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A SHORT SURVEY ON BOUNDING THE UNION

PROBABILITY USING PARTIAL INFORMATION

JUN YANG, FADY ALAJAJI, AND GLEN TAKAHARA

Abstract. This is a short survey on existing upper and lower
bounds on the probability of the union of a finite number of events
using partial information given in terms of the individual or pair-
wise event probabilities (or their sums). New proofs for some of
the existing bounds are provided and new observations regarding
the existing Gallot–Kounias bound are given.
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2 A SHORT SURVEY

1. Introduction

Consider a finite family of events {A1, . . . , AN} in a general prob-
ability space (Ω,F , P ), where N is a fixed positive integer. Note
that there are only finitely many Boolean atoms1 specified by the
Ai’s [DC97]. We are interested in bounding the probability of the

finite union of events, i.e., P
(

⋃N

i=1Ai

)

, in terms of partial probabilis-

tic event information such as knowing the individual event probabili-
ties, {P (A1), . . . , P (AN)}, and the pairwise event probabilities {P (Ai∩
Aj), i 6= j}, or (linear) functions of the probabilities of individual and
pairwise events.
For example, the well-known union upper bound and the Bonferroni

inequality [GS96] are respectively given as follows:

(1) P

(

N
⋃

i=1

Ai

)

≤
N
∑

i=1

P (Ai),

(2) P

(

N
⋃

i=1

Ai

)

≥
N
∑

i=1

P (Ai)−
∑

i<j

P (Ai ∩ Aj).

We note that the union upper bound (1) is established in terms of only
∑N

i=1 P (Ai) so that each of the individual event probability P (Ai) is
actually not needed. However, the Bonferroni lower bound (2) is estab-

lished using two terms,
∑N

i=1 P (Ai) and
∑

i<j P (Ai ∩ Aj). Therefore,

the union upper bound (1) and the Bonferroni inequality (2) are estab-
lished based on different partial information on the event probabilities.
In order to distinguish the use of different partial information, we

assume that a vector θ = (θ1, . . . , θm) ∈ R
m represents partial proba-

bilistic information about the union
⋃N

i=1Ai. Specifically, we assume
that for a given integer m ≥ 1, Θ denotes the range of a function of

P (Ai)’s and P (Ai∩Aj)’s, ηm : [0, 1]N+(N
2
) → R

m. Then θ equals to the
value of the function ηm for given A1, . . . , AN . For example,

(3) θ = (P (A1), P (A2), . . . , P (AN)) ,

or

(4) θ =

(

N
∑

i=1

P (Ai),
∑

i<j

P (Ai ∩Aj)

)

.

1The problem can be directly reduced to the finite probability space case. Thus,
we will consider finite probability spaces where ω ∈ Ω denotes an elementary out-
come instead of an atom.
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Then, we can define a lower bound (and similarly an upper bound)

on P
(

⋃N

i=1Ai

)

that is established using the partial information repre-

sented by θ as follows.

Definition 1.1. A lower bound of P
(

⋃N

i=1Ai

)

is a function of θ, ℓ(θ),

such that

(5) P

(

N
⋃

i=1

Ai

)

≥ ℓ(θ),

for any set of events {Ai} that the value of ηm for given {Ai} equals to
θ.

Note that, for given θ, such as θ = (P (A1), . . . , P (AN)), there are
multiple functions of θ that are lower bounds, for example,

P

(

N
⋃

i=1

Ai

)

≥ θ1 = P (A1),

P

(

N
⋃

i=1

Ai

)

≥

∑

i θi
N

=

∑

i P (Ai)

N
,

P

(

N
⋃

i=1

Ai

)

≥ max
i

θi = max
i

P (Ai).

(6)

Therefore, we need to define an optimal lower bound in a general class
of lower bounds that are functions of θ.
Let LΘ denote the set of all lower bounds on P

(

⋃N
i=1Ai

)

that are

functions of only θ.

Definition 1.2. We say that a lower bound ℓ⋆ ∈ LΘ is optimal in LΘ

if ℓ⋆(θ) ≥ ℓ(θ) for all θ ∈ Θ and ℓ ∈ LΘ.

