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ABSTRACT

Title of Thesis: On The Performane Of Foused Error

Control Codes
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Degree and Year: Master of Siene, 1990

Thesis direted by: Dr. Thomas Fuja

Assistant Professor

Department of Eletrial Engineering

Consider an additive noise hannel with inputs and outputs in the �eld

GF(q), where q > 2; every time a symbol is transmitted (or stored) over suh

a hannel, there are q-1 di�erent errors that an our, orresponding to the

q-1 non-zero elements that the hannel an add to the transmitted symbol.

Among these errors, there are some errors that our muh more frequently

than others; we all them \ommon" errors. However, \traditional" error

orreting odes - designed with respet to the Hamming metri - treat eah

of these q-1 errors the same. Fuja and Heegard have designed a lass of odes,

alled foused error ontrol odes, that an o�er di�erent levels of protetion

against \ommon" and \unommon" errors. (The motivating example: for

many odes over GF(2

b

) where b > 1, almost all errors involve exatly one

bit per symbol.) If we let B denote a set of ommon errors, then a ode is

(t

1

; t

2

)-foused on B if it an orret up to t

1

+ t

2

errors provided at most t

1

of these errors lie outside B.

In this thesis, we study the performane of these odes in terms of rate

and performane tradeo�s with respet to \idealized" skewed hannels as

well as realisti non-binary modulation shemes.
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Chapter 1

Introdution

1.1 Introdution And Motivation

When a symbol from a odeword over GF(q) is sent over a hannel with

additive noise, there are q-1 di�erent non-zero noise symbols that an orrupt

the sent �eld element.\Traditional" error ontrol odes, designed with respet

to the Hamming metri, treat eah of these q-1 possibilities the same, as

simply representing a generi \error".

In many non-binary transmission hannels or data ommuniation and

storage systems, there are some errors that our muh more frequently than

others. These errors are alled \ommon" errors. We say that a hannel is

skewed on a set B � GF (q)

�

(where q > 2 and �eld GF (q)

�

= GF (q)�f0g)

if the \ommon" errors generated by the hannel lie in B.

As an example, onsider a modulation sheme mapping data onto non-

binary signals using a Gray ode so that the most likely detetion errors

ause exatly one bit error per symbol. So for a given transmitted signal s

1

,

the most likely symbol detetion error will be in deteting one of the signals

that are diretly adjaent to s

1

in the signal onstellation. Thus, the most

1



likely errors will result in a reeived symbol that di�ers from the transmitted

symbol in one bit of their binary representation; therefore B=fAll �eld ele-

ments with a single \1" in their binary representationg forms the \ommon"

error set.

As another example, onsider random aess memory systems employing

\byte wide" RAM hips; that is eah hip delivers b � 2 bits at a time. Codes

over GF(2

b

) an be used for suh systems, with eah hip's output onsti-

tuting one element of GF(2

b

). It has been observed that the vast majority

of hip failures are single-ell failures and so would a�et only one bit per

byte; thus, most of the symbol errors that would onfront suh odes would

be one of the b �eld elements with exatly one non-zero bit in its binary rep-

resentation. One again, these elements onstitute the set of ommon errors

B. Of ourse, there exist some failure mehanisms that may ause multiple

bit failures - atastrophi whole-hip failures (burst errors), for instane - so

some protetion against arbitrary errors would be needed; however providing

the same degree of protetion against \ommon" and \unommon" errors is

not eÆient.

The above examples illustrate one of the most ommon appliations where

it beomes desirable to make the distintion between two di�erent kinds of

errors - when we wish to orret single-bit errors using a non-binary ode.

Moreover, there are some appliations for whih the set of ommon errors B

is not simply the set of single-bit errors. For example, in memory systems

organized into \byte-wide" hips, the typial failures that usually a�et these

hips are single-bit errors and two-bit-adjaent errors per byte.

In these and in many other appliations it is desirable to \fous" the

apabilities of a ode on the lass of ommon errors B. Sine \traditional"

error ontrol odes do not di�erentiate between \ommon" and \unommon"

errors, Fuja and Heegard [1℄ developed a new family of error ontrol odes, the

\foused" ontrol odes for hannels with skewed errors. These odes were

designed to give a high level of protetion against the set of ommon errors

while keeping a ertain level of protetion against the unommon errors.

Our onern is to study the performane of these odes in terms of

rate/performane tradeo�s with respet to \idealized" skewed hannels as

2



well as realisti non-binary modulation shemes.

1.2 Thesis Desription

In hapter 2, we briey introdue the onept of foused error ontrol odes

on hannels with skewed errors and review the results of Fuja and Heegard

[1℄ onerning their onstrution.

In hapter 3, we derive the general expression for the deoder error prob-

ability of foused odes and study their performane over \idealized" skewed

symmetri hannels. We then determine suitable onditions under whih the

performane of the foused odes is idential to that of the traditional error

orreting odes.

In hapters 4 and 5, we derive respetively the analytial expressions for

the parameters of additive white Gaussian noise hannels assoiated with M-

ary PSK modulation and square onstellations. We then analyze the perfor-

mane of foused ontrol odes used in onjuntion with M-ary PSK modula-

tion and square onstellations respetively and ompare it to the performane

of traditional odes. Some simulations on the foused odes performanes are

also done in order to hek the auray of the results derived analytially.

In hapter 6, we provide some numerial results by onstruting (t

1

; t

2

)-

foused odes and omputing the ode rate improvements they ahieve over

t

1

+ t

2

-error orreting odes while having an idential performane, for dif-

ferent values of the ode bloklength. We also alulate the oding gains (in

energy to noise ratio) (t

1

; t

2

)-foused odes ahieve over t

1

+ t

2

-error orret-

ing odes and unoded blok messages under PSK and square onstellation

modulations.

Finally, the onept of adaptive deoding of foused odes is introdued

in hapter 7. We study the ase where we an attain performane mathing

between foused odes and traditional error ontrol odes using an adaptive

deoding algorithm.

3



Chapter 2

Past Results On Foused

Control Codes

In this hapter, we review the results in [1℄ that are pertinent to the devel-

opment of this thesis.

2.1 Foused Error Control Codes

2.1.1 The Skewed Symmetri Channel (SSC)

Consider the following hannel model for storage or transmission. A harater

X 2 GF (q) is to be transmitted and the harater Y = X + Z 2 GF (q) is

reeived. It is assumed that the random error, Z 2 GF (q), is independent of

the input, X. This transmission hannel with inputs and outputs over GF(q),

(q > 2), is said to be skewed on a subset B � GF (q)

�

if:

P (Z 2 B jZ 6= 0) >

jBj

(q � 1)

:

4



More spei�ally, a skewed symmetri hannel is a hannel in whih the

iid error Z is distributed aording to:

Pr(Z = z) =

8

>

>

>

>

>

<

>

>

>

>

>

:

1� � if z=0

�(1� )

jBj

if z 2 B

�

(q � 1� jBj)

if z 2 B



where:

� �=P(Z 6= 0)=probability of symbol hannel error.

� =Pr(error is unommon j an error has ourred).

Note that in the ases of interest, � � 1 and  � 1. Moreover, B is the

set of ommon errors and B



= GF (q)

�

�B is the set of unommon errors.

Within eah lass of errors, we assume a uniform distribution.

2.1.2 De�nition Of Foused Codes

For any x 2 GF (q)

n

, we denote the Hamming weight of x by kxk; that is, if

x = [x

0

; x

1

; :::; x

n

℄, then

kxk

def

=

n�1

X

i=0

1

GF (q)

�

(x

i

)

where 1(:) is the indiator funtion (i.e., 1

A

(x) equals one if x 2 A and

equals zero otherwise).

More generally, for any set A � GF (q)

�

, we de�ne the A-weight of x

(where x 2 GF (q)

n

) as the number of omponents of x that lie in A; if we

5



denote the A-weight of x by kx

A

k, then

kxk

A

def

=

n�1

X

i=0

1

A

(x

i

)

Obviously, we have that kxk

A

� kxk.

De�nition:

Let B � GF (q)

�

be a set of ommon errors (non-zero elements of GF(q)).

A ode is (t

1

; t

2

)-foused on B if it an orret up to t

1

+ t

2

errors provided

at most t

1

of these errors lie outside B (i.e. are unommon). More preisely,

suh a ode is a set C, of n-tuples over GF(q) with the following property.

There exists a deoding funtion f : GF (q)

n

! C suh that f (+ e) =  for

any  2 C and any e 2 GF (q)

n

satisfying the following two onditions:

1. kek � t

1

+ t

2

;

2. kek

B



� t

1

.

Note that:

� A (t,0)-foused ode is a \traditional" t-error orreting ode.

� A (0,t)-foused ode is a ode that is ompletely foused on B; i.e. it

an orret only up to t ommon errors.

Lemma:

Let C be a set of q-ary n-tuples with the following property. For any 

1

and 

2

2 C, at least one of the following onditions holds:

� (i) k

1

� 

2

k > 2t

1

+ 2t

2

;

6



� (ii) k

1

� 

2

k+ k

1

� 

2

k

B



> 4t

1

+ 2t

2

.

Then C is (t

1

; t

2

)-foused on B.

The impliations of the above statement are presented graphially in Fig-

ure (2.1). We an plot every q-ary n-tuple in two dimensions by its Ham-

ming weight and its B



-weight. As long as no odeword di�erene lies in

the shaded region, the ode will be (t

1

; t

2

)-foused on B. By omparison, to

insure orretion of all error patterns of Hamming weight t

1

+ t

2

or less, we

would require that all odeword di�erenes have Hamming weight greater

than 2t

1

+ 2t

2

; by lowering our requirements we have ut a \noth" in the

\forbidden zone". This suggests that rate improvements are likely.

-

6

..

2t

1

+ t

2

2t

1

2t

1

+ 2t

2

2t

1

+ t

2

B



-Weight

Weight

Hamming

Figure 2.1: Graphi interpretation of the Lemma presenting the suÆient

onditions for the onstrution of (t

1

; t

2

)-foused odes
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2.2 Constrution Of Combined Linear Foused

Codes

Suppose we intend to onstrut a ode with bloklength n over GF (2

b

) that is

(t

1

; t

2

)-foused on the set of odd-weight symbols; that is, the ommon error

set B onsists of all the elements of GF (2

b

) with a binary representation

ontaining an odd number of 1's. (Note that this would inlude the set of

single-bit errors.)

A simple way to onstrut suh a ode would be to use a onatenated

oding sheme as follows. Start with a ode over GF (2

b�1

) with minimum

distane 2t

1

+ t

2

+ 1; then, add an extra bit to eah ode symbol in every

odeword so that every symbol has even parity. To see that the resulting

set of n-tuples over GF (2

b

) is (t

1

; t

2

)-foused on the set of odd-weight errors,

onsider the following deoding algorithm. When an n-tuple over GF (2

b

)

is reeived at the deoder, the parity of eah symbol is heked; where a

parity violation ours, that symbol is marked as an erasure for deoding

by the \outer" ode with d

min

= 2t

1

+ t

2

+ 1. This sheme will orret any

ombination of t

1

+ t

2

errors as long as no more than t

1

of those errors have

even parity - and thus must be orreted by the outer ode without bene�t

of erasure. This tehnique onstruts odes that have rate

b�1

b

R

2

, where R

2

is the rate of the outer ode.

