 0 1=6 5=6

3

7

7

7

7

7

7

5

;

and

Q =

2

6

6

6

6

6

6

4

3=4 1=4 0 0

0 0 1 0

7=8 1=8 0 0

0 0 2=3 1=3

3

7

7

7

7

7

7

5

:

Let p = (1=8; 3=8; 2=8; 2=8) and q = (1=7; 2=7; 3=7; 1=7) denote two possible initial

distributions of W

1

under p

(n)

and q

(n)

respetively. The set of indies f1; 2; 3g forms

an essential lass, while the singleton set f4g forms a self-ommuniating non-essential

lass. Hene, P and Q are not irreduible. Note also that both p

(n)

and q

(n)

are not

stationary. We obtain the following.
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n

1

n

D(p

(n)

kq

(n)

)

10 0.2982

50 0.3253

100 0.3277

By Theorem 2, the Kullbak-Leibler divergene rate is equal to .3301. Clearly, as n

inreases,

1

n

D(p

(n)

kq

(n)

) gets loser to the Kullbak-Leibler divergene rate. We also

obtain the following.

n

1

n

H(p

(n)

)

10 0.4618

50 0.4175

100 0.4116

By Corollary 2, the Shannon entropy rate is equal to 0.4057. Similarly,

1

n

H(p

(n)

)

approahes the Shannon entropy rate with inreasing n.

6 Conlusion

In this work, we derived a formula for the Kullbak-Leibler divergene rate between

two time-invariant �nite-alphabet Markov soures of arbitrary order and arbitrary

initial distributions. We also investigated its rate of onvergene. Similarly, we ex-

amined the omputation and the existene of the Shannon entropy rate for Markov

soures and investigated its rate of onvergene. The main tools used in obtaining

these results are the theory of non-negative matries and Perron-Frobenius theory.

One interesting and hallenging diretion for future work is the investigation of the

Kullbak-Leibler divergene rate for general hidden Markov soures.
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