Definition 1.3. We say that a lower bound ℓ ∈ LΘ is achievable if for
every θ ∈ Θ,

(7) inf
A1,...,AN

P

(

N
⋃

i=1

Ai

)

= ℓ(θ),

where the infimum ranges over all collections {A1, . . . , AN}, Ai ∈ F ,
such that {A1, . . . , AN} is represented by θ.

For bounds in LΘ, the following lemma shows that achievability is
equivalent to optimality.
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Lemma 1.4. A lower bound ℓ⋆ ∈ LΘ is optimal in LΘ if and only if
it is achievable.

Proof. Suppose that ℓ⋆ is achievable. Let θ ∈ Θ and ǫ > 0 be given,
and let ℓ be any lower bound in LΘ. By achievability there exist sets
A1, . . . , AN in F represented by θ such that

ℓ⋆(θ) > P

(

N
⋃

i=1

Ai

)

− ǫ ≥ ℓ(θ)− ǫ.(8)

Since this holds for any ǫ we have ℓ⋆(θ) ≥ ℓ(θ). We prove the converse
by the contrapositive. Suppose that ℓ⋆ is not achievable. Then there
exists θ′ ∈ Θ such that

inf
A1,...,AN

P

(

N
⋃

i=1

Ai

)

> ℓ⋆(θ′),(9)

where the infimum ranges over all collections {A1, . . . , AN}, Ai ∈ F ,
such that {A1, . . . , AN} is represented by θ′. Define ℓ by

ℓ(θ) =

{

c if θ = θ′

0 if θ 6= θ′,
(10)

where c satisfies

inf
A1,...,AN

P

(

N
⋃

i=1

Ai

)

> c > ℓ⋆(θ′).(11)

Then ℓ ∈ LΘ and is larger than ℓ⋆ at θ′. Hence, ℓ⋆ is not optimal. �

Using Lemma 1.4, we can therefore prove that a lower bound ℓ(θ)
is optimal if for any value of θ ∈ Θ, one can construct a collection of

events {A∗
i } that is represented by θ and P

(

⋃N
i=1A

∗
i

)

= ℓ(θ). The

optimal upper bound can also be defined similarly (using a supremum
in (7)) and proved by achievability. For example, one can easily verify
the following by a construction proof of achievability.

• P
(

⋃N

i=1Ai

)

≥
∑

i P (Ai)

N
is the optimal lower bound in the class

for θ = (
∑

i P (Ai)).

• P
(

⋃N
i=1Ai

)

≥ maxi P (Ai) is the optimal lower bound in the

class for θ = (P (A1), . . . , P (AN)).

• P
(

⋃N

i=1Ai

)

≤ min{
∑

i P (Ai), 1} is the optimal upper bound

in the classes for both θ = (
∑

i P (Ai)) and θ = (P (A1), . . . , P (AN)).
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Furthermore, we can prove that a lower bound is not optimal by
showing it is not achievable. For example, in order to show that the
Bonferroni inequality (2) is not an optimal lower bound in the class of

lower bounds that are functions of θ =
(

∑

i P (Ai),
∑

i<j P (Ai ∩ Aj)
)

,

we only need to show it is not achievable. Note that for N > 3, the
lower bound (2) can have negative values. However, according to the
definition of achievability, the LHS of (7) can never be negative, which
means the lower bound (2) cannot be achievable. Therefore, the Bon-
ferroni inequality (2) is not optimal.
Throughout the survey, we mainly focus on lower bounds using dif-

ferent partial probabilistic information. Upper bounds are presented
as remarks.

