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Vectors and scalars are the basic building blocks in linear algebra.
We introduce vectors from a geometric and an algebraic point of
view. We also define a field of scalars as an algebraic structure and
highlight a few of the most important examples.

The word ‘vector’ comes from the
Latin word meaning "to carry". The
mathematical term was introduced in
1846 by W.R. Hamilton.

1.0 Geometry of Vectors

The International Organization for
Standardization (ISO) recommends that
a vector be typeset in bold italic font v
or a non-bold italic font accented by a
right arrow ~v. Initially, we use both.

What, geometrically, is a vector? A vector ~v is characterized by
its magnitude (also known as its length) and its direction. A vector
is often represented by an arrow from a point P to a point Q and
denoted by ~v :=

�!
PQ. In this situation, the point P is called the tail of

the vector and the point Q is called the head. The magnitude k~vk of
the vector ~v is a real number equal to the distance between the head
and the tail. Two arrows

�!
PQ and

�!
SR represent the same vector if the

quadrilateral PQRS is a parallelogram; the opposite sides are equal
in length. Many physical quantities, such as displacement, velocity,
acceleration, force, and momentum, are represented by vectors.

P

Q
R

S

�!
PQ

�!
SR

Figure 1.0: Equivalent vectors

How do we add vectors? The sum of two vectors ~v and ~w is
the vector ~v + ~w obtained by placing the tail of ~w at the head of ~v
drawing the arrow from the tail of ~v to the head of ~w.

1.0.0 Problem. A kayak is moving with velocity ~v and a speed of
5 km · h�1 relative to the water. The river has a current ~w with a speed
of 4 km · h�1. What is the physical significance of the vector ~v + ~w?

~w
~v

~v + ~w

Figure 1.1: Kayaking into a current

Solution. The vector ~v indicates how the kayak is moving relative to
the water and the vector ~w indicates how the water is moving relative
to the riverbed. The sum ~v + ~w is the velocity of the kayak relative to
the riverbed. Although we add the velocity vectors, the magnitude of
the sum is not necessarily the sum of the magnitudes. In this case, we
have 1 km · h�1 6 k~v + ~wk 6 9 km · h�1.

Calling this operation on vectors ‘addition’ implicitly suggests
that it enjoys certain properties. From the parallelogram with sides
equivalent to the vectors ~v and ~w, we see that vector addition is
commutative: ~v + ~w = ~w + ~v. Similarly, from the parallelepiped
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(the 3-dimensional figure bounded by 6 parallelograms) with edges
equivalent to the vectors ~u, ~v, and ~w, we see that vector addition is
associative: (~u + ~v) + ~w = ~u + (~v + ~w).

~w

~v ~v

~w

~v +
~w

~v + ~w = ~w + ~v

~v

~u
~w

~w
~w

~v

~u

~u
~v

~u +
~v

~v + ~w

(~u + ~v) + ~w = ~u + (~v + ~w)
Figure 1.2: Geometry of commutativity
and associativity for vector addition

Vector addition also determines some special vectors. A zero
vector~0 is any vector with zero magnitude.

In making a definition, we emphasize
the definiendum, that which is being
defined, by switching between italic
and non-italic fonts and using a bold
typeface.

1.0.1 Proposition (Property of the zero vector). The zero vector is the
unique vector such that, for all vectors ~v, we have ~v +~0 = ~v.

Proof. Since the magnitude of a zero vector~0 is zero, the points
corresponding to its head and tail coincide. The definition of vector
addition implies that, for all vectors ~v, we have ~v +~0 = ~v.

To establish uniqueness, suppose that ~z is also a zero vector. The
property of a zero vector and the commutativity of vector addition
give ~z = ~z +~0 =~0 +~z =~0, so any two zero vectors are equal.

1.0.2 Proposition (Property of additive inverses). For all vectors ~v,
there exists a unique vector �~v, called the additive inverse of ~v, such that
~v + (�~v) =~0.