The onstrution desribed above an be improved as follows. For any

n-tuple x over GF (2

b

), let b(x) be the binary n-tuple obtained by taking the

mod-two sum of eah omponent of x.

For example, if x=[0011,0100,1101,1010,1111℄, then b(x)=[01100℄. Then

the tehnique desribed above an be desribed as follows. Take a odeword

from a ode over GF (2

b�1

) and add one bit to eah ode symbol so that the

resulting n-tuple  satis�es b()=0. In this way, we form a (b,b-1) binary

parity hek ode, C

0

, that is apable of deteting all the errors lying in B.

This tehnique is something of an \overkill", sine it permits us to to ag

every ourrene of an odd-weight error, while in order to ful�ll the ode's

\mission" we need only to ag up to t

1

+ t

2

odd-weight errors.

8



Consider, then, the following onstrution. Let C

1

be an (n; nR

1

) binary

inner ode with minimum distane d

1

= 2t

1

+ 2t

2

+ 1; let C

2

be an (n; nR

2

)

outer ode over GF (2

b�1

) with minimum distane d

2

= 2t

1

+ t

2

+ 1. To

onstrut a odeword from our foused ode we �rst take a odeword from

C

2

and add one bit to eah ode symbol suh that , the resulting n-tuple

over GF (2

b

), satis�es b() 2 C

1

.

We an hek that the ode thus onstruted is (t

1

; t

2

)-foused on B by

onsidering the following deoding algorithm. Given a reeived 2

b

-ary n-

tuple r, ompute b(r); �nd the odeword x 2 C

1

that is losest to b(r).

As long as at most t

1

+ t

2

odd-weight errors have ourred, x will be equal

to b(), where  is the odeword that was atually transmitted. Mark the

loations where x di�ers from b(r) as erasures; strip o� the last bit in eah

ode symbol and pass the resulting 2

b�1

-ary n-tuple plus erasure loations to

a deoder for C

2

. Suh a deoder will orret all ombinations of t

1

+t

2

errors

provided at most t

1

of the errors have an even-weight binary representation

(i.e., are unommon).

Note that this improved onstrution tehnique adds nR

1

information

bits to eah odeword, when ompared with the simpler onstrution of the

previous setion. The overall rate of this ode is

1

b

R

1

+

b�1

b

R

2

. More gener-

ally, if R

0

, R

1

and R

2

are the ode rates of C

0

, C

1

and C

2

respetively, then

the overall rate the foused ode is given by:

R = (1� R

0

)R

1

+R

0

R

2

(2.1)

This tehnique an be generalized to over a variety of ommon error sets;

for details, refer to [1℄.
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Chapter 3

Deoder Error Probability

In this hapter, we derive the general expression for the deoder error proba-

bility of foused odes and study their performane over \idealized" skewed

symmetri hannels. We then determine suitable onditions under whih the

performane of the foused odes is idential to that of the traditional error

orreting odes.

3.1 Deoder Blok Error Probability Of Fo-

used odes On SSC

We know that a (t

1

; t

2

)-foused ode an orret up to t

1

+ t

2

errors given

that at most t

1

errors are unommon. The deoder blok error probability

of a (t

1

; t

2

)-foused ode on a skewed symmetri hannel (SSC) an thus be

written as:

P

d

= 1�

t

1

+t

2

X

i=0

min(i;t

1

)

X

j=0

 

n

i

! 

i

j

!

�

i

(1� �)

n�i



j

(1� )

i�j

(3.1)
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where:

� �=probability of symbol hannel error.

� =Pr(error is unommon j an error has ourred).

� i=number of errors.

� j=number of unommon errors.

� n=bloklength of a odeword.

P

d

an be rewritten as:

P

d

=

t

1

+t

2

X

i=t

1

+1

i

X

j=t

1

+1

 

n

i

! 

i

j

!

�

i

(1� �)

n�i



j

(1� )

i�j

+

n

X

i=t

1

+t

2

+1

 

n

i

!

�

i

(1� �)

n�i

(3.2)

Note that the seond term in the above equation is the probability of

deoder error of a traditional t

1

+ t

2

-error orreting ode.

If � is \reasonably" small, we an approximate P

d

by taking only the �rst

terms in the summations of equation (2.2). We get the following:

P

d

�

 

n

t

1

+ 1

!

�

t

1

+1

(1� �)

n�t

1

�1



t

1

+1

+

 

n

t

1

+ t

2

+ 1

!

�

t

1

+t

2

+1

(1� �)

n�t

1

�t

2

�1

(3.3)

Our goal is to make a (t

1

; t

2

)-foused ode perform identially as a tradi-

tional t

1

+ t

2

-error orreting ode; i.e.,

P

d

(foused) � P

d

(traditional)

11



From the above expression, we an make the following observations:

� If  is small ( � 1), the seond term in the P

d

expression is dominant

making:

P

d

(foused) � P

d

(traditional):

� If  is not small ( 6� 1), the �rst term in the P

d

expression is dominant

making:

P

d

(foused)� P

d

(traditional):

3.2 Case When � And  Are Considered In-

dependently

We begin by making the simplifying assumption that � and  are independent

of one another. Spei�ally, we onsider the following question. When one

of these two parameters is held onstant, what value of the other parameter

guarantees that a (t

1

; t

2

)-foused ode performs identially to a t

1

+ t

2

-error

orreting ode ?

3.2.1 Case When � Is Fixed

For �xed �, we an plot log

10

P

d

versus log

10

. From equation (3.3), we have:

log

10

P

d

� log

10

" 

n

t

1

+ 1

!

�

t

1

+1

(1� �)

n�t

1

�1



t

1

+1

+

 

n

t

1

+ t

2

+ 1

!

�

t

1

+t

2

+1

(1� �)

n�t

1

�t

2

�1

#

: (3.4)

Figures 3.1-3.3 show log

10

P

d

versus log

10

 for a probability of hannel

symbol error � = 10

�3

, a odeword blok length n = 50 and di�erent values

of t

1

and t

2

.
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From the above plots, we an notie that the urve of log

10

(P

d

) vs log

10

()

is nearly a straight line of slope equal to t

1

+ 1 for high values of , then

it onverges to a onstant as  beomes smaller and smaller. This an be

explained by the fat that as  ! 1, equation (3.4) an be approximated by

the equation of a straight line of slope (t

1

+ 1):

For  lose to 1,

log

10

P

d

� (t

1

+ 1) log

10

 + log

10

" 

n

t

1

+ 1

!

�

t

1

+1

(1� �)

n�t

1

�1

#

(3.5)

While for  ! 0, the dominant term in equation (2.4) is a onstant equal to

the deoder error probability of a traditional t

1

+ t

2

-error orreting ode:

For  lose to 0;

log

10

P

d

� log

10

" 

n

t

1

+ t

2

+ 1

!

�

t

1

+t

2

+1

(1� �)

n�t

1

�t

2

�1

#

(3.6)

This shows us that as  dereases, the performane of a (t

1

; t

2

)-foused

ode onverges to that of a traditional t

1

+ t

2

-error orreting ode (whih is

expeted sine as  ! 0, the hannel beomes more skewed).

We are interested in determining the ritial value 

rit

beneath whih,

P

d

(foused ode) � P

d

(traditional ode)

We have:

 

n

t

1

+ 1

!

�

t

1

+1

(1� �)

n�t

1

�1



t

1

+1

�

 

n

t

1

+ t

2

+ 1

!

�

t

1

+t

2

+1

(1� �)

n�t

1

�t

2

�1

Yielding:

log

10



rit

=

1

t

1

+ 1

2

6

6

6

6

4

t

2

log

10

�

�

1� �

�

+ log

10

2

6

6

6

6

4

 

n

t

1

+ t

2

+ 1

!

 

n

t

1

+ 1

!

3

7

7

7

7

5

3

7

7

7

7

5

(3.7)
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Thus, given that � is �xed, the performane of a (t

1

; t

2

)-foused ode is

idential to that of a t

1

+ t

2

-error orreting ode provided  < 

rit

, where



rit

is given in equation (3.7).

3.2.2 Case When  is Fixed

Using equation (3.4) for a �xed value of , we an plot log

10

(P

d

) versus

log

10

(�). The results are shown in Figures 3.4-3.6 for a odeword blok length

n = 50 and di�erent values of , t

1

and t

2

.
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In a similar way as in the previous ase where � was �xed, we an observe

from the above plots that the urve of log

10

(P

d

) versus log

10

(�) is nearly a

straight line with slope equal to t

1

+1 for small values of �. Analytially, this

an be shown from equation (3.3) where its �rst term is dominant for small

values of � while its seond term beomes dominant for large values of �.

Thus for small �, we an write:

P

d

�

 

n

t

1

+ 1

!

�

t

1

+1

(1� �)

n�t

1

�1



t

1

+1

�

 

n

t

1

+ 1

!

�

t

1

+1



t

1

+1

Whih implies that:

log

10

(P

d

) � (t

1

+ 1) log

10

�+ log

10

" 

n

t

1

+ 1

!



t

1

+1

#

For high values of �, the performane of a (t

1

; t

2

)-foused ode mathes

that of a t

1

+ t

2

-error orreting ode sine as � inreases equation (3.3)

redues to:

P

d

�

 

n

t

1

+ t

2

+ 1

!

�

t

1

+t

2

+1

(1� �)

n�t

1

�t

2

�1

To �nd the ritial value �

rit

beyond whih:

P

d

(foused ode) � P

d

(traditional ode)

We write:

 

n

t

1

+ 1

!

�

t

1

+1

rit

(1� �

rit

)

n�t

1

�1

�

 

n

t

1

+ t

2

+ 1

!

�

t

1

+t

2

+1

rit

(1� �

rit

)

n�t

1

�t

2

�1

Assuming we are operating in the proper range of � where � is \small"
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enough (so that

�

1��

� �), we get:

log

10

�

rit

=

1

t

2

2

6

6

6

6

4

(t

1

+ 1) log

10

 + log

10

2

6

6

6

6

4

 

n

t

1

+ 1

!

 

n

t

1

+ t

2

+ 1

!

3

7

7

7

7

5

3

7

7

7

7

5

(3.8)

Thus, given that  is �xed, the performane of a (t

1

; t

2

)-foused ode is

idential to that of a t

1

+ t

2

-error orreting ode if � > �

rit

where �

rit

is

given by equation (3.8).

3.3 Generalized Approah For Performane

Mathing

In many appliations, � and  do not vary independently from eah other.

For example, in a ommuniation system with a modulation sheme (like

QAM or PSK modulations), both � and  depend on the signal (or energy)

to noise ratio.

We now onsider a general approah that we all the \benhmark" ap-

proah, whih is appliable for both ases of dependeny or independeny

between � and , in order to determine the ondition for whih we have per-

formane mathing between the foused odes and the traditional orreting

odes.