2. Review of Existing Bounds

We start from the class of lower bounds in terms of
∑

i P (Ai) and
∑

i<j P (Ai ∩ Aj), for which the Dawson-Sankoff (DS) lower bound

[DS67] is known as optimal. Then we introduce some lower bounds in
terms of {P (Ai)} and {

∑

j P (Ai∩Aj)}, including the D. de Caen (DC)

bound [DC97] and the Kuai-Alajaji-Takahara (KAT) bound [KAT00a].
Next, a review of some lower bounds in terms of {P (Ai)} and {P (Ai ∩
Aj)} is given, including the algorithmic stepwise lower bound [KAT00b]
and the Gallot-Kounias (GK) bound [Gal66; Kou68; FLS10]. Finally,
some existing upper bounds are reviewed, including the Hunter upper
bound and the algorithmic greedy upper bound [KAT00b].
We first define the degree of an atom (or outcome in finite probability

space) ω ∈ F as follows.

Definition 2.1. For each atom ω ∈ F , let the degree of ω, denoted
by deg(ω), be the number of Ai’s that contain ω.

Therefore, the degree of any atom in
⋃

i Ai equals to an integer in
{1, . . . , N}.

2.1. Lower Bounds Using
∑

i P (Ai) and
∑

i<j P (Ai ∩Aj). Con-

sidering θ =
(

∑

i P (Ai),
∑

i<j P (Ai ∩ Aj)
)

, we note that the Bonfer-

roni inequality (2) is a lower bound in this class. However, we have
shown that (2) is not optimal, which means there exists another func-
tion of only

∑

i P (Ai) and
∑

i<j P (Ai ∩ Aj) that is a lower bound of

P
(

⋃N
i=1Ai

)

and always sharper than the Bonferroni inequality.
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Defining

(12) a(k) := P

({

ω ⊆
⋃

i

Ai, deg(ω) = k

})

,

one can easily verify the following identities:

(13) P

(

N
⋃

i=1

Ai

)

=

N
∑

k=1

a(k),

(14)

N
∑

i=1

P (Ai) =

N
∑

k=1

ka(k),

(15)
∑

i<j

P (Ai ∩ Aj) =
N
∑

k=2

(

k

2

)

a(k),

∑

i,j

P (Ai ∩ Aj) = 2
∑

i<j

P (Ai ∩ Aj) +

N
∑

i=1

P (Ai)

= 2
N
∑

k=2

k(k − 1)

2
a(k) +

N
∑

k=1

ka(k)

=

N
∑

k=1

k2a(k).

(16)

Note that using the above equalities, one can derive a lower bound
simply via the Cauchy-Schwarz inequality:

(17)

(

∑

k

a(k)

)(

∑

k

k2a(k)

)

≥

(

∑

k

ka(k)

)2

,

where equality holds if and only if a(k) > 0 only for a particular k, i.e.,
all outcomes in the union has the same degree k. The resulting lower
bound can be written as

(18) P

(

N
⋃

i=1

Ai

)

≥
(
∑

i P (Ai))
2

∑

i,j P (Ai ∩ Aj)
.

Since
∑

i,j P (Ai ∩ Aj) ≤
∑

i,j P (Ai) = N
∑

i P (Ai),

(19)
(
∑

i P (Ai))
2

∑

i,j P (Ai ∩ Aj)
≥

∑

i P (Ai)

N
;
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hence the lower bound (18) is always sharper than
∑

i P (Ai)

N
, which has

been shown to be optimal in the class of θ = (
∑

i P (Ai)). This is
reasonable since the lower bound (18) is established using more in-

formation than
∑

i P (Ai)

N
. However, it can be readily shown that the

lower bound (18) is not always sharper than the Bonferroni inequality
(2). Therefore, it cannot be the optimal lower bound in the class of

θ =
(

∑

i P (Ai),
∑

i<j P (Ai ∩Aj)
)

.

2.1.1. Dawson-Sankoff (DS) Bound. The DS bound is known as the
optimal lower bound in terms of only

∑

i P (Ai) and
∑

i<j P (Ai ∩ Aj).

Denoting θ1 :=
∑

i P (Ai) and θ2 :=
∑

i<j P (Ai ∩ Aj), the DS bound

[DS67] can be written as

(20) P

(

N
⋃

i=1

Ai

)

≥
κθ21

(2− κ)θ1 + 2θ2
+

(1− κ)θ21
(1− κ)θ1 + 2θ2

,

where κ = 2θ2
θ1

− ⌊2θ2
θ1
⌋ and ⌊x⌋ denotes the largest integer less than or

equal to x.
We first show that the DS bound is the solution of a linear program-

ming (LP) problem in the following lemma.