~v

�~v

Figure 1.3: A vector ~v and its additive
inverse �~v

Proof. The claim has two parts.
(existence) Let ~w be a vector with the same magnitude as ~v and the

opposite direction; when ~v :=
�!
PQ, we have ~w =

�!
QP. Vector

addition implies that ~v + ~w =~0, so ~v has an additive inverse.
(uniqueness) Suppose that ~u and ~w are both additive inverses of

the vector ~v. The properties of the zero vector and an additive
inverse, together with the commutativity and associativity of
vector addition, establish that

~u = ~u +~0 = ~u + (~v + ~w) = (~u + ~v) + ~w = (~v + ~u) + ~w =~0 + ~w = ~w +~0 = ~w ,

so any two additive inverses of the vector ~v are equal.

How do we multiple a vector by a number? The scalar multiple
of a vector ~v by a number c is another vector c~v simply denoted by
juxtaposition. For any two vectors ~v and ~w, and any two numbers b
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and c, scalar multiplication satisfies the following properties:

(compatibility with multiplication of scalars) b (c~v) = (bc)~v
(existence of a multiplicative identity) 1~v = ~v
(distributivity over vector addition) c (~v + ~w) = c~v + c ~w
(distributivity over scalar addition) (c + d)~v = c~v + d~v

Scalar multiplication by a positive number rescales (stretches or
contracts) the magnitude by the given factor without changing the
direction. In constrast, scalar multiplication by a negative number
gives a vector in the opposite direction.

~v

2~v
(�1)~v

0.5~v

Figure 1.4: Scalar multiplies of ~v

1.0.3 Definition (Parallel vectors). The vector ~v is parallel to the vector
~w if there exists a real number c such that c~v = ~w.

Exercises

1.0.4 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. The sum of two vectors is a vector.
ii. The sum of nonzero vectors is never the zero vector.

iii. Scalar multiplication allows one to multiple two vectors.
iv. Parallel vectors have the same direction.

1.0.5 Problem. A unit vector has magnitude equals 1. Demonstrate
that every nonzero vector is parallel to a unit vector.

1.0.6 Problem. Prove that the additive inverse of the zero vector is the
zero vector: ~0 = �~0.

1.0.7 Problem. For any vector ~v, prove that scalar multiplication by
0 is the zero vector, 0~v = ~0, and every vector is parallel to the zero
vector.

1.0.8 Problem. For any vector ~v, prove that scalar multiplication by �1
produces the additive inverse of ~v: (�1)~v = �~v.

1.0.9 Problem. Prove that vector addition is cancellative: for all vector
~u, ~v, and ~w, the equation ~u + ~v = ~w + ~v always implies that ~u = ~w.

1.0.10 Problem. Vector subtraction is defined by adding the additive
inverse: ~v � ~w := ~v + (�~w). Describe this operation geometrically.

1.0.11 Problem. Prove that vector subtraction is anti-commutative: for
all vectors ~v and ~w, we have ~v � ~w = �(~w � ~v).

1.0.12 Problem. Demonstrate that vector subtraction is non-associative.
Draw three vectors ~u, ~v, and ~w such that (~u � ~v)� ~w 6= ~u � (~v � ~w).

1.0.13 Problem. For any integer m that is greater than 2, exhibit m
nonzero vectors ~v1,~v2, . . . ,~vm all with the same magnitude such that
~v1 + ~v2 + · · ·+ ~vm =~0.
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1.0.14 Problem. Show that the scalar multiple of the zero vector by any
integer equals the zero vector: m~0 =~0.

1.0.15 Problem. The 13 points appearing in Figure 1.5 are part of a
hexagonal lattice; any three nearby points form an equilateral triangle
of the same size. Express each of the following vectors in terms of the
vector ~v :=

�!
OD and the vector ~w :=

�!
OL.

i.
�!
GD

ii.
�!
DC

iii.
�!
GF

iv.
�!
CJ

v.
�!
DC +

�!
FI +

�!
JG

O

~v

D

~w

L

J

C

G

F

I

K

B

A

H

E

Figure 1.5: Part of a hexagonal lattice

1.0.16 Problem. Show that the binary relation "is parallel" on the set
of all nonzero vectors is reflexive, symmetric, and transitive. More
precisely, prove that, for all nonzero vectors ~u, ~v, and ~w, we have

(reflexivity) The vector ~v is parallel to ~v.
(symmetry) The vector ~v is parallel to ~w if and only if the vector ~w is parallel to ~v.
(transitivity) If ~u is parallel to ~v and ~v is parallel to ~w, then ~u is parallel to ~w.