We know that:

1.

P

d

(traditional ode) �

 

n

t

1

+ t

2

+ 1

!

�

t

1

+t

2

+1

(1� �)

n�t

1

�t

2

�1
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2.

P

d

(foused ode) �

 

n

t

1

+ 1

!

�

t

1

+1

(1� �)

n�t

1

�1



t

1

+1

+

 

n

t

1

+ t

2

+ 1

!

�

t

1

+t

2

+1

(1� �)

n�t

1

�t

2

�1

So P

d

(foused)! P

d

(traditional) if and only if:

 

n

t

1

+ t

2

+ 1

!

�

t

1

+t

2

+1

(1� �)

n�t

1

�t

2

�1

�

 

n

t

1

+ 1

!

�

t

1

+1

(1� �)

n�t

1

�1



t

1

+1

Or,

 

n

t

1

+ t

2

+ 1

!

 

n

t

1

+ 1

!

�

�

�

1� �

�

t

2



t

1

+1

If we let � =

�

1��

, we get:

"



t

1

+1

�

t

2

#

2

6

6

6

6

4

 

n

t

1

+ 1

!

 

n

t

1

+ t

2

+ 1

!

3

7

7

7

7

5

� 1

Now, de�ning our benhmark as �:

�

def

=

"



t

1

+1

�

t

2

#

2

6

6

6

6

4

 

n

t

1

+ 1

!

 

n

t

1

+ t

2

+ 1

!

3

7

7

7

7

5

(3.9)

We therefore obtain performane mathing i�:

� � 1

23



Usually, it is good enough to have:

� � 10

�2

Or

log

10

(�)� �2 (3.10)
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Chapter 4

Foused Codes Used In

Conjuntion With PSK

Modulation

In this hapter, we demonstrate how the results of hapter 3 an be applied

to a ommuniation system employing non-binary phase shift keying (PSK).

4.1 PSK Modulation

If we use M-ary PSK modulation with a Gray ode so that the di�erene

between the binary representation of any two adjaent signals is one bit,

then an additive Gaussian noise hannel an be approximated by an M-ary

SSC for the fous set B onsisting of all elements with a binary representation

ontaining exatly one \1".

In order to ompute the blok deoder error probability P

d

for a foused

ode used in onjuntion with PSK modulation, we need to determine the

parameters of the assoiated SSC whih are:
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� �, the probability of hannel symbol error.

� , the probability of an unommon error given that an error ourred.

The general analyti expression of an M-ary phase shift keying (PSK)

signal is [2℄:

s

i

(t) =

(

q

2E

s

=T os(w

0

t+ �

i

(t)) if 0 � t � T

0 otherwise

where,

� w

0

is a given radian frequeny of the arrier signal.

� i = 1; 2; :::::;M

� The phase term �

i

(t) =

2�i

M

; i = 1; ::::;M .

� T is the symbol duration.

� E

s

is the symbol energy.

An M-ary PSK signal needs a set of two orthonormal basis funtions for

its two-dimension vetorial representation:

 

1

(t) =

(

q

2=T osw

0

t if 0 � t � T

0 otherwise

and

 

2

(t) =

(

q

2=T sinw

0

t if 0 � t � T

0 otherwise

The omputation of the symbol transmission error probability an be

simpli�ed by the omplete symmetry the M-ary PSK signal sets demonstrate.
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Figure 4.1: Deision region orresponding to an M-ary PSK signal set

We an therefore write [3℄, for any j,

� = 1�

Z

R

j

f

�

j

dx (4.1)

where:

� R

j

is the deision region of the signal vetor s

j

shown in Figure 4.1.

� �

j

represents the phase displaement of the reeived signal from the

transmitted one.

� f

�

j

is the probability density funtion of �

j

.
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For M � 4 and the energy to noise ratio E

s

=N

0

� 1, an approximation

of the probability density funtion (pdf) f

�

(x) an be obtained [3℄:

f

�

(x) �

q

E

s

=(�N

0

) os x exp[�(E

s

=N

0

) sin

2

x℄ (4.2)

where x 2 [��; �℄.

An error is made if, for any j, the noise auses a phase displaement

greater than �=M in absolute value, orresponding to a reeived phase lying

outside the j'th deision region. Therefore,

� � 1�

Z

�=M

��=M

q

E

s

=(�M) os x exp[�(E

s

=N

0

) sin

2

x℄ dx

� 2Q

�

q

2E

s

=N

0

sin

�

M

�

(4.3)

where,

Q(x) =

1

p

2�

Z

1

x

exp[�t

2

=2℄ dt (4.4)

and E

s

= energy per symbol.

We now turn our attention to omputing . We begin by onsidering

M=4 - i.e., QPSK modulation.

From equation(4.3), we have that M = 4 yielding:

� = 2Q

 

s

E

s

N

0

!

We want to ompute:

 = P (unommon error/an error ourred) =

P (unommon error)

�

Sine we are using a Gray ode, we remark that if a signal is sent, the ommon

error that may be produed by the detetion of the orresponding reeived

signal, will be the detetion of one of the two signals diretly adjaent to the
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(t)
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3
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1

xx
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Figure 4.2: QPSK signal set representation

transmitted one in the signal onstellation. So for our QPSK ase, if s

1

is

sent, an unommon detetion error is to detet s

3

(Figure 4.2). By symmetry

we an write:

P (unommon error) = P (s

3

deteted / s

1

sent) (4.5)

The oordinates in terms of the basis funtions  

1

(t) and  

2

(t), of the QPSK

signals s

j

(j = 1; :::; 4) are the following:

� s

1

�

q

E

s

2

;

q

E

s

2

�

� s

2

�

�

q

E

s

2

;

q

E

s

2

�

� s

3

�

�

q

E

s

2

;�

q

E

s

2

�
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� s

4

�

q

E

s

2

;�

q

E

s

2

�

Let x

1

be the reeived signal orresponding to the transmitted signal s

1

.

We have x

1

(t) = s

1

(t) + n(t),

) x

1

=

0

�

s

E

s

2

+ n

1

;

s

E

s

2

+ n

2

1

A

where n

1

and n

2

are independent and identially distributed (iid) additive

white Gaussian noise (AWGN) random variables with variane equal to N

0

=2

and zero mean.

Deteting s

3

)

8

<

:

q

E

s

2

+ n

1

� 0

q

E

s

2

+ n

2

� 0

P (unommon error) = P

0

�

n

1

� �

s

E

s

2

; n

2

� �

s

E

s

2

1

A

= P

0

�

n

1

� �

s

E

s

2

1

A

P

0

�

n

2

� �

s

E

s

2

1

A

=

2

4

P

0

�

n

1

� �

s

E

s

2

1

A

3

5

2

but

P

0

�

n

1

� �

s

E

s

2

1

A

= P

0

�

n

1

�

s

E

s

2

1

A

= Q

 

s

E

s

N

0

!

where Q(x) =

1

p

2�

R

1

x

exp[�u

2

=2℄ du

) P (unommon error) = Q

2

 

s

E

s

N

0

!

Thus,

 =

P (unommon error)

�

=

Q

2

�
q

E

s

N

0

�

2Q

�
q

E

s

N

0

�
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)  =

1

2

Q

 

s

E

s

N

0

!

(4.6)

x

s

j

6�=M

x

 

2

(t)

 

1

(t)

x

x

x

x

xx

Figure 4.3: Deision region orresponding to a orret or a ommon error

detetion for an M-ary PSK signal set

For M � 8 and E

s

=N

0

� 1, we an use the same expression of the pdf of

the reeived M-ary PSK signal as at the beginning of this setion given by

equation (4.2).

An unommon error is made if, for any j, the noise auses a phase dis-

plaement greater than 3�=M in absolute value, orresponding to a reeived

phase lying outside the j'th deision region (whih is the dashed area shown

in Figure (4.3)).
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Due to symmetry,

P (unommon error) = 1� P (unommon error / s

j

sent)

= 1� P (s

j

2 shaded area in Fig. 4.3)

= 1�

Z

3�=M

�3�=M

f

�

(x) dx

= 1� 2

Z

3�=M

0

f

�

(x) dx

where,

f

�

(x) =

q

E

s

=(�N

0

) os x exp[�(E

s

=N

0

) sin

2

x℄

We get:

P (unommon error) = 2Q

 

s

2E

s

N

0

sin

3�

M

!

(4.7)

Therefore,

 =

P (unommon error)

�

=

Q

�
q

2E

s

N

0

sin

3�

M

�

Q

�
q

2E

s

N

0

sin

�

M

�

(4.8)

Regrouping all the results we previously obtained, we have:

� = 2Q

 

s

2E

s

N

0

sin

�

M

!

(4.9)

 =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1

2

Q

�
q

E

s

N

0

�

if M = 4

Q

�
q

2E

s

N

0

sin

3�

M

�

Q

�
q

2E

s

N

0

sin

�

M

�

if M � 8

(4.10)

where,
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� Q(y) =

1

p

2�

R

1

y

exp[�u

2

=2℄ du

� E

s

= symbol energy.

In order to study the performane of the foused odes used in assoiation

with PSK modulation, we need to determine a range of the symbol energy

to noise ratio (E

s

=N

0

) under whih we an \suitably" operate.

A suitable range for E

s

=N

0

would be the one orresponding to a hannel

symbol error probability (�) less than

1

2

but exeeding at least 10

�5

:

10

�5

� � < 0:5

Using equation (4.9), we get:

0:22445

sin

2

(�=M)

<

E

s

N

0

�

9:82

sin

2

(�=M)

(4.11)

4.2 Performane Of Foused Codes Using PSK

Modulation

4.2.1 Benhmark And P

d

vs E

s

=N

0

Plots

Applying equations (3.2), (3.9), (4.9), (4.10) and seleting a suitable range for

E

s

=N

0

with the help of equation (4.11) while keeping a reasonable value of P

d

(not exeeding 10

�11

), we plot the urves of P

d

versus E

s

=N

0

and benhmark

� versus E

s

=N

0

for di�erent values of M, n, t

1

and t

2

.
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Figure 4.4: P

d

vs E

s

=N

0

for M = 4 PSK, n = 15, t

1

+ t

2

= 3
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1

+ t

2

= 3
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Figure 4.6: P

d

vs E

s

=N

0

for M = 8 PSK, n = 15, t
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2

= 4
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Figure 4.7: Benhmark plot for M = 8 PSK, (0,4)-foused ode
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Figure 4.9: Benhmark plot for M = 16 PSK, (0,4)-foused ode

4.2.2 Evaluation Of The Plots

The above plots illustrate for us the ondition given by equation (3.10) for

performane mathing between foused odes and traditional odes. In fat

we an remark from �gures (4.6), (4.7), (4.8) and (4.9) that as long as

the benhmark of a (t

1

; t

2

)-foused ode is less than 10

�2

, its performane

mathes that of t

1

+ t

2

-error orreting ode (whih is a (t

1

+ t

2

; 0)-foused

ode) otherwise there is no performane mathing (�gure (4.4)).