Lemma 2.2. The DS bound is the solution of the following LP problem.

ℓDS :=min
a(k)

∑

k

a(k),

s.t.
∑

k

ka(k) =
∑

i

P (Ai),

∑

k

k2a(k) =
∑

i,j

P (Ai ∩Aj),

a(k) ≥ 0, k = 1, . . . , N.

(21)

Proof. For an LP problem, when a feasible solution exists and when
the objective function (which is linear) is bounded, the optimal value
of the objective function is always attained on the boundary of the
optimal level-set and it is attained on at least one of the vertices of
the polyhedron formed by the constraints (which is the set of feasible
solutions) [BT97]. Then, the lemma can be readily verified using this
fact that one of the optimal feasible points of the LP problem (21) is a
vertex. To obtain a vertex, one need to make N − 2 of the inequalities
a(k) ≥ 0 active, which means there are only two integers k1 and k2
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that 1 ≤ k1 < k2 ≤ N , satisfying

min
k1,k2

a(k1) + a(k2),

s.t. k1a(k1) + k2a(k2) =
∑

i

P (Ai),

k2
1a(k1) + k2

2a(k2) =
∑

i,j

P (Ai ∩Aj),

a(k1) ≥ 0, a(k2) ≥ 0.

(22)

It can be easily shown that the solution of the above problem is achieved

at k1 = ⌊
∑

i,j P (Ai∩Aj)
∑

i P (Ai)
⌋ and k2 = k1 + 1. Thus, the solution of (21) is

the DS bound. �

The existing proof of the optimality of the DS bound can be seen,
e.g., in [GS96, p. 22]. We herein give an alternative and simpler proof
by proving it is achievable.

Lemma 2.3. The DS bound is optimal in the class of lower bounds in

terms of θ =
(

∑

i P (Ai),
∑

i<j P (Ai ∩Aj)
)

.

Proof. We have shown that the DS bound is the solution of (21) and
can be written as ℓDS = a(k1) + a(k2), for some a(k1) ≥ 0, a(k2) ≥ 0,
and a(k) = 0, k 6= k1, k 6= k2. Recalling the definition of a(k), one can
construct two outcomes ω1 and ω2 in a finite probability space such
that

(23) P (ω1) = a(k1), P (ω2) = a(k2).

Then consider the following construction of collection of events {A∗
i },

A∗
i = {ω1, ω2}, if i ≤ k1,

A∗
i = {ω2}, if k1 < i ≤ k2,

A∗
i = ∅, otherwise.

(24)

Then we always have ℓDS = P (
⋃

i A
∗
i ). Therefore, the DS bound is

achievable, and hence optimal. �

Note that since the DS bound is optimal, it is always sharper than
the lower bound in (18). Actually, this can be easily proved since the
lower bound in (18) is a lower bound of the objective function of (21)
by Cauchy-Schwarz inequality using the two constraints of (21).
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2.2. Lower Bounds Using {P (Ai)} and {
∑

j 6=i P (Ai ∩ Aj)}. In this

section, we review the lower bounds in terms of {P (Ai)} and {
∑

j 6=i P (Ai∩
Aj)}, including the DC [DC97] and the KAT [KAT00a] bounds.
Similar to the definition of a(k), define

(25)
ai(k) := P ({ω ⊆ Ai : deg(ω) = k}) , i = 1, . . . , N, k = 1, . . . , N.

Then one can verify that
∑

i ai(k) = ka(k), i.e.,

(26) a(k) =

∑

i ai(k)

k
.

For simplicity, we denote
(27)

αi := P (Ai), βi :=
∑

j 6=i

P (Ai ∩ Aj), γi := αi + βi =
∑

j

P (Ai ∩Aj).

We examine lower bounds that are functions of θ = (α1, . . . , αN , γ1, . . . , γN).

One can verify that P
(

⋃N
i=1Ai

)

, αi and γi can all be written as

linear functions of {ai(k)} as follows.