1.1 Points and Lines

How are points and vectors related? By fixing a distinguished
point, every point corresponds a unique vector. More explicitly, let O The word "origin" is borrowed from

the Latin word meaning "ancestry",
"coming into being", or "source". In
mathematics, it refers to a fixed point
from which measurement or motion
commences.

be a fixed reference point called the origin. The point P corresponds
to the position vector

�!
OP and the vector ~v corresponds to the point

that lies at its head when its tail is at the origin. These two maps
compose, in either order, to the identity. Specifically, the point P
corresponds to the vector

�!
OP and this vector corresponds to the point

P. Conversely, the vector ~v corresponds to the point at its head when
its tail is at the origin and this point corresponds to ~v.

1.1.0 Problem. In a triangle, show that the line segment joining the
midpoints of two sides is parallel to the third and has half the length.

P Q

R

~v

Figure 1.6: Joining the midpoints of two
sides in a triangle

Solution. If P, Q, and R are the vertices of the triangle, then we
have

�!
PQ +

�!
QR =

�!
PR. For brevity, choose P to be the origin. The

midpoint of the line segment PR corresponds to the vector 1
2
�!
PR

and the midpoint of the line segment QR corresponds to the vector�!
PQ + 1

2
�!
QR. Hence, the vector ~v from the first midpoint to the second

midpoint is

~v =
��!

PQ + 1
2
�!
QR

�
�

� 1
2
�!
PR

�
=

��!
PQ + 1

2
�!
QR

�
� 1

2
��!

PQ +
�!
QR

�
= 1

2
�!
PQ .

We conclude that the line segment joining these midpoints is parallel
to the line segment PQ and has half its length.
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1.1.1 Definition. The centroid of a nonempty finite collection of points
is the point corresponding to the mean of their position vectors.

The mean of m vectors is the scalar
multiple of their sum by 1/m.

1.1.2 Problem. Demonstrate that the centroid is independent of the
choice of origin.

C

R1

R2

R3

R4

R5

R6

R7

R8

R9

Figure 1.7: The centroid of 9 points

Solution. Let P and Q be two choices of origin. For any point R, we
have

�!
PR =

�!
PQ +

�!
QR. Given m points R1, R2 . . . , Rm, let C denote the

centroid. It follows that
�!
PC = 1

m (
��!
PR1 +

��!
PR2 + · · ·+��!

PRm)

= 1
m
�
(
�!
PQ +

��!
QR1) + (

�!
PQ +

��!
QR2) + · · ·+ (

�!
PQ +

��!
QRm)

�

=
�!
PQ + 1

m (
��!
QR1 +

��!
QR2 + · · ·+��!

QRm) .

Thus, we see that
�!
QC =

�!
PC ��!

PQ = 1
m (

��!
QR1 +

��!
QR2 + · · ·+��!

QRm).

How do vectors describe the points on a line? Let P and
Q be distinct points and let O denote the origin. The points on the
line through P and Q correspond to a simple collection of vectors.
Since the point P is corresponds to the vector

�!
OP and the vector

�!
PQ

is parallel to the line through P and Q, each vector

~̀ (t) :=
�!
OP + t

�!
PQ =

�!
OP + t (

�!
OQ ��!

OP) = (1 � t)
�!
OP + t

�!
OQ ,

where t is a real number, corresponds to exactly one point on this
line. In particular, the vector ~̀ (0) corresponds to the point P and
the vector ~̀ (1) corresponds to Q. When 0 6 t 6 1, the vector ~̀ (t)
corresponds to a point on the line segment PQ.

O

P

Q

~̀ (�5/3)

Figure 1.8: Vector equation of a line

1.1.3 Problem. Let P, Q, and R be three distinct points and let O be
the origin. Show that the points P, Q, and R are collinear (all lie on
a single line) if and only if there exists three real numbers a, b, and c,
not all zero, such that a + b + c = 0 and a

�!
OP + b

�!
OQ + c

�!
OR =~0.

Solution. To establish this ‘if and only if"’statement, we prove two
separate implications: the ‘if’ and the ‘only if’.
): Suppose that the three points are collinear. Since the point R lies

on the line through P and Q, there exists a real number t such that�!
OR = (1 � t)

�!
OP + t

�!
PQ. Setting a := (1 � t), b := t, and c := �1,

we have a + b + c = 0 and a
�!
OP + b

�!
OQ + c

�!
OR =~0.