We note also that if a ompletely foused ode (i.e., a (0,t)-foused ode)

performs identially to a t-error orreting ode, then so do any (t

1

; t

2

)-

foused ode (where t

1

+ t

2

= t) beause a ompletely foused ode obviously

performs worse than a partially foused ode (�gure (4.5)).

We an furthermore notie from �gures (4.7) and (4.9), that as the blok

length n of the odeword inreases, the benhmark dereases; yielding a

stronger mathing between the foused odes and the traditional odes and a

better performane. This an be veri�ed by examining equation (3.9) where

the denominator beomes muh bigger than the numerator as n inreases

substantially; making the benhmark � to derease.
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Applying the same equations we used for the plots, we obtain that any

(t

1

; t

2

)-foused ode performs identially to a t-error orreting ode suh

that t

1

+ t

2

= t, for the following values of M and t:

� M = 8; t = 1; 2; 3 for all E

s

=N

0

and all n � 7; t = 4 for all E

s

=N

0

and

all n � 15.

� M = 16; t = 1; 2; 3; 4; 5; 6 for all E

s

=N

0

and all n � 10; t = 7 for all

E

s

=N

0

and all n � 25.

In onlusion, we an state that we will always obtain a performane

mathing between foused odes and traditional odes using PSK modulation

as long as ondition (3.10) holds.

4.3 Simulation Of The Foused Codes Per-

formane Using PSK Modulation

4.3.1 Simulation Desription

In order to hek the truthfulness of equations (4.3), (4.6) and (4.8) that we

derived analytially in the �rst setion of this hapter, we use a C simulation

to evaluate the performane (P

d

vs E

s

=N

0

) of a (0,3)-foused ode with a

blok length n equal to 15 assoiated with a 16-ary PSK modulation, in the

presene of an additive white Gaussian noise (AWGN).

We present a brief desription of the simulation algorithm:

1. For a spei� value of E

s

=N

0

and given that signal s

1

(

p

E

s

; 0) is sent,

determine the ranges of the phase angles overing the orret detetion

region R



, the ommon error detetion region R

e

and the unommon

error detetion region R

ue

respetively. Set to zero the ounter 

w

of
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the number of odeword errors, the ounter 

e

of the number of signal

errors and the ounter 

ue

of the number of unommon signal errors.

2. Generate suessively two AWGN random variables with zero mean and

variane equal to N

0

=2 (where N

0

is given) and add them respetively

to the x-y oordinates of s

1

to obtain the oordinates of the reeived

noisy signal. Measure the phase angle of the reeived signal (� =

artan(y=x));

� If � 2 R

ue

, inrement 

e

and 

ue

by 1.

� If � 2 R

e

,inrement 

e

by 1.

� If � 2 R



, proeed to the next step.

3. Repeat step 2 n times to generate a reeived vetor of length n.

4. � If 

e

� t

1

+ t

2

+ 1, inrement 

w

by 1 and go to step 5.

� If 

e

� t

1

+ t

2

+ 1 and 

ue

� t

1

+ 1, inrement 

w

by 1 and go to

step 5.

5. Repeat steps 1 to 4 a large number L of times (on the order of 10

8

) and

alulate P

d

= 

w

=L.

6. Repeat steps 1 to 5 for several values of E

s

=N

0

and get the simulated

plot.

4.3.2 Simulation Results

We use the above simulation program (omplete C program is available from

the author) for 14 di�erent values of E

s

=N

0

on a (t

1

; t

2

)-foused ode (of

blok length n) assoiated with an M-ary PSK modulation, where:

� M = 16, n = 15.

� t

1

= 0, t

2

= 3.

� N

0

= (2)(10

�6

).
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� Number of generated odewords: L of the order of 10

8

.

We get the following simulated results:

E

s

=N

0

P

d

L

9.00 -0.0195 100000

10.00 -0.0469 100000

11.00 -0.1043 100000

12.00 -0.2061 100000

13.00 -0.3742 100000

14.00 -0.6292 100000

15.00 -1.0101 100000

16.00 -1.5321 100000

17.00 -2.2298 100000

18.00 -3.1478 1000000

19.00 -4.3392 1000000

20.00 -5.8298 10000000

21.00 -7.6899 100000000

Table 4.1: Simulation results of the performane of a 16-ary PSK modulated

(0,3)-foused ode with n = 15

From the results shown in table (4.1) and �gure (4.10), we an learly

remark that the simulation results math perfetly the performane plots

that we obtained analytially.
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Chapter 5

Foused Codes Used With

Square Constellations

In this hapter, we demonstrate how the results of hapter 3 an be applied

to ommuniation systems using square onstellations.

5.1 Square Constellations(QAM)

An additive white Gaussian noise (AWGN) hannel and an M-ary square

signal onstellation an be approximated by an M-ary SSC hannel with

parameters � and  to be determined. For the square onstellation, we assume

that we an use Gray oding so that a ommon error aused in deteting a

transmitted signal s

1

is due to the detetion of one of the vertial or horizontal

signals diretly adjaent to s

1

in the signal onstellation.

For example , for the ase where M = 16 shown in �gure (5.1), if we

suppose that signal s

1

is sent, then a ommon error ommitted in deteting

s

1

will be to detet either s

2

, s

3

, s

4

or s

5

.
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Figure 5.1: 16-ary square onstellation

The general analyti expression of an M-ary quadrature amplitude mod-

ulation (QAM) signal is [2℄:

s

i

(t) =

(

q

2E

i

=T os(w

0

t + �

i

(t)) if 0 � t � T

0 otherwise

where:

� E

i

is an indexed energy per symbol; i = 1; 2; ::::;M .

� The phase term �

i

(t) = 2�i=M ; i = 1; 2; ::::;M .

� T is the symbol duration.

Using the same two orthonormal signals  

1

(t) and  

2

(t) we used in se-

tion (4.1) as basis funtions, we arrange the set of M symbols in the two-

dimensional signal spae in a retangular onstellation.
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For a square (

p

M �

p

M where log

2

M is even) onstellation of a QAM

modulated pattern, the x-y oordinates of the signals with respet to the

basis funtions  

1

(t) and  

2

(t) are:

x

i

= (2i� 1�

p

M)

d

2

and

y

j

= (2j � 1�

p

M)

d

2

where,

� d is a onstant distane between any two signals.

� i; j = 1; 2; ::::;

p

M .

In order to ompute the probability of symbol hannel error �, we �rst need

to determine the average energy per symbol E

s

as a funtion of d. Due

to omplete symmetry, we an simplify our work by onsidering only one

quadrant (M=4 signals). We have:

E

s

=

1

M=4

p

M=2

X

i=1

p

M

2

(x

2

i

+ y

2

i

)

but x

i

= y

i

,

) E

s

=

4

M

p

M=2

X

i=1

p

M x

2

i

=

d

2

p

M

p

M=2

X

i=1

(2i� 1�

p

M)

2
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Figure 5.2: M-ary square onstellation

Using the following identities:

�

P

n

i=1

i = n(n+ 1)=2.

�

P

n

i=1

i

2

= n(n + 1)(2n+ 1)=6.

we get:

E

s

=

M � 1

6

d

2

(5.1)
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or

d =

s

6E

s

M � 1

(5.2)

Now, we an start the derivation of �. We will use a pessimisti approah,

that is we will ompute the worst symbol error probability. This an be done

by alulating � assuming that an \inner" signal in the square onstellation

is transmitted; i.e., a signal that has surrounding neighbor signals in all

diretions (like signal s

1

in �gure (5.2)).

Given that z

1

and z

2

are the respetive x and y omponents of the additive

noise orrupting the sent signal s

1

, suh that z

1

and z

2

are iid AWGN random

variables with zero mean and variane equal to N

0

=2, we have:

� = P (error=s

1

sent)

= P (jz

1

j > d=2) + P (jz

2

j > d=2)� P (jz

1

j > d=2)P (jz

2

j > d=2)

= 2P (jz

1

j > d=2)� (P (jz

1

j > d=2))

2

but P (jz

1

j > d=2) = P (z

1

> d=2) + P (z

1

< �d=2) and

P (z

1

> d=2) = P (z

1

< �d=2) = Q

�

d=

q

2N

0

�

where Q(.) is de�ned by equation (4.4).

Using equation (5.2), we �nally obtain:

� = 2q � q

2

(5.3)

where

q = 2Q

 

s

3

M � 1

E

s

N

0

!

(5.4)

We now onsider the derivation of . We know that:

 =

P (unommon error)

�
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Using the same pessimisti approah we used in deriving �, we write:

P (unommon error) = P (unommon error=s

1

is sent)

= 2P [(jz

1

j < d=2) and (jz

2

j > 3d=2)℄

+P [(jz

1

j > d=2andjz

2

j > d=2)℄

= (P (jz

1

j > d=2))

2

+ 2P (jz

1

j < d=2)P (jz

2

j > 3d=2)(5.5)

We de�ne:

p

1

= Q

�

d=

q

2N

0

�

(5.6)

p

2

= Q

�

3d=

q

2N

0

�

(5.7)

We have:

� P (jz

1

j > d=2) = 2p

1

.

� P (jz

1

j > 3d=2) = 2p

2

.

Substituting equations (5.6), (5.7) and (5.2) in equation (5.5), we get:

P (unommon error) = 4p

2

1

+ 4p

2

(1� 2p

1

) (5.8)

Noting that � = 4p

1

� 4p

2

1

, we �nally obtain:

 =

4p

2

1

+ 4p

2

(1� 2p

1

)

4p

1

� 4p

2

1

(5.9)

)  =

p

2

1

+ p

2

(1� 2p

1

)

p

1

(1� p

1

)

(5.10)

where,

p

1

= Q

 

s

3

M � 1

E

s

N

0

!

(5.11)

p

2

= Q

 

3

s

3

M � 1

E

s

N

0

!

(5.12)
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In order to study the performane of the foused odes used in assoiation

with square onstellations, we need to determine a range of the symbol energy

to noise ratio (E

s

=N

0

) under whih we an \suitably" operate.

A suitable range for E

s

=N

0

would be the one orresponding to a symbol

error probability less than

1

2

but exeeding at least 10

�5

:

10

�5

� � < 0:5

In general, we an approximate equation (5.3) in the following way:

� = 2q � q

2

� 2q (5.13)

where,

q = 2Q

 

s

3

M � 1

E

s

N

0

!

Using the range for the values of � along with equation (5.12), we get:

0:441(M � 1) <

E

s

N

0

� 6:946(M � 1) (5.14)

5.2 Performane Of Foused Codes Using Square

Constellations

5.2.1 Benhmark And P

d

vs E

s

=N

0

Plots

Applying equations (3.2), (3.9), (5.3) and (5.10) and seleting a suitable

range for E

s

=N

0

with the help of equation (5.13) while keeping a reasonable

value of P

d

(not exeeding 10

�11

), we plot the urves of P

d

versus E

s

=N

0

and

� versus E

s

=N

0

for di�erent values of M, n, t

1

, and t

2

.
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5.2.2 Evaluation Of The Plots

In a similar way to the ase when we used PSK modulation in the previous

hapter, the above plots illustrate for us the ondition given by equation

(3.10). In fat as long as the benhmark of a (t

1

; t

2

)-foused ode is less than

10

�2

, its performane mathes that of t

1

+t

2

-error orreting ode (whih is a

(t

1

+ t

2

; 0)-foused ode) otherwise there is no performane mathing (�gures

(5.3), (5.4), (5.6),(5.7),(5.8) and (5.9)). We remark also (�gure (5.5)) that as

the blok length of the odeword inreases, its benhmark dereases; yielding

a stronger mathing between the foused odes and the traditional odes and

a better performane.