(28) P

(

N
⋃

i=1

Ai

)

=
∑

k

a(k) =
∑

i

∑

k

ai(k)

k
.

(29) αi = P (Ai) =
∑

k

ai(k), γi =
∑

j

P (Ai ∩ Aj) =
∑

k

kai(k).

2.2.1. D. de Caen (DC) bound. Similar to the lower bound in (18),
using the Cauchy-Schwarz inequality

(30)

(

∑

k

ai(k)

k

)(

∑

k

kai(k)

)

≥

(

∑

k

ai(k)

)2

for i = 1, . . . , N , and summing over i, one can get the DC bound as
follows.
(31)

P

(

⋃

i

Ai

)

=
∑

i

∑

k

ai(k)

k
≥
∑

i

(

α2
i

γi

)

=
∑

i

P (Ai)
2

∑

j P (Ai ∩ Aj)
=: ℓDC.

It is noted by D. de Caen [DC97] that the above lower bound can be
(but is not always) sharper than the DS bound.
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2.2.2. The Kuai-Alajaji-Takahara (KAT) bound. Now, we introduce
the KAT bound

(32) ℓKAT :=
N
∑

i=1

{[

1

⌊ γi
αi
⌋
−

γi
αi

− ⌊ γi
αi
⌋

(1 + ⌊ γi
αi
⌋)(⌊ γi

αi
⌋)

]

αi

}

,

as the solution of an LP problem, which is given in the following Lemma.

Lemma 2.4. The KAT bound is the solution of the following LP prob-
lem

min
{ai(k),i=1,...,N,k=1,...,N}

N
∑

i=1

N
∑

k=1

ai(k)

k

s.t.
N
∑

k=1

ai(k) = αi,
N
∑

k=1

kai(k) = γi, i = 1, . . . , N,

ai(k) ≥ 0, i = 1, . . . , N, k = 1, . . . , N,

(33)

Proof. One can separate each i in the problem (33) and solve N sub-
optimization problems separately for each i:

min
{ai(k),k=1,...,N}

N
∑

k=1

ai(k)

k

s.t.

N
∑

k=1

ai(k) = αi,

N
∑

k=1

kai(k) = γi,

ai(k) ≥ 0, k = 1, . . . , N.

(34)

Each of the sub-problems can be solved using the same method as
solving the LP problem (21) for the DS bound. One can see [KAT00a]
for details. An alternative proof is given in [Kua99] by solving the dual
LP problem of (34). �

It has been shown that the KAT bound is always sharper than both
the DC bound and the DS bound [KAT00a]. Furthermore, Dembo has
shown [Dem] that the KAT bound improves the DC bound by a factor
of at most 9

8
. In the following lemma, we give alternative and simpler

proofs of the above results.

Lemma 2.5. Comparing with the DC and DS bounds, the KAT bound
satisfies

(35) max{ℓDC, ℓDS} ≤ ℓKAT ≤
9

8
ℓDC.
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Proof. First, substituting (26) in (21), one can get that the DS bound
is the solution of the following LP problem of {ai(k)}

ℓDS = min
{ai(k),i=1,...,N,k=1,...,N}

N
∑

i=1

N
∑

k=1

ai(k)

k

s.t.

N
∑

i=1

N
∑

k=1

ai(k) =
∑

i

αi,

N
∑

i=1

N
∑

k=1

kai(k) =
∑

i

γi,

∑

i

ai(k) ≥ 0, k = 1, . . . , N.

(36)

Since every feasible point of (33) is also a feasible point of (36). The
LP problem (36) is a relaxed problem of (33). Therefore, ℓKAT ≥ ℓDS.
Next, it is easy to show that ℓKAT ≥ ℓDC since based on the con-

straints of (33), one can get the DC bound as a lower bound of the
objective function of (33) using the Cauchy-Schwarz inequality. There-
fore, ℓKAT is lower bounded by ℓDC.
Finally, we prove that ℓKAT ≤ 9