The expression A := B means that A is,
by definition, equal to B.

(: Suppose that there are real numbers a, b, and c, not all zero, such
that a + b + c = 0 and a

�!
OP + b

�!
OQ + c

�!
OR = ~0. If c were equal

to 0, then we would have a = �b and
�!
OP =

�!
OQ, which would

show that P = Q contradicting the hypothesis that three points are
distinct. Hence, we must have c 6= 0. It follows that a

c +
b
c + 1 = 0

and
�!
OR = � a

c
�!
OP � b

c
�!
OQ =

� b
c + 1

��!
OP � b

c
�!
OQ. Setting t := � b

c ,
we have

�!
OR = (1 � t)

�!
OP + t

�!
OQ, which proves that the point R is

on the line through P and Q.
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1.1.4 Definition. A median of a triangle is a line through a vertex and
the midpoint of the opposite side.

1.1.5 Problem. Let P, Q, and R be three points that are not collinear.
Show that the centroid of the points P, Q, and R lies on each median
in the triangle PQR.

P Q

R

Figure 1.9: Medians in a triangle
Solution. Let O be the origin. By definition, the centroid of the three
points is the point corresponding to the vector 1

3 (
�!
OP +

�!
OQ +

�!
OR).

Because the point P and the midpoint of the opposite side QR cor-
respond to the vectors

�!
OP and 1

2 (
�!
OQ +

�!
OR) respectively, the line

through these points is parameterized by the vectors

~̀ (t) := (1 � t)
�!
OP + t

� 1
2 (
�!
OQ +

�!
OR)

�
.

We see that ~̀
� 2

3
�
= 1

3
�!
OP + 2

3
� 1

2 (
�!
OQ +

�!
OR)

�
= 1

3 (
�!
OP +

�!
OQ +

�!
OR),

so the centroid of the triangle PQR lies on the median through the
vertex P. By permuting the labels for the vertices, we conclude that
the centroid lies on each median.

Exercises

1.1.6 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. Points and vectors are identical.
ii. The midpoint of a line segment is the centroid of its endpoints.

iii. Any three points line on a line.

1.1.7 Problem. Given four points A, B, C, and D, establish that the
following three conditions are equivalent:
a.

�!
AB =

�!
DC,

b.
�!
AD =

�!
BC,

c. the line segments AC and BD have the same midpoint.

1.1.8 Problem. Show that the diagonals in a parallelogram bisect each
other (intersect at their midpoints). Moreover, this intersection point
is the centroid of the four vertices of the parallelogram.

A

B

C

D

Figure 1.10: Diagonals in a parallelo-
gram

1.1.9 Problem. Prove that the midpoints of the four sides of an
arbitrary quadrilateral form a parallelogram.

D

A C

B

Figure 1.11: Tetrahedron

1.1.10 Problem. Show that the centroid of the four vertices of a
tetrahedron (a solid with four vertices joined by six lines that bound
the tetrahedron’s four triangular faces) is the intersection of the
following seven lines:

i. it is 3/4 of the way from the vertex of the tetrahedron along the
line segment joining the vertex to the centroid of the opposite
face;
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ii. it is also the midpoint of the line segment joining the midpoints
of any pair of opposite edges.

O Q R

B

C

A

P

Figure 1.12: Six points on two lines

1.1.11 Problem. Consider six points A, P, B, Q, C, R that lie alternately
on two distinct lines that intersect at the point O; see Figure 1.12. If
the vector

�!
AQ is parallel to the vector

�!
BR and

�!
BP is parallel to

�!
CQ,

then show that
�!
AP is parallel to

�!
CR.

1.2 Algebra of Vectors

We reserve the Blackboard bold type-
face for a few special sets.

What are scalars? The most primitive numbers 0, 1, 2, 3, . . . are
those used for counting. These numbers form the set of nonnegative
integers denotes by N. This set is equipped with two basic binary
operations: addition and multiplication. For all a, b, c 2 N, we have
the following seven familiar properties.