However unlike the ase with PSK modulation where we ould ahieve

a performane mathing between ompletely foused odes ((0; t)-foused

odes) and traditional t-error orreting odes, we remark that this an be

ahieved less frequently with square onstellations. This may be explained

by the fat that in square onstellations eah signals have 8 surrounding

neighbors, out of whih 4 of them are unommon errors; while in PSK mod-

ulation, eah signal has 2 diret ommon error neighbors only, and its next

unommon error signals are further away. This makes it highly unprobable

to ahieve a ompletely foused ode (i.e., an orret only ommon errors)

assoiated with square onstellations that an math the performane of a

traditional ode.

Applying the same equations we used for the plots, we dedue the follow-

ing results for an 8� 8 onstellation (M = 64) and all E

s

=N

0

:

� A 1-error orreting ode performs identially to a (0,1)-foused ode.

� A 2-error orreting ode performs identially to a (1,1)-foused ode.

� A 3-error orreting ode performs identially to a (1,2)-foused ode.

� A 4-error orreting ode performs identially to a (2,2)-foused ode.
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5.3 Simulation Of The Foused Codes Per-

formane Using Square Constellations

5.3.1 Simulation Desription

As we did in hapter 4 for PSK modulation, we desire to hek the auray

of equations (5.3) and (5.10) that we derived analytially in setion (5.1) by

using a C simulation program to evaluate the performane (P

d

vs E

s

=N

0

) of

a (0,4)-foused ode and of a (1,3)-foused ode with a blok length n equal

to 15 assoiated with an 8� 8 onstellation (M = 64), in the presene of an

additive white Gaussian noise (AWGN).

We present a brief desription of the simulation algorithm:

1. For a spei� value of E

s

=N

0

and given that signal s

1

(d=2; d=2) is sent,

determine the ranges of the x-y oordinates overing the orret dete-

tion region R



, the ommon error detetion region R

e

and the unom-

mon error detetion region R

ue

respetively. Set to zero the ounter



w

of the number of odeword errors, the ounter 

e

of the number of

signal errors and the ounter 

ue

of the number of unommon signal

errors.

2. Generate suessively two AWGN random variables with zero mean and

variane equal to N

0

=2 (where N

0

is given) and add them respetively

to the x-y oordinates of s

1

to obtain the oordinates of the reeived

noisy signal r

1

(n

1

+ d=2; n

2

+ d=2).

� If r

1

2 R

ue

, inrement 

e

and 

ue

by 1.

� If r

1

2 R

e

, inrement 

e

by 1.

� If r

1

2 R



, proeed to the next step.

3. Repeat step 2 n times to generate a reeived vetor of length n.

4. � If 

e

� t

1

+ t

2

+ 1, inrement 

w

by 1 and go to step 5.
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� If 

e

� t

1

+ t

2

+ 1 and 

ue

� t

1

+ 1, inrement 

w

by 1 and go to

step 5.

5. Repeat steps 1 to 4 a large number L of times (in the order of 10

9

) and

alulate P

d

= 

w

=L.

6. Repeat steps 1 to 5 for several values of E

s

=N

0

and get the simulated

plot.

5.3.2 Simulation Results

We use the above simulation program (omplete C program is available from

the author) for 14 di�erent values of E

s

=N

0

on a (0,4)-foused ode and

a (1,3)-foused ode (of blok length n) assoiated with an M-ary square

onstellation, where:

� M = 64, n = 15.

� N

0

= (2)(10

�6

).

� Number of generated odewords: L of the order of 10

9

.

We get the following simulated results:
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E

s

=N

0

P

d

L

10.00 -0.000009 100000

11.00 -0.000089 100000

12.00 -0.000786 100000

13.00 -0.004657 100000

14.00 -0.021013 100000

15.00 -0.069841 100000

16.00 -0.191482 100000

17.00 -0.430104 100000

18.00 -0.800101 100000

19.00 -1.288459 100000

20.00 -1.857924 100000

21.00 -2.498771 100000

22.00 -3.255963 1000000

23.00 -4.201031 1000000

Table 5.1: Simulation results of the performane of a (0,4)-foused ode

assoiated with a 64-ary square onstellation and n = 15

E

s

=N

0

P

d

L

10.00 -0.000068 100000

11.00 -0.000373 100000

12.00 -0.002501 100000

13.00 -0.012010 100000

14.00 -0.041113 100000

15.00 -0.117163 100000

16.00 -0.289631 100000

17.00 -0.603293 100000

18.00 -1.116957 100000

19.00 -1.880012 100000

20.00 -2.938876 100000

21.00 -4.346671 1000000

22.00 -6.168182 100000000

23.00 -8.458912 1000000000

Table 5.2: Simulation results of the performane of a (1,3)-foused ode

assoiated with a 64-ary square onstellation and n = 15
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From the results shown in tables (5.1) and (5.2) and �gure (5.10), we an

learly remark that the simulation results math perfetly the performane

plots that we obtained analytially.
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Figure 5.10: Simulation vs analytial performane plots for M = 64 QAM,

n = 15, (0; 4) and (1; 3)-foused odes
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Chapter 6

Coding Gain Of Foused Codes

In this hapter, we evaluate the oding gains obtained using known tehniques

for onstruting foused odes.

6.1 Constrution Of Some Foused Codes

Referring to the onstrution tehnique desribed in hapter 2 and to ode

tables in [2℄ - [6℄, we onstrut (t

1

; t

2

)-foused odes over GF(2

b

) and we fous

them on the set B = f1-bit per-symbol errorsg. We ompute also their ode

rate and the rate improvement they ahieve over t

1

+t

2

-error orreting odes

for di�erent values of the ode blok length n.

To onstrut a (t

1

; t

2

)-foused ode C

f

over GF(2

b

) that is foused on the

set B = f1-bit per-symbol errorsgwe need:

� C

0

, a (b,b-1) parity hek ode over GF(2) with rate: R

0

= (b� 1)=b.

� C

1

, an (n,k

1

) ode over GF(2) with minimum distane d

1

= 2(t

1

+t

2

)+1

and rate R

1

= k

1

=n.
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� C

2

, an (n,k

2

) ode over GF(2

b�1

) with minimum distane d

2

= 2t

1

+

t

2

+ 1 and rate R

2

= k

2

=n.

Using equation (2.1), the overall rate of the foused ode C

f

beomes:

R

f

=

1

b

R

1

+

b� 1

b

R

2

(6.1)

6.1.1 (t

1

; t

2

)-Foused Codes Over GF(16)

6.1.1.1 (0,1)-foused ode vs 1-error orreting ode

1. We get for C

f

:

� C

1

: Hamming binary ode with d

1

= 3.

� C

2

: parity hek ode over GF(8) with d

2

= 2.

2. 1-error orreting ode: Reed Solomon ode over GF(16) with d = 3

and rate R = (n� d+ 1)=n = (n� 2)=n.

n R

1

R

2

R

f

R Rate improvement

7 4/7 6/7 0.7857 0.7142 10%

Table 6.1: (0,1)-foused ode vs 1-error orreting ode over GF(16)

We note that for larger blok lengths n (8 � n � 15), (0,1)-foused ode

does not ahieve any rate improvement over a 1-error orreting ode.

6.1.1.2 (0,2)-foused ode vs 2-error orreting ode

1. We get for C

f

:

� C

1

:binary ode with d

1

= 5.

� C

2

:d

2

= 3, shortened generalized Hamming ode over GF(8).
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2. 2-error orreting ode: d = 5, shortened Reed Solomon ode over

GF(16) with rate R = (n� d+ 1)=n = (n� 4)=n.

n R

1

R

2

R

f

R Rate improvement

8 2/8 6/8 0.625 0.5 25%

Table 6.2: (0,2)-foused ode vs 2-error orreting ode over GF(16)

Here again, a (0,2)-foused ode does not ahieve any rate improvement

over a 2-error orreting ode for larger blok lengths n.

6.1.2 (t

1

; t

2

)-Foused Codes Over GF(32)

6.1.2.1 (0,1)-foused ode vs 1-error orreting ode

1. We get for C

f

:

� C

1

: binary ode with d

1

= 3.

� C

2

: parity hek ode over GF(16) with d

2

= 2.

2. 1-error orreting ode: Reed Solomon ode over GF(32) with d = 3

and rate R = (n� d+ 1)=n = (n� 2)=n.

n R

1

R

2

R

f

R Rate improvement

7 4/7 6/7 0.8 0.7142 12 %

9 5/9 8/9 0.8222 0.7778 5.7 %

Table 6.3: (0,1)-foused ode vs 1-error orreting ode over GF(32)

6.1.2.2 (0,2)-foused ode vs 2-error orreting ode

1. We get for C

f

:

� C

1

: binary ode with d

1

= 5.
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� C

2

: d

2

= 3, shortened generalized Hamming ode over GF(16).

2. 2-error orreting ode: d = 5, shortened Reed Solomon ode over

GF(32) with rate R = (n� d+ 1)=n = (n� 4)=n.

n R

1

R

2

R

f

R Rate improvement

8 2/8 6/8 0.65 0.5 30 %

10 3/10 8/10 0.7 0.6 16.67 %

11 4/11 9/11 0.7272 0.6363 14.28 %

13 5/13 11/13 0.7538 0.6923 8.88 %

14 6/14 12/14 0.7714 0.7142 8 %

15 7/15 13/15 0.7867 0.7333 7.28 %

16 8/16 14/16 0.8 0.75 6.67 %

17 9/17 15/17 0.8118 0.7647 6.16 %

Table 6.4: (0,2)-foused ode vs 2-error orreting ode over GF(32)

6.1.2.3 (0,3)-foused ode vs 3-error orreting ode

1. We get for C

f

:

� C

1

: binary ode with d

1

= 7.

� C

2

: d

2

= 4, shortened Reed Solomon ode over GF(16).

2. 3-error orreting ode: d = 7, shortened Reed Solomon ode over

GF(32) with rate R = (n� d+ 1)=n = (n� 6)=n.

n R

1

R

2

R

f

R Rate improvement

11 2/11 8/11 0.6181 0.4545 36 %

13 3/13 10/13 0.6615 0.5385 22.8 %

14 4/14 11/14 0.6857 0.5714 20 %

15 5/15 12/15 0.7067 0.6 17.78 %

Table 6.5: (0,3)-foused ode vs 3-error orreting ode over GF(32)
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6.1.2.4 (0,4)-foused ode vs 4-error orreting ode

1. We get for C

f

:

� C

1

: binary ode with d

1

= 9.

� C

2

: d

2

= 5, shortened Reed Solomon ode over GF(16).