8
ℓDC. Note that the DC bound (31)

is given by ℓDC =
∑

i

α2

i

γi
and that the solution of (34) can be written

as ai(k1)
k1

+ ai(k2)
k2

where k2 = k1 + 1. It then suffices to prove for any
i = 1, . . . , N and integer k = 1, . . . , N − 1

(37)
ai(k)

k
+

ai(k + 1)

k + 1
≤

9

8

α2
i

γi
,

where ai(k) + ai(k + 1) = αi and kai(k) + (k + 1)ai(k + 1) = γi.
Denoting x := ai(k) and y := ai(k + 1), one can get

(

ai(k)

k
+

ai(k + 1)

k + 1

)

/
α2
i

γi
=

(

x
k
+ y

k+1

)

[kx+ (k + 1)y]

α2
i

=
x2 + k

k+1
xy + k+1

k
xy + y2

(x+ y)2
= 1 +

1

k(k + 1)

xy

(x+ y)2

≤ 1 +
1

4

1

k(k + 1)
≤ 1 +

1

8
=

9

8
.

(38)

The first equality holds when x = y = αi

2
and the second equality holds

when k = 1. Therefore, the inequality ℓKAT ≤ 9
8
ℓDC can be active. �

Remark 2.6. Finally, we can derive an upper bound for P
(

⋃N
i=1Ai

)

using {P (Ai)} and {
∑

j P (Ai ∩ Aj)} by maximizing the LP problem
for the KAT bound.
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The following LP problem

max
{ai(k),i=1,...,N,k=1,...,N}

N
∑

i=1

N
∑

k=1

ai(k)

k

s.t.
N
∑

k=1

ai(k) = αi,
N
∑

k=1

kai(k) = γi, i = 1, . . . , N,

ai(k) ≥ 0, i = 1, . . . , N, k = 1, . . . , N,

(39)

gives the upper bound

P

(

⋃

i

Ai

)

≤
∑

i

αi −
1

N

∑

i

βi

=
∑

i

P (Ai)−
1

N

∑

j 6=i

P (Ai ∩Aj) =: ~NEW-1.

(40)

⊳

2.3. Lower Bounds Using {P (Ai)} and {P (Ai ∩Aj)}. Lower and

upper bounds on P
(

⋃N
i=1Ai

)

in terms of the individual event proba-

bilities P (Ai)’s and the pairwise event probabilities P (Ai ∩ Aj)’s can
be seen as special cases of the Boolean probability bounding problem
[Bor+14; Viz04], which can be solved numerically via a linear program-
ming (LP) problem involving 2N variables. Unfortunately, the number
of variables for Boolean probability bounding problems increases ex-
ponentially with the number of events, N , which makes finding the
solution impractical. Therefore, some suboptimal numerical bounds
are proposed [Bor+14; Viz04; PG05; GS96] in order to reduce the com-
plexity of the LP problem, for example, by using the dual basic feasible
solutions.
On the other hand, analytical/algorithmic bounds are particularly

important. One can apply an existing bound using {P (Ai), i ∈ I} and
{
∑

j∈I P (Ai ∩ Aj)} as a base bound, and then optimize the bound by

choosing the optimal subset I of {1, . . . , N} algorithmically. Note that
the bound by optimization via a subset exploits the full information of
{P (Ai)} and {P (Ai ∩Aj)}. Examples of bounds in this class includes
the stepwise algorithmic implementation of the Kounias lower bound
[KAT00b], the greedy algorithmic implementation of the Hunter up-
per bound [KAT00b]. Other analytical bounds, like the KAT bound,
are also investigated in other works (e.g., see [CS06; Hop06; Hop09;
KAT00b; BAL05; BAL07; MCS13]).
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The other class of bounds is established by {P (Ai)} and {
∑

j cjP (Ai∩
Aj)}, where {cj} can be arbitrarily chosen from a continuous set for
c = (c1, . . . , cN)

T or computed using {P (Ai)} and {P (Ai∩Aj)}. Then
the resulting bound also exploits the full information of {P (Ai)} and
{P (Ai∩Aj)}. Typical example of the bounds in this class is the Gallot-
Kounias (GK) bound [Gal66; Kou68] (see also [FLS10; MCS13]).