(commutativity of addition) a + b = b + a
(associativity of addition) (a + b) + c = a + (b + c)
(existence of an additive identity) a + 0 = a
(commutativity of multiplication) ab = ba
(associativity of multiplication) (ab)c = a(bc)
(existence of a multiplicative identity) 1a = a
(distributivity of multiplication over addition) a(b + c) = ab + ac

In contrast with vectors, only one nonnegative integer (namely the
number 0) has an additive inverse contained in N. To guarantee that
every number has an additive inverse, we enlarge our collection of
numbers to the integers Z consisting of . . . ,�3,�2,�1, 0, 1, 2, 3, . . . .
Both addition and multiplication extend to this larger set. Besides

The symbol Z comes from "Zahlen" the
German word for numbers.

the seven properties listed for N, the addition operation on Z also
satisfies:

(existence of additive inverses) a + (�a) = 0

The only integers that have a multiplicative inverse (or reciprocal)
contained in Z are 1 and �1. To ensure that every nonzero number
has a multiplicative inverse, we consider the rational numbers Q. A The symbol Q comes from "Quoziente"

the Italian word for quotient.rational number can be expressed as a fraction a/b of two integers,
where the numerator a is any integer and b is any nonzero integer.
Both addition and multiplication extend to this larger set and these
operations on Q acquire the extra property:

(existence of multiplicative inverses) a
� 1

a
�
= 1 for all a 6= 0

The rational numbers are the prototypical scalars. More generally,
a field K of scalars is a set with two operations, called addition and
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multiplication, that satisfy the nine properties listed for the rational
numbers. For any two elements a, b 2 K, the result of addition

The symbol K comes from "Körper" the
German word for a field of scalars. The
English term "field" was introduced in
1893 by E.H. Moore.

is the sum a + b, and the result of multiplication is the product ab.
Throughout this text, we use K to denote an arbitrary field of scalars.

�1 0 1 2 3 4
1.5

p
2 p

Figure 1.13: The real number line

The real numbers R provide the second example of a field of
scalars. The real numbers include all rational numbers and all ir-
rational numbers, such as

p
2 and p ⇡ 3.14159265 . . . . Any real

number can be determined by a possibly infinite decimal represen-
tation. The set R is visualized as an infinite number line, where the
integers are equally spaced and each point on the line corresponds to
a unique real number.

What, algebraically, is a vector? For any positive integer n, the
coordinate space K

n consists of all n-tuples (or lists with n entries) of
scalars in K. A vector ~v 2 K

n is typically expressed as a column of
scalars. Addition and scalar multiplication are defined entrywise;

for all ~v :=

2

664

v1
v2...
vn

3

7752 K
n, all ~w :=

2

664

w1
w2...
wn

3

7752 K
n, and all c 2 K, we have ~v + ~w =

2

664

v1 + w1
v2 + w2...
vn + wn

3

775 and c~v =

2

664

cv1
cv2...
cvn

3

775.

The commutativity and associativity of addition in K
n are inherited

from the commutativity and associativity of addition in K.
The existence of an additive identity and additive inverses in K

implies that

~0 :=

2

664

0
0
...
0

3

775 , and �~v :=

2

664

�v1
�v2...
�vn

3

775 ,

are the zero vector and additive inverse in K
n respectively. The

existence of a multiplicative identity in K gives the multiplicative
identity in K

n. Finally, the compatibility of multiplications and the
distributivity of scalar multiplication over both vector addition and
scalar addition are derived from associativity and distributivity of
multiplication in K.

2~e1 +~e2

~e1 + 2~e2
3~e1 + 3~e2

Figure 1.14: Vector addition

For each 1 6 j 6 n, the vector ~ej has 1 in its j-th entry and zeros
elsewhere. The standard basis is the list ~e1,~e2, . . . ,~en of vectors in K

n.
With this notation, we have K

n = {v1~e1 + v2~e2 + · · ·+ vn~en | vj 2 K}.
Choosing~0 to be the origin, we see that the vector from the point
P := (p1, p2, . . . , pn) to the point Q := (q1, q2, . . . , qn) is

�!
PQ = (q1 � p1)~e1 + (q2 � p2)~e2 + · · ·+ (qn � pn)~en .