2. 4-error orreting ode: d = 9, shortened Reed Solomon ode over

GF(32) with rate R = (n� d+ 1)=n = (n� 8)=n.

n R

1

R

2

R

f

R Rate improvement

14 2/14 10/14 0.5833 0.4286 36.1 %

Table 6.6: (0,4)-foused ode vs 4-error orreting ode over GF(32)

6.1.3 (t

1

; t

2

)-Foused Codes Over GF(64)

6.1.3.1 (0,1)-foused ode vs 1-error orreting ode

1. We get for C

f

:

� C

1

: binary ode with d

1

= 3.

� C

2

: d

2

= 2, parity hek ode over GF(32).

2. 1-error orreting ode: d = 3, Reed Solomon ode over GF(64) with

rate R = (n� d+ 1)=n = (n� 2)=n.

6.1.3.2 (1,1)-foused ode vs 2-error orreting ode

1. We get for C

f

:

� C

1

: binary ode with d

1

= 5.

� C

2

: d

2

= 4, shortened Reed Solomon ode over GF(32).
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n R

1

R

2

R

f

R Rate improvement

7 4/7 6/7 0.8095 0.7142 13.34 %

9 5/9 8/9 0.8333 0.7777 7.1 %

10 6/10 9/10 0.85 0.8 6.25 %

11 7/11 10/11 0.8636 0.8181 5.56 %

12 8/12 11/12 0.875 0.8333 5 %

13 9/13 12/13 0.8846 0.8461 4.55 %

14 10/14 13/14 0.8928 0.8571 4.16 %

15 11/15 14/15 0.9 0.8667 3.84 %

Table 6.7: (0,1)-foused ode vs 1-error orreting ode over GF(64)

2. 2-error orreting ode: d = 5, Reed Solomon ode over GF(64) with

rate R = (n� d+ 1)=n = (n� 4)=n.

n R

1

R

2

R

f

R Rate improvement

8 2/8 5/8 0.5625 0.5 12.5 %

10 3/10 7/10 0.6333 0.6 5 55 %

11 4/11 8/11 0.6667 0.6363 4.77 %

Table 6.8: (1,1)-foused ode vs 2-error orreting ode over GF(64)

6.1.3.3 (1,2)-foused ode vs 3-error orreting ode

1. We get for C

f

:

� C

1

: binary ode with d

1

= 7.

� C

2

: d

2

= 5, shortened Reed Solomon ode over GF(32).

2. 3-error orreting ode: d = 7, Reed Solomon ode over GF(64) with

rate R = (n� d+ 1)=n = (n� 6)=n.
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n R

1

R

2

R

f

R Rate improvement

11 2/11 7/11 0.5606 0.4545 23.34 %

13 3/13 9/13 0.6154 0.5385 14.28 %

14 4/14 10/14 0.6429 0.5714 12.51 %

15 5/15 11/15 0.6667 0.6 11.12 %

17 6/17 13/17 0.6961 0.6471 7.57 %

18 7/18 14/18 0.7129 0.6667 6.93 %

19 8/19 15/19 0.7281 0.6842 6.42 %

21 10 /21 17/21 0.7540 0.7143 5.56 %

Table 6.9: (1,2)-foused ode vs 3-error orreting ode over GF(64)

6.1.3.4 (2,2)-foused ode vs 4-error orreting ode

1. We get for C

f

:

� C

1

: binary ode with d

1

= 9.

� C

2

: d

2

= 7, shortened Reed Solomon ode over GF(32).

2. 4-error orreting ode: d = 9, Reed Solomon ode over GF(64) with

rate R = (n� d+ 1)=n = (n� 8)=n.

n R

1

R

2

R

f

R Rate improvement

14 2/14 8/14 0.5 0.4286 16.66 %

17 3/17 11/17 0.5686 0.5294 4.54 %

20 5/20 14/20 0.625 0.6 4.17 %

Table 6.10: (2,2)-foused ode vs 4-error orreting ode over GF(64)

6.1.4 (t

1

; t

2

)-Foused Codes Over GF(256)

6.1.4.1 (0,1)-foused ode vs 1-error orreting ode

1. We get for C

f

:
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� C

1

: binary ode with d

1

= 3.

� C

2

: d

2

= 2, parity hek ode over GF(128).

2. 1-error orreting ode: d = 3, Reed Solomon ode over GF(256) with

rate R = (n� d+ 1)=n = (n� 2)=n.

n R

1

R

2

R

f

R Rate improvement

5 2/5 4/5 0.75 0.6 25 %

6 3/6 5/6 0.7917 0.6667 18.75 %

7 4/7 6/7 0.8214 0.7143 15 %

9 5/9 8/9 0.8472 0.7778 8.9 %

11 7/11 10/11 0.875 0.8181 6.96 %

13 9/13 12/13 0.8942 0.8461 5.68 %

15 11/15 14/15 0.9083 0.8667 4.8 %

17 12/17 16/17 0.9118 0.8823 3.34 %

Table 6.11: (0,1)-foused ode vs 1-error orreting ode over GF(256)

6.1.4.2 (1,1)-foused ode vs 2-error orreting ode

1. We get for C

f

:

� C

1

: binary ode with d

1

= 5.

� C

2

: d

2

= 4, shortened Reed Solomon ode over GF(128).

2. 2-error orreting ode: d = 5, Reed Solomon ode over GF(256) with

rate R = (n� d+ 1)=n = (n� 4)=n.

6.1.4.3 (1,2)-foused ode vs 3-error orreting ode

1. We get for C

f

:

� C

1

: binary ode with d

1

= 7.
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n R

1

R

2

R

f

R Rate improvement

8 2/8 5/8 0.5781 0.5 15.62 %

10 3/10 7/10 0.65 0.6 8.33 %

13 5/13 10/13 0.7211 0.6923 4.16 %

15 7/15 12/15 0.7583 0.7333 3.41 %

Table 6.12: (1,1)-foused ode vs 2-error orreting ode over GF(256)

� C

2

: d

2

= 5, shortened Reed Solomon ode over GF(128).

2. 3-error orreting ode: d = 7, Reed Solomon ode over GF(256) with

rate R = (n� d+ 1)=n = (n� 6)=n.

n R

1

R

2

R

f

R Rate improvement

11 2/11 7/11 0.5795 0.4545 27.5 %

13 3/13 9/13 0.6346 0.5385 17.85 %

15 5/15 11/15 0.6833 0.6 13.88 %

17 6/17 13/17 0.7132 0.6471 10.21 %

19 8/19 15/19 0.7434 0.6842 8.65 %

21 10/21 17/21 0.7678 0.7143 7.49 %

26 13/26 22/26 0.8029 0.7692 4.38 %

30 16/30 26/30 0.825 0.8 3.125 %

Table 6.13: (1,2)-foused ode vs 3-error orreting ode over GF(256)

6.1.4.4 (2,2)-foused ode vs 4-error orreting ode

1. We get for C

f

:

� C

1

: binary ode with d

1

= 9.

� C

2

: d

2

= 7, shortened Reed Solomon ode over GF(128).

2. 4-error orreting ode: d = 9, Reed Solomon ode over GF(256) with

rate R = (n� d+ 1)=n = (n� 8)=n.
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n R

1

R

2

R

f

R Rate improvement

14 2/14 8/14 0.5178 0.4286 20.82 %

17 3/17 11/17 0.5882 0.5294 11.11 %

19 4/19 13/19 0.625 0.5789 7.96 %

20 5/20 14/20 0.6438 0.6 7.29 %

23 7/23 17/23 0.6848 0.6522 5 %

25 8/25 19/25 0.705 0.68 3.68 %

30 12/30 24/30 0.75 0.7333 2.28 %

Table 6.14: (2,2)-foused ode vs 4-error orreting ode over GF(256)

6.1.5 Observation

From the above results, we an remark a net gain in the rate that foused

odes ahieve over traditional error orreting odes while having an idential

performane. For example, a (0,2)-foused ode that performs identially to

a 2-error orreting ode when used with a 16-ary PSK modulation (setion

4.2.2), ahieves a rate improvement of 25 % for n=8 (table (6.2)). Note that

a (1,1)-foused ode over GF(64) has a rate improvement of 4.77 % for n=11,

while for the (1,2)-foused ode with the same bloklength, the improvement

is more impressive (14.28 %) (table (6.9)). This fat reinfores the ommon

sense idea that the more \foused" a ode is -that is, the more error patterns

we avoid orreting - the bigger the payo� in terms of rate. We furthermore

observe that the rate improvement vanishes as the bloklength inreases.

This is due to the partiular onstrution tehnique we are using.

6.2 Coding Gain Using PSK and QAM Mod-

ulations

We are interested in omputing the oding gain in information bit energy to

noise ratio E

b

=N

0

for (t

1

; t

2

)-foused odes. We will use the deoded symbol

error probability P

s

instead of the deoder error probability P

d

that we used

in the previous hapters.
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Using the expression of P

d

given by equation (3.2), we an diretly dedue

the expression of P

s

:

P

s

=

t

1

+t

2

X

i=t

1

+1

i

X

j=t

1

+1

min

�

n;

t

1

+ t

2

+ i

n

�

 

n

i

! 

i

j

!

�

i

(1� �)

n�i



j

(1� )

i�j

+

n

X

i=t

1

+t

2

+1

min

�

n;

t

1

+ t

2

+ i

n

�

 

n

i

!

�

i

(1� �)

n�i

(6.2)

We note that if � and  are \reasonably" small (i.e., for high energy to

noise ratio in the ase we are using square onstellations or PSK modulation),

we an write:

P

s

�

 

d

2

n

!

P

d

+

t

2

n

P

t

(6.3)

where:

� d

2

= 2t

1

+ t

2

+ 1, is the minimum distane of the outer ode C

2

used

in the onstrution of the (t

1

; t

2

)-foused odes.

� P

t

�

 

n

t

1

+ t

2

+ 1

!

�

t

1

+t

2

+1

(1� �)

n�t

1

�t

2

�1

, is the deoder error prob-

ability of a traditional t

1

+ t

2

-error orreting ode.

An e�etive omputation of the oding gain ahieved by a (t

1

; t

2

)-foused

ode used in onjuntion with M-ary PSK modulation or M-ary square on-

stellation, over a t

1

+ t

2

-error orreting ode, would be to ompute it in

terms of it information bit energy to noise ratio E

b

=N

0

.
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If we let:

� E

b

be the energy per information bit,

� E

s

be the energy per symbol,

� R

f

be the rate of a (t

1

; t

2

)-foused ode.