2.3.1. Kounias Lower Bound and Algorithmic Implementation. The
Kounias lower bound, which is a Bonferroni-type bound, can be written
as

(41) P

(

N
⋃

i=1

Ai

)

≥ max
I

{

∑

i∈I

P (Ai)−
∑

i,j∈I,i<j

P (Ai ∩Aj)

}

,

where I is a subset of the set of indices {1, . . . , N}. However, the
computational complexity of the Kounias lower bound is exponential
since there are exponential number of subsets of {1, . . . , N}.
In order to reduce the computational complexity, an algorithmic al-

gorithm is proposed in [KAT00b] using a stepwise algorithm to find
a sub-optimal index set that maximizes the RHS of (41). We will re-
fer to this algorithmic implementation of Kounias lower bound as the
stepwise lower bound.

2.3.2. Gallot-Kounias (GK) Bound. Let α = (P (A1), · · · , P (AN))
T ∈

R
N×1 and

(42)

Σ =









P (A1 ∩ A1) P (A1 ∩ A2) . . . P (A1 ∩AN )
P (A2 ∩ A1) P (A2 ∩ A2) . . . P (A2 ∩AN )

...
... . . .

...
P (AN ∩ A1) P (AN ∩ A2) . . . P (AN ∩AN )









∈ R
N×N ,

the GK bound [Gal66; Kou68] is given as

(43) P

(

N
⋃

i−1

Ai

)

≥ cTΣc,

where Σc = α. Kounias has shown in [Kou68, Lemma 1.1] that the
vector α is in the range of Σ, i.e., α is orthogonal to the null space ofΣ.
As a result, if Σ is singular, one can choose subsets of {A1, . . . , AN}
to compute the corresponding GK bound, which results in the same
bound if the rank of the corresponding Σ is the same.
Therefore, without loss of generality (WLOG), we assume herein Σ

is non-singular, then the solution of Σc = α is unique

(44) c̃ = Σ−1α.
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and the GK bound can be written as

(45) P

(

N
⋃

i−1

Ai

)

≥ c̃TΣc̃ = αT
(

ΣT
)−1

α = αTΣ−1α =: ℓGK,

where
(

ΣT
)−1

= Σ−1 as Σ is symmetric. Furthermore, the GK bound
was recently revisited by [FLS10]. The authors in [FLS10] have shown
that the GK bound can be reformulated as

(46) ℓGK = max
c∈RN

[
∑

i ciP (Ai)]
2

∑

i

∑

k cickP (Ai ∩Ak)
.

2.4. Upper Bounds. There are only a few analytical/algorithmic up-
per bounds in the literature. In the following, we introduce the Hunter
bound and its algorithmic implementation by a greedy algorithm.

2.4.1. Hunter Upper Bound and Algorithmic Implementation. The Hunter
upper bound, which is a Bonferroni-type bound, can be written as

(47) P

(

N
⋃

i=1

Ai

)

≤
N
∑

i=1

P (Ai)−max
T0∈T

∑

(i,j)∈T0

P (Ai ∩ Aj),

where T is the set of all trees spanning the N indices, i.e., the trees
that include all indices as nodes.
However, the computational complexity of finding the optimal span-

ning tree is exponential via an exhaustive search. In order to reduce
the complexity, one algorithmic algorithm is proposed in [KAT00b] us-
ing Kruskal’s greedy algorithm for finding a sub-optimal spanning tree
for a weighted graph. We will refer to this algorithmic implementation
of the Hunter upper bound as the greedy upper bound, ~Greedy.

3. Observations on the GK Bound

Finally, we conclude this survey with two observations on the GK
bound.

3.1. Applying the GK bound to subsets of events. We note that
many existing lower bounds, which do not fully explore available in-
formation, can be further improved algorithmically via optimization
over subsets, as in [BAL07; Hop06]. However, in this section, we prove
that the GK bound cannot be improved by applying it to subsets of
{A1, . . . , AN}.
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Lemma 3.1. For any given M ≥ N , the GK bound is the solution of
the following problem:

min
{x∈RM×1,A∈RN×M}

‖x‖2

s.t. Ax = α, AAT = Σ ∈ R
N×N .