~e1 :=

2

666664

1
0
0
...
0

3

777775
, ~e2 :=

2

666664

0
1
0
...
0

3

777775
, . . . ,~en :=

2

666664

0
0
0
...
1

3

777775

In K
3, the notation i := ~e1, j := ~e2, and

k := ~e3 is common.
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Why consider vectors with more than three components?
Almost all interesting applications depend on more than three things.
For example, to describe the state of a physical system in 3-space,
one needs the position and momentum vectors, a total of at least
6 components. To describe the stock market, one needs a vector
consisting of all the prices of all stocks listed on the exchange. To
describe a digital image to a computer, one needs to list the colour of
each pixel. Linear algebra provides uniform tools not depending on
the number of parameters—it works for all nonnegative integers n.

1.2.0 Problem. Decide whether the vector ~v := 2~e1 + 3~e2 + 5~e3 is
parallel to ~u := �~e1 � 1.5~e2 � 2.5~e3 or ~w := 4~e1 + 6~e2 + 9~e3.

Solution. Since ~u = � 1
2~v, these vectors are parallel. However, ~w is not

a scalar multiple of ~v because 2
4 = 3

6 6= 5
9 .

Exercises

1.2.1 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. Zero belongs to the set N.
ii. The integers Z form a field of scalars.

iii. The symbol K denotes a random collection of numbers.
iv. Every entry in the zero vector~0 2 K

n equals zero.
v. The coordinate space K

0 contains the zero vector.

1.2.2 Problem. For all a, b 2 Z, the order relation on Z is defined by
a 6 b if and only if b � a 2 N. We write a < b if a 6 b and a 6= b.

i. For all a, b, c 2 Z, show that the relation a 6 b implies that
a + c 6 b + c.

ii. For all a, b, c 2 Z with c > 0, show that the relation a 6 b implies
that ac 6 bc.

1.2.3 Problem. Verify that the rational numbers Q satisfy the nine
defining properties of a field of scalars.

1.2.4 Problem. Given two scalars a, b 2 K such that ab = 0, prove that
a = 0 or b = 0.

1.2.5 Problem. Exponentiation maps (n, a) 2 N ⇥ K to the product

an :=
n

’
i=1

a = a ⇥ a ⇥ · · ·⇥ a| {z }
n times

.

i. Show that exponentiation is not commutative.
ii. Show that exponentiation is not associative.

1.2.6 Problem. For all a, b, c, d 2 Z with b > 0 and d > 0, the order
relation on Q is defined by a

b 6 c
d if and only if ad < bc.
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i. For all a, b, c, d, e, f 2 Z with b > 0, d > 0, and f > 0, show that
the relation a

b 6 c
d implies that a

b +
e
f 6 c

d + e
f .

ii. For all a, b, c, d, e, f 2 Z with b > 0, d > 0, e > 0, and f > 0, show
that the relation a

b 6 c
d implies that

� a
b
� � e

f
�
6

� c
d
� � e

f
�
.

iii. For all a, b, c, d 2 Z with b > 0 and d > 0, show that the relation
a
b 6 c

d implies that a
b 6 ad+bc

2bd 6 c
d .

1.2.7 Problem. Show that the 2-element subset {0, 1} ⇢ Z with the
operations a � b := a + b � 2ab and a ^ b := min(a, b) forms a field of
scalars. In this context, the addition operation � is called "exclusive
or" and the multiplication operation ^ is called "and".

1.2.8 Problem. Consider the set R of real numbers equipped with
the two binary operations: a � b := min(a, b) and a ⇥ b := a + b.
Determine which of the nine defining properties of a field of scalars
this tropical algebra satisfies.

1.2.9 Problem. Two forces, represented by the vectors

~F1 := 6~e1 � 2~e2 and ~F2 := �3~e1 + 8~e2 ,

are acting on an object. Find a vector of the force that must be ap-
plied to the object if it is to remain stationary.

1.2.10 Problem. An airplane is flying at an airspeed of 600 km · h�1

in a cross-wind that is blowing from the northeast at a speed of
50 km · h�1. In what direction should the plane head to end up going
due east?

1.2.11 Problem. Which pairs of the following vectors are parallel?

~w := �~e1 � 2~e2 + 2~e3 ~x := �2~e1 + 4~e2 + 4~e3 ~y := 3~e1 + 6~e2 � 6~e3 ~z := �4~e1 � 8~e2 + 8~e3