We have:

E

b

=

E

s

(log

2

M)R

f

(6.4)

) E

s

= (log

2

M)R

f

E

b

(6.5)

Using equations (6.2) and (6.5) along with the rate results omputed

in setion (6.1) and the equations (4.9), (4.10), (5.3) and (5.10) previously

derived, we plot the urves of P

s

vs E

b

=N

0

for (t

1

; t

2

)-foused odes, t

1

+ t

2

)-

error orreting Reed Solomon (RS) odes and unoded data strings assoi-

ated with M-ary PSK modulation and square onstellations. (Complete C

programs for all the di�erent plots are available from the author.)
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We an learly see from the above plots that both (t

1

; t

2

)-foused odes

and t

1

+ t

2

-error orreting Reed Solomon odes ahieve substantial oding

gains in E

b

=N

0

over unoded messages. Moreover, the foused odes ahieve

also fair amounts of oding gain over the Reed Solomon odes. For example,

under a 32-ary PSK modulation with n=8, a (0,2)-foused ode ahieves a

oding gain of 1.13 db over a 2-error orreting RS ode at P

s

= 10

�6

(�gure

(6.3)). And a (1,2)-foused ode used with a 256-ary square onstellation and

n=11 ahieves a oding gain of 1.06 db at P

s

= 10

�6

over a 3-error orreting

RS ode. Note that the oding gain of a foused ode (that is one of the

above foused odes) over a RS ode is onstant. This an be explained by

the fat that all the (t

1

; t

2

)-foused odes used above, perform identially as

the t

1

+ t

2

-error orreting Reed Solomon odes and the oding gain depends

diretly on the rate improvement (whih is a onstant).

6.2.1 Coding gain vs Bloklength

Finally, we plot the oding gain ahieved at P

s

= 10

�6

by the foused odes

for di�erent values of the bloklength n.

0
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0.8

1

1.2

8 10 12 14 16 18 20 22 24

n

Gain(db)

(0,2)-foused ode vs a 2-err. orr. RS ode

Figure 6.11: Coding gain using a 32-ary PSK modulation
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Figure 6.12: Coding gain using an 8� 8 square onstellation

We an remark from the above plots that the oding gain inE

b

=N

0

foused

odes ahieve over the Reed Solomon odes dereases as the bloklength n

inreases until it beomes negative for very large values of n. This is due to

the partiular onstrution tehnique we used.
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Chapter 7

Adaptive Deoding Of Foused

Codes

7.1 Adaptive Deoding Of Foused Codes Over

Idealized Channels

We start by introduing the onept of \adaptive deoding" for foused odes

over \idealized" skewed hannels (i.e., hannels with \independent" param-

eters � and ).

7.1.1 Observation

Up till now, we have onstruted spei� (t

1

; t

2

)-foused odes over GF (2

b

)

using a ode C

0

apable of deteting all the errors lying in the fous set B,

an inner ode C

1

with minimum distane d

1

= 2t

1

+ 2t

2

+ 1 and an outer

ode C

2

with minimum distane d

2

= 2t

1

+ t

2

+ 1, where t

1

and t

2

are given.

We reall briey (refer to setion (2.2) and [1℄) the deoding algorithm
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used to deode the foused odes. Without any loss of generality, we assume

the set of ommon errors B as being the set of odd-weight errors. For a

given transmitted odeword from a (t

1

; t

2

)-foused ode over GF (2

b

), we

ompute the mod-two sum of the bits of eah omponent of the reeived

odeword r and ompare the result b(r) to the losest odeword x in C

1

.

We mark the loations where b(r) di�ers from x as erasures, take o� the

last bit in eah symbol of b(r) and pass the resulting blok over GF (2

b�1

) to

C

2

. This deoding sheme will orret all the ombinations of t

1

+ t

2

errors

provided at most t

1

are unommon errors (i.e., have an even-weight binary

representation) - and thus must be orreted by C

2

without the bene�t of

erasure. We therefore remark that by using this deoding algorithm, we

annot deode orretly any of the odewords having less than t

1

+ t

2

errors

out of whih more than t

1

are unommon errors.

7.1.2 Foused Codes Assoiated with d

1

and d

2

Suppose now we are given the minimum distanes d

1

and d

2

of C

1

and C

2

re-

spetively, and using C

0

, C

1

and C

2

, we onstrut a foused ode \assoiated"

with d

1

and d

2

.

Given d

1

and d

2

, we an have di�erent ombinations of t

1

and t

2

yielding

di�erent (t

1

; t

2

)-foused odes as long as t

1

and t

2

satisfy:

d

1

� 2t

1

+ 2t

2

+ 1 (7.1)

d

2

� 2t

1

+ t

2

+ 1 (7.2)

Obviously, we are only interested in the highest possible values of t

1

and t

2

that satisfy the above equations sine we want to generate (t

1

; t

2

)-foused

odes that orret the maximum number of errors (we are thus interested in

the values of t

1

and t

2

that ahieve at least one equality among the above

two inequalities).

For example if d

1

= 15 and d

2

= 11, we get the following foused odes: a

(5,0)-foused ode, a (4,2)-foused ode, a (3,4)-foused ode, a (2,5)-foused

ode, a (1,6)-foused ode and a (0,7)-foused ode. Assume we transmit a
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odeword (of bloklength n equal to 50) from a foused ode assoiated with

d

1

= 15 and d

2

= 11. At the reeiver, the deoder an treat the reeived

odeword as a odeword of any of the above stated (t

1

; t

2

)-foused odes. So

in order to study the deoding sheme we intend to apply, we �rst look at

the individual performane of eah of the above (t

1

; t

2

)-foused odes.

Assuming we are working over an idealized symmetri hannel skewed on

the set B of odd-weight errors with the probability of symbol hannel error,

�, �xed to the value of 0.01, we obtain the following urves for P

d

versus :
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Figure 7.1: P

d

versus  for n=50 and � = 0:01
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We an remark that we should be able to do at least as well as the

minimum of all the performane urves in �gure (7.1), whih is the following:

-9

-8

-7

-6

-5

-4

-3

-2

-9-8-7-6-5-4-3-2-10

log

10

(P

d

)

log

10

()

minimal urve

Figure 7.2: Minimal urve performane in deoding a foused ode assoiated

with d

1

= 15 and d

2

= 11 for n=50 and � = 0:01

7.1.3 Adaptive Deoding of the Foused Code Assoi-

ated with d

1

= 15 and d

2

= 11

We now onsider our foused ode assoiated with d

1

= 15 and d

2

= 11 and

try to deode it by \adapting" the orreting apability of the outer deoder

C

2

aording to the number of erasures the inner deoder C

1

delivers.
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We know that the maximum number of erasures C

1

an deliver (i.e., the

maximum number of ommon errors C

1

an orret) is e

max

= b

d

1

�1

2

 = 7.

So for eah value of e (e = 0; 1; :::; e

max

), the outer deoder C

2

will orret

up to u = b

d

2

�e�1

2

 unommon errors. We get the following table:

e 0 1 2 3 4 5 6 7

u 5 4 4 3 3 2 2 1

Table 7.1: Values of e and u for d

1

= 15 and d

2

= 11

From the above data, we dedue the probability of orretly deoding the

foused ode assoiated with d

1

= 15 and d

2

= 11:

P



= P (e = 7 ; u � 1) (7.3)

+P (e = 6 ; u � 2)

+P (e = 5 ; u � 2)

+P (e = 4 ; u � 3)

+P (e = 3 ; u � 3)

+P (e = 2 ; u � 4)

+P (e = 1 ; u � 4)

+P (e = 0 ; u � 5)

We an notie from the above expression of P



that with suh algorithm,

we an orret up to 8 errors (7 ommon and 1 unommon, or 6 ommon and

2 unommon) and up to 5 unommon errors while in the \minimal urve"

method we an orret up to 7 errors and up to 3 unommon errors.

Thus the probability of deoding error for the adaptive deoding will be:

P

ad

d

= 1� P



(7.4)

If we plot the performane of the adaptive deoder and ompare it to the

performane of the \minimal" urve we obtained earlier, we get:

93



-9

-8

-7

-6

-5

-4

-3

-2

-9-8-7-6-5-4-3-2-10

log

10

(P

d

)

log

10

()

minimal

adaptive

Figure 7.3: Adaptive performane vs \minimal urve" performane for a

foused ode assoiated with d

1

= 15 and d

2

= 11, for n=50, � = 0:01

From the above plot we learly remark that the performane urve of the

adaptive deoder is better than that of the \minimal" urve for high values

of  before behaving identially (as a 7-error orreting ode performane)

as  dereases. Moreover by using adaptive deoding, we do not even need

to determine the regions of  that orrespond to the deoding of di�erent

(t

1

; t

2

)-foused odes (like in the previous setion).

94



7.1.4 Analytial Desription of Adaptive Deoding

In the previous setions, we showed by using a partiular example that we

an ahieve the \best" performane for the deoding of a foused ode over an

idealized SSC, assoiated with d

1

and d

2

(where d

1

and d

2

are the minimum

distanes of C

1

and C

2

respetively) via adaptive deoding.

The general adaptive deoding algorithm for foused odes assoiated

with d

1

and d

2

, is the same as the usual deoding algorithm for (t

1

; t

2

)-

foused odes we desribed in setion (7.1.1); but the analysis for whih we

delare a deoding error is di�erent. For a given transmitted odeword,

� we pass the reeived odeword to the deoder of the deteting ode C

0

and the inner ode C

1

and observe the number of erasures e it delivers.

We know that 0 � e � e

max

where e

max

= b

d

1

�1

2

.

� We then pass the resulting blok to the deoder of the outer ode C

2

.

Aording to the number of erasures e, C

2

will orret up to u =

b

d

2

�e�1

2

 unommon errors.

Note that the adaptive deoding onept we are presenting in this hapter,

is only appropriate for the foused odes onstrution tehnique suggested in

[1℄.

Using equations (7.3) and (7.4), we an diretly write the analytial ex-

pression of the probability of deoding error for the adaptive deoder:

P

ad

d

= 1�

e

max

X

i=0

u

X

j=0

 

n

i+ j

! 

i+ j

j

!

�

i+j

(1� �)

n�i�j



j

(1� )

i

(7.5)

where:

� e

max

= b

d

1

�1

2

 and u = b

d

2

�i�1

2

.
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� i=number of ommon errors.

� j=number of unommon errors.

� n=bloklength per odeword.

For omparison, we reall the deoder error probability P

d

of a t

1

+ t

2

-

error orreting ode (or a (t

1

+ t

2

,0)-foused ode) and the deoder error

probability P

f

d

of a (t

1

; t

2

)-foused ode where t

1

+ t

2

= b

d

1

�1

2

 and t

2

=

d

1

� d

2

:

P

d

= 1�

t

1

+t

2

X

i=0

 

n

i

!

�

i

(1� �)

n�i

(7.6)

P

f

d

= 1�

t

1

+t

2

X

i=0

min(i;t

1

)

X

j=0

 

n

i

! 

i

j

!

�

i

(1� �)

n�i



j

(1� )

i�j

(7.7)

Given that we are working over an idealized SSC with � �xed, we observe

that:

� The seond term in equation (7.5) is always bigger than the seond

term in equation (7.7) yielding P

ad

d

� P

f

d

sine by adaptive deoding

we an orret more than t

1

unommon errors..

� For very large values of , the seond term in equation (7.5) is smaller

than the seond term in equation (7.6) yielding P

d

� P

ad

d

.