(48)

Proof. We can always write x as

(49) x = ATk1 +AT
⊥k2,

where k1 ∈ R
N×1, k2 ∈ R

(M−N)×1, and A⊥ ∈ R
(M−N)×M satisfies

AAT
⊥ = 0N×(M−N). Particularly, let LLT be the Cholesky decompo-

sition of Σ, then A =
(

L, 0N×(M−N)

)

Q where Q is any orthogonal
matrix is the solution of (48).
Then

(50) ‖x‖2 = kT
1 AATk1 + kT

2 A⊥A
T
⊥k2 = kT

1 Σk1 + kT
2 A⊥A

T
⊥k2.

The first constraint Ax = α implies AATk1 = α, i.e., k1 = Σ−1α.
Therefore, the minimum of ‖x‖2 is achieved at k2 = 0, so that

(51) min
k1,k2

‖x‖2 = kT
1 Σk1 = αTΣ−1α.

�

Theorem 3.2. The GK bound cannot be improved via optimization
over subsets of {A1, A2, . . . , AN}.

Proof. DenotingA =









aT
1

aT
2
...

aT
N









, the first constraint of (48) is equivalent

to N constraints aT
i x = αi, i = 1, . . . , N , and the second constraint of

(48) is equivalent to N2 constraints aT
i aj = Σij, i = 1, . . . , N, j =

1, . . . , N .
By selecting a subset of {1, 2, . . . , N}, the resulting GK bound is the

solution of a relaxed problem of (48) with a subset of constraints on x

and ai, i = 1, . . . , N . Since the objective value of the relaxed problem
must be no more than the original problem (48), the GK bound using a
subset cannot be higher than the GK bound using full information. �

3.2. Iterative implementation of the GK bound.

Theorem 3.3. The GK bound can be computed iteratively. More
specifically, for n = 1, . . . , N , denote ℓGK(n) as the GK bound using

the information of A1, . . . , An : αn = (P (A1), . . . , P (An))
T , βn =
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(P (A1 ∩ An), . . . , P (An−1 ∩ An))
T and Σn, the n × n upper left sub-

matrix of Σ, then if αn − βH
n Σ−1

n−1βn > 0, we have

(52) ℓGK(n) = ℓGK(n− 1) +
1

αn − βH
n Σ

−1
n−1βn

αT
n

(

bnb
T
n bn

bTn 1

)

αn,

where bn = −Σ−1
n−1βn.

The matrix Σn is not invertible if and only if αn − βH
n Σ

−1
n−1βn = 0.

The last case αn − βH
n Σ

−1
n−1βn < 0 never happens, i.e., the following

inequality holds

P (An) ≥ (P (A1 ∩An), . . . , P (An−1 ∩An)) ·








P (A1 ∩ A1) . . . P (A1 ∩An−1)
P (A2 ∩ A1) . . . P (A2 ∩An−1)

... . . .
...

P (An−1 ∩ A1) . . . P (AN ∩An−1)









−1







P (A1 ∩ An)
P (A2 ∩ An)

...
P (An−1 ∩ An)









,

(53)

for n = 1, . . . , N .

Proof. Note that

(54) Σn =

(

Σn−1 βn

βT
n αn

)

.

and by the matrix inverse lemma for a Hermitian matrix [HJ86], we
have

(55) Σ−1
n =

(

Σ−1
n−1 0n

0T
n 0

)

+
1

αn − βH
n Σ

−1
n−1βn

(

bnb
T
n bn

bTn 1

)

Substituting to ℓGK(n) = αnΣ
−1
n αn, ℓGK(n) can be computed using

ℓGK(n− 1).
Since we have proved ℓGK(n) ≥ ℓGK(n − 1) in Theorem 3.2, the

inequality is directly from αn − βH
n Σ−1

n−1βn ≥ 0 in (52) of Theorem
3.3. �

Recent works: We close this survey by referring the reader to [YAT14;
YAT15a; YAT15b; YAT16a; YAT16b] for the most recent works on this
topic.
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