� For small values of , the seond term in equation (7.5) is bigger than

the seond term in equation (7.6) (sine for j=0 we have equality be-

tween the two terms) yielding P

ad

d

� P

d

. But as  beomes extremely

small, the terms in equation (7.5) orresponding for j � 1 an be ne-

gleted; whih makes P

ad

d

= P

d

.

The remarks stated above are learly illustrated in Figure (7.3) (for d

1

=

15 and d

2

= 11) where the urve of the performane of the adaptive deoder

is always lower than the \minimal urve" whih is a ombination of the

96



performane urves of a (5,0)-foused ode, a (4,2)-foused ode and a (3,4)-

foused ode. Moreover the urve of the performane of the adaptive deoder

is higher than that of a 7-error orreting ode for high values of , then as

 dereases it goes below the latter before behaving identially at very small

values of .

7.2 Adaptive Deoding For Foused Codes

Used In Conjuntion With PSK Modu-

lation And Square Constellations

We an rewrite equation (7.5) as:

P

ad

d

=

n

X

i=e

max

+1

n�i

X

j=0

 

n

i + j

! 

i+ j

j

!

�

i+j

(1� �)

n�i�j



j

(1� )

i

+

e

max

X

i=0

n�i

X

j=u+1

 

n

i+ j

! 

i+ j

j

!

�

i+j

(1� �)

n�i�j



j

(1� )

i

(7.8)

From the above equation, we dedue the deoded symbol error probability P

s

as:

P

s

=

n

X

i=e

max

+1

n�i

X

j=0

m

i

 

n

i+ j

! 

i+ j

j

!

�

i+j

(1� �)

n�i�j



j

(1� )

i

+

e

max

X

i=0

n�i

X

j=u+1

m

i

 

n

i + j

! 

i+ j

j

!

�

i+j

(1� �)

n�i�j



j

(1� )

i

(7.9)

where m

i

= min

h

n;

e

max

+i

n

i

.

Using equations (7.5) and (7.9), we respetively plot the adaptive deod-

ing performanes (P

d

vs E

s

=N

0

and P

s

vs E

b

=N

0

) of foused odes assoiated

with d

1

and d

2

and used with M-ary PSK modulation and M-ary square on-

stellations; and ompare them to the respetive performanes of t

1

+ t

2

-error
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orreting odes (using equation (7.6)) where t

1

+t

2

= b

d

1

�1

2

 and t

2

= d

1

�d

2

.

For di�erent values of the bloklength n, M, d

1

and d

2

, we onstrut odes

assoiated with d

1

and d

2

and foused over the set B of odd-weight errors,

ompute the rate improvement they ahieve over the t

1

+ t

2

-error orreting

odes and get their performane and oding gain plots.

16-ary PSK modulation with n=8, d

1

= 5 and d

2

= 3

1. Foused ode C

f

over GF(16):

� C

0

: (4,3) binary ode with rate R

0

= 3=4.

� C

1

: (8,2) binary ode with d

1

= 5 and rate R

1

= 2=8.

� C

2

: (8,6) shortened Reed Solomon ode over GF(8) with d

2

= 3

and rate R

2

= 6=8.

� Foused ode rate: R

f

= (1�R

0

)R

1

+R

0

R

2

= 0:625.

2. 2-error orreting ode d=5: shortened Reed Solomon ode over GF(16)

with rate R=0.5.

3. Rate improvement:

R

f

�R

R

� 100 = 25%.

32-ary PSK modulation with n=14, d

1

= 9 and d

2

= 5

1. Foused ode C

f

over GF(32):

� C

0

: (5,4) binary ode with rate R

0

= 4=5.

� C

1

: (14,2) binary ode with d

1

= 9 and rate R

1

= 2=14.

� C

2

: (14,10) shortened Reed Solomon ode over GF(16) with d

2

= 5

and rate R

2

= 10=14.

� Foused ode rate: R

f

= 0:5833.

2. 4-error orreting ode d=9: shortened Reed Solomon ode over GF(32)

with rate R=0.4286.
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Figure 7.4: Adaptive performane of a foused ode assoiated with d

1

= 5

and d

2

= 3 vs performane of a 2-error orreting ode under 16-ary PSK

modulation and n=8

3. Rate improvement:

R

f

�R

R

� 100 = 36:1%.

8� 8 square onstellation with n=14, d

1

= 9 and d

2

= 7

1. Foused ode C

f

over GF(64):

� C

0

: (6,5) binary ode with rate R

0

= 5=6.

� C

1

: (14,2) binary ode with d

1

= 9 and rate R

1

= 2=14.

� C

2

: (14,8) shortened Reed Solomon ode over GF(32) with d

2

= 7

and rate R

2

= 8=14.

� Foused ode rate: R

f

= 0:5.

2. 4-error orreting ode d=9: shortened Reed Solomon ode over GF(64)

with rate R=0.4286.

3. Rate improvement:

R

f

�R

R

� 100 = 16:66%.

16� 16 square onstellation with n=31, d

1

= 15 and d

2

= 11

1. Foused ode C

f

over GF(256):
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� C

0

: (8,7) binary ode with rate R

0

= 7=8.

� C

1

: (31,6) binary ode with d

1

= 15 and rate R

1

= 6=31.

� C

2

: (31,21) shortened Reed Solomon ode over GF(128) with d

2

=

11 and rate R

2

= 21=31.

� Foused ode rate: R

f

= 0:6169.

2. 7-error orreting ode d=15: shortened Reed Solomon ode (RS) over

GF(256) with rate R=0.5484.

3. Rate improvement:

R

f

�R

R

� 100 = 12:5%.

Comment

Figures (7.4)-(7.11) suggest to us that foused odes assoiated with d

1

and d

2

an ahieve the same performane as t

1

+ t

2

-error orreting odes

(where t

1

+ t

2

= b

d

1

�1

2

 and t

2

= d

1

� d

2

) under PSK and square onstella-

tion modulations (while having a higher rate) if we deode them using the

adaptive deoding algorithm.
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Figure 7.5: Adaptive Coding Gain of a foused ode assoiated with d

1

= 5

and d

2

= 3 vs performane of a 2-error orreting ode under 16-ary PSK

modulation and n=8
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Figure 7.6: Adaptive performane of a foused ode assoiated with d

1

= 9

and d

2

= 5 vs performane of a 4-error orreting ode under 32-ary PSK

modulation and n=14
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Figure 7.7: Adaptive Coding Gain of a foused ode assoiated with d

1

= 9

and d

2

= 5 vs performane of a 4-error orreting ode under 32-ary PSK

modulation and n=14
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Figure 7.8: Adaptive performane of a foused ode assoiated with d

1

= 9

and d

2

= 7 vs performane of a 4-error orreting ode under 64-ary square

onstellation and n=14
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Figure 7.9: Adaptive Coding Gain of a foused ode assoiated with d

1

= 9

and d

2

= 7 vs performane of a 4-error orreting ode under 64-ary square

onstellation and n=14
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Figure 7.10: Adaptive performane of a foused ode assoiated with d

1

= 15

and d

2

= 11 vs performane of a 7-error orreting ode under 256-ary square

onstellation and n=31
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Figure 7.11: Adaptive Coding Gain of a foused ode assoiated with d

1

= 15

and d

2

= 11 vs performane of a 7-error orreting ode under 256-ary square

onstellation and n=31
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Chapter 8

Conlusion

In this thesis, we investigated the performane of (t

1

; t

2

)-foused odes in

terms of rate/performane tradeo�s with respet to \idealized" skewed han-

nels as well as realisti non-binary modulation shemes.

After a brief introdution of the onept of foused error ontrol odes

on hannels with skewed errors and a quik review of results onerning

their onstrution (hapter 2), we derived in hapter 3, the general expres-

sion for the deoder error probability P

d

of foused odes, and studied their

performane over \idealized" skewed symmetri hannels with independent

parameters � and . In the ase where � was held onstant, we omputed

P

d

as a funtion of  and obtained the ritial value of , 

rit

, beneath

whih a (t

1

; t

2

)-foused ode performs identially as a traditional t

1

+ t

2

-error

orreting ode (i.e., P

d

(foused ode) � P

d

(traditional ode)). Similarly,

in the ase where  was held onstant, we omputed P

d

as a funtion of �

and obtained the ritial value of �, �

rit

, beyond whih P

d

(foused ode) �

P

d

(traditional ode). We then determined a general ondition under whih

performane mathing is ahieved between (t

1

; t

2

)-foused odes and t

1

+ t

2

-

error orreting odes.

In hapter 4 and 5, we derived respetively the analytial expressions for

the parameters of additive white Gaussian noise hannels assoiated with
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M-ary PSK modulation and square onstellations. We then analyzed the

performane of foused ontrol odes used in onjuntion with M-ary PSK

modulation and square onstellations respetively and ompared it to the

performane of traditional odes. Some simulations on the foused odes

performanes were also done in order to hek the auray of the results

derived analytially.

In hapter 6, we provided some numerial results by onstruting (t

1

; t

2

)-

foused odes over GF(q) and omputing the ode rate improvements they

ahieve over t

1

+ t

2

-error orreting odes while having an idential perfor-

mane, for di�erent values of the ode bloklength and q. Considerable rate

improvements were obtained:

� A (0,2)-foused ode over GF(16) ahieved a rate gain of 25% over a

2-error orreting Reed Solomon ode for a bloklength n=8.

� A (0,4)-foused ode over GF(32) ahieved a rate gain of 36:1% over a

4-error orreting Reed Solomon ode for a bloklength n=14.

� A (1,2)-foused ode over GF(64) ahieved a rate gain of 23:34% over

a 3-error orreting Reed Solomon ode for a bloklength n=11.

� A (1 2)-foused ode over GF(256) ahieved a rate gain of 27:5% over

a 3-error orreting Reed Solomon ode for a bloklength n=11.

We also alulated the oding gains (in signal to noise ratio) (t

1

; t

2

)-foused

odes ahieve over t

1

+ t

2

-error orreting odes and unoded blok messages

under PSK and square onstellation modulations. We remarked that foused

odes ahieved substantial oding gains (1.5 db on the average) in E

b

=N

0

over

unoded messages for all values of the bloklength n. Moreover, the foused

odes ahieved also fair amounts of oding gain over the error orreting

Reed Solomon odes, espeially for small values of n. For example, under

a 32-ary PSK modulation with n=8, a (0,2)-foused ode ahieved a oding

gain of 1.13 db over a 2-error orreting RS ode at P

s

= 10

�6

(�gure (6.3)).

And a (1,2)-foused ode used with a 256-ary square onstellation and n=11

ahieved a oding gain of 1.06 db at P

s

= 10

�6

over a 3-error orreting RS

ode.
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Finally, the onept of adaptive deoding of foused odes used over \ide-

alized" skewed symmetri hannels and used in onjuntion with M-ary PSK

modulation or square onstellations, was introdued in hapter 7. We pre-

sented some examples in whih we an attain performane mathing between

foused odes assoiated with d

1

and d

2

and t

1

+ t

2

-error orreting odes

(where t

1

+t

2

= b

d

1

�1

2

 and t

2

= d

1

�d

2

) if we deode them using an adaptive

deoding algorithm.